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As a crucial part of the urban system, road networks play a key role in the evolution of the urban structure.Terefore, studying the
structural characteristics of urban road networks is pivotal for improving the efciency of trafc network nodes and for relieving
trafc pressure. Tis paper applies an urban road network analysis method to measure the centrality of the multiscale road
network in Shenzhen, China. Taxi GPS data from October 17 to October 23, 2017, were selected for analysis of spatial distribution
characteristics. Tis paper also established a regression model of taxi pick-up and drop-of frequency and road network centrality
for further analysis. Several interesting observations were made. With respect to the increasing search radius, the closeness
centrality indicator shifts from a multicentered distribution to a single-centered distribution, while the betweenness centrality
indicator shifts from a patchy distribution to a distribution along the main roads. In addition, the straightness centrality indicator
turns from a dispersed distribution to a point-axis distribution, concentrated in the southern part of the city. Second, there were
variations between the centrality of the road network and the location of taxi pick-up and drop-of points. Te regression model
gets the highest value of R2, indicating a signifcant correlation in cases where the search radius is 3 km. Finally, the relationship
exhibits a clear positive correlation between the betweenness centrality and taxi pick-up and drop-of points. On the other hand,
closeness centrality is not correlated with these points. Te straightness centrality has a negative correlation with the frequency of
taxi pick-up and drop-of at 3 km and 8 km scale.

1. Introduction

As urban road networks are crucial for any city, evaluating
the road network structure may aid in improving the ef-
ciency of urban trafc. In the feld of urban trafc, it is a
common practice to use indicators of road network cen-
trality to locate important trafc hubs or road sections.

Such research focuses on urban structure from a network
perspective, and thus, studies the relationship between roads
and socioeconomic activities. For example, Crucitti et al.
studied the network structure and distribution character-
istics of 18 cities with the help of road network centrality [1].
Using the same method, Wang et al. examined the structure
and centrality of the Chinese air network [2]. Moreover, the
relationship between road network centrality and socio-
economic activities such as retail and service density was

explored from a locational perspective by Porta et al. Porta
et al. also examined the relationship between Barcelona’s
road network centrality and diverse types of economic ac-
tivities [3]. Tis research work claims that urban trafc
should be studied as neighborhood centers rather than as
boundaries in urban planning [4].

Te aforementioned research uses road network cen-
trality indicators to investigate the link between accessibility
and structural characteristics of the transportation network
[5, 6]. For example, Wang et al. examined the correlation
between land use and indicators of transportation network
centrality in Baton Rouge [7]. In addition, Zhou et al.
established prospective multimodal transportation hubs in
the Belt and Road Initiative network. In their paper, they
constructed a multimethodological model based on network
centrality and a gravity model [8]. Lastly, using the network
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centrality metrics, Noori et al. classifed the urban street
functions and assessed the structural importance of streets
[9].

Measures of network centrality are useful predictors of
a number of interesting urban phenomena. Tere are
numerous studies on the relationship between road net-
work centrality and observed trafc fow. Jiang and Liu
found that vehicle fow correlated better with the mor-
phological property of streets than with axial lines [10].
Akbarzadeh et al. found that trafc volume correlates with
node centrality. Nodes with high weighted degree and
betweenness should be given higher priority to enhance
connectivity and resilience in urban street systems [11]. Lai
et al. applied taxi big data to construct a travel fow network
to investigate the spatial interaction between diferent
urban functional areas in Shenzhen, China [12]. In addi-
tion, there are studies that use network centrality to predict
trafc fow. Yang et al. use urban network analysis (UNA)
to objectively and accurately study the street vibrancy of a
community and to predict the walking behavior of resi-
dents across age groups [13]. Te proposed method
combines quantitative and visualization analyses and
predicts residents’ walking activities within a community
based on the community living density and the distribution
of roads and public space. Gao et al. predicted urban trafc
fow based on the road network centrality indicator model
for Qingdao, China [14]. Min et al. use topological distance
in the road network to model the spatial relationship of
trafc fow for trafc forecasting [15]. However, such
distance-based models ignore the spatial heterogeneity of
road trafc interactions. As the trafc fow on the road
network is very heterogeneous in space, the spread of trafc
between roads must be anisotropic [16, 17]. Terefore, it is
necessary to measure trafc interactions between roads by
considering their heterogeneity.

In summary, many studies have examined the rela-
tionship between road network centrality and social ac-
tivities, facility allocation, and travel behaviors. In
addition, there are studies that use network centrality
analysis to predict trafc fow. However, the changing
patterns of road network centrality and the relationship
between road network centrality and residents’ activities at
multiple scales have not yet been studied in detail. In
accordance with the changed search radius, measuring the
centrality of multiscale road networks helps to understand
the hierarchical structure of global and local road net-
works, as well as spatial heterogeneity. Tus, this paper
applies multiscale urban road network centrality indica-
tors (closeness centrality, betweenness centrality, and
straightness centrality) to investigate the changing spatial
distribution pattern of road network centrality taking into
account street heterogeneity. Te paper also explores the
relationships between network structures at diferent
scales and residential trips with regard to the street en-
vironment. Tis is analyzed in conjunction with taxi pick-
up and drop-of patterns. Te results of this study may aid
the confguration and optimization of the road network
structure, as well as in the urban trafc management and
planning.

2. Study Area and Dataset

2.1. Study Area. Shenzhen is situated in the southern part of
Guangdong Province, which also constitutes the north of the
Hong Kong Special Administrative Region (HKSAR) and
forms the Pearl River Delta (PRD) with Guangzhou, Hong
Kong, Macau, and several other cities. Due to its geographical
advantages and political environment, Shenzhen has rapidly
developed from a small fshing village to a regional central city
over the past 40 years. Te city has a total area of about
1991 km2 and a population of about 12,528,300 as measured
at the end of 2017. Shenzhen has ten districts, namely, Luohu
District, Futian District, Nanshan District, Yantian District,
Baoan District, Longhua District, Longgang District, Ping-
shan District, Guangming District, and Dapeng District
(Figure 1). It is considered a typical immigrant city, as the
population size continues to grow. As a result, residents’ travel
activities cause intense pressure on city trafc.

2.2. Dataset

2.2.1. Data Sources. Tis paper uses basic city information
data and taxi GPS data collected in the week of October 17 to
October 23, 2017. City basic information data includes
Shenzhen Road network data, subway, and bus stop data
(2017), building census data (2016), and POI data (2018).
More specifcally, the road network data are obtained from
the government website, while the building census data
comes from the Shenzhen Information Center.Te POI data
represents 583,620 interest points obtained from the Baidu
search engine.

Taxi GPS data must be preprocessed. Processing steps
include data format conversion, anomaly cleaning, and OD
points extraction. First, the data in CSV format were con-
verted into a shape fle format (spatial point data) and the
necessary attribute felds were saved. Second, data for
anomalous points (outside the spatial range, outside the
temporal range, or missed attributes) were deleted. Finally,
the track point data are sorted by taxi ID numbers and time.
After that, the points whose operation status are changed
from “empty” to “heavy” are marked as boarding points and
labeled as “1.” On the other hand, the points whose oper-
ation status have been changed from “heavy” to “empty” are
marked as drop-of points and labeled as “0.” Taxis that had
no change in their operating status or had a travel time of less
than 1min were deleted. After processing, 3,503,396 trav-
eling data for 17,342 taxis in Shenzhen, China, were ob-
tained. Among them were 2,421,156 pick-up and drop-of
points on work days and 1,082,240 pick-up and drop-of
points on weekends. Tese data include taxi ID (Car ID),
longitude and latitude coordinates of the pick-up point (O-
lon, O-lat), pick-up time (O-time), longitude and latitude
coordinates of the drop-of point (D-lon, D-lat), and drop-
of time (D-time) (Table 1).

2.2.2. Spatial Units. At the micro level, human activities,
landscape features, and urban structure can be observed at
the street level. Tis paper adopts street segments as spatial

2 Complexity



units of urban network measurement. Most commonly, the
TOD is defned according to the understanding of how far
people are willing to walk to take public transportation. In
Asian cities, 500m is considered an acceptable walking
distance (Sung et al.,[18]). Tus, this paper takes the allo-
cation space as an area with no more than 500m of the
Euclidean distance for each segment. Furthermore, Tyson’s
polygons are applied as statistical units to calculate envi-
ronmental indicators. ArcGIS extracts the road center lines
of the Shenzhen road network and establishes a network
dataset. Tere are a total of 35,590 street segments and
24,833 intersections in the network dataset (Figure 1). Fi-
nally, the paper uses a map matching algorithm to calculate
the distance between points (pick-up and drop-of) and
street segments in the network. Te closest street segment is
selected as a match for each point.

3. Methodology

3.1. Indicators. Table 2 shows the framework of indicators.
In terms of the road network centrality and street sur-
rounding environment attributes, a total of 9 indicators were
selected to measure the spatial environment of the streets.
Furthermore, residents’ travel behavior is measured by the
frequency of taxi pick-ups and drop-ofs on the street.

Tree indicators of road network centrality (closeness
centrality, betweenness centrality, and straightness cen-
trality) assess street network accessibility, transit function,
and convenience of direct access [6, 19, 20]. As for the
indicators of the surrounding environment, they include
distance from the metro station, distance from the bus
station, number of metro and bus stations nearby, frequency
of pick-up and drop-of in surrounding streets, POI density,
and development intensity.

Closeness centrality (Cc) represents the inverse of the
sum of the shortest path distance from a node to all other
nodes. In other words, it is the relative accessibility of the
node in the network. Within an urban transportation net-
work, the closer the distance to the network center, the
higher the proximity centrality of the node. Tis can be
defned in the following formula:

C
c

�
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n − 1
􏽘

n

j�1,j≠i
dij

⎛⎝ ⎞⎠

− 1

. (1)

As mentioned above in the formula, dij represents the
shortest distance from node i to node j.

Betweenness centrality (Cb) represents the total number
of shortest paths between all nodes passing through a given
node, that is, it represents the transit and connectivity
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Figure 1: Shenzhen street segments and statistical units.

Table 1: Taxi data sample.

Car ID O-lon O-lat O-time D-lon D-lat D-time
BP27G3 114.059052 22.52091 2017/10/17 12:25 114.0681 22.521749 2017/10/17 12:34
BY4V41 114.038857 22.572321 2017/10/17 12:25 114.053864 22.571274 2017/10/17 12:30
B5V4J7 114.048668 22.537258 2017/10/17 12:25 114.064331 22.554682 2017/10/17 12:35
B7H9K8 113.945061 22.540937 2017/10/17 12:25 113.945648 22.556259 2017/10/17 12:32
BG3Y26 114.03923 22.517921 2017/10/17 12:25 113.987434 22.541479 2017/10/17 12:38
BN14B2 114.150101 22.608049 2017/10/17 12:25 114.114899 22.53475 2017/10/17 12:42
B6N95W 114.060127 22.523535 2017/10/17 12:25 114.062607 22.529491 2017/10/17 12:31
B7U2Z5 114.007881 22.548317 2017/10/17 12:25 113.950043 22.571884 2017/10/17 12:36
··· ··· ··· ··· ··· ··· ···
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function of nodes within the network. Within the urban
transportation network, the betweenness centrality increases
as the trafc carrying capacity of the streets increases. Cb can
be defned as follows:

C
b
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n

j≠k

δk
ij

δij
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where δij stands for the total number of shortest paths from
node i to node j. Furthermore, δkij represents the number of
these shortest paths that need to pass through node k.

Lastly, straightness centrality (Cs) is the deviation of the
shortest path between two nodes from the straight path.
Simply put, the less they deviate, the better the Cs will be. If
one can transfer from one node to any other in the network
by the shortest straight path, then, that node is considered to
have the best straightness and the highest trafc efciency.
Tis indicator evaluates the structure of the urban trans-
portation network and is defned as follows:

C
s

�
1

n − 1
􏽘

n

j�1,j≠1

d
Eucl
ij

dij

. (3)

In the formula mentioned above, dEucl
ij represents the

Euclidean distance between node i and node j.
As the trafc fow on the road network is very hetero-

geneous in space, the spread of trafc between roads must be
anisotropic. Terefore, considering the heterogeneity of the
streets is necessary to model the trafc fow, which in this
study is characterized by indicators of the street surrounding
environment. Te surrounding environment indicators in-
clude the remaining six items, whose distribution charac-
teristics are illustrated by the map of Shenzhen in
Figures 2–7. For example, there are a signifcant number of
taxi trips around metro stations (Figure 2). Tus, the in-
dicator distance from the metro station has an important
impact on taxi trips. Second, the bus stations are evenly
distributed (Figure 3). Figure 3 shows that the average
distance of streets to bus stations is 166m, with each street
having an average of 6.82 metro or bus stations within
100m. Furthermore, more than 50% of streets are less than
100m away from the closest bus station, while 76% of streets
are less than 200m away from the closest bus station. Only
1,659 streets (4.66%) have a distance of more than

500meters from the closest bus/metro station. Tird, there
are more bus stops around secondary and branch roads in
the city than those on the main roads. Tis is represented in
Figure 4, which illustrates the indicator number of metro
and bus stations nearby. Te trafc states of urban roads are
often infuenced by their neighboring roads [21]. Diferent
terms, such as spatial dependence, trafc relationship, and
spatial correlation, are used in the literature to express such a
relationship between neighboring roads. Te indicator
named frequency of pick-ups and drop-ofs in the sur-
rounding streets is represented by the sum of the frequency
of taxi pick-ups and drop-ofs from the surrounding streets
of the given street (Figure 5). Tis fgure records that be-
havior in surrounding streets is observed to afect traveling
behaviors on the street in question, exhibiting spatial au-
tocorrelation. Te indicator POI density refects the vitality
of the street. It is defned by the ratio of the number of POIs
in the statistical unit to the length of the street (Figure 6).
Lastly, the indicator development intensity represents the
ratio of the total building area in the statistical unit to the
length of the road.Tis indicator has been observed to have a
signifcant impact on taxi trips. Namely, rapidly developing
areas have more taxi traveling due to higher traveling de-
mand generated by the high population density (Figure 7).

3.2. Model

3.2.1. Multiple Centrality Analysis. Te analysis in this paper
is based on the multiple centrality analysis (MCA) model.
Te MCA aimed at a spatial analysis of centralities in urban
networks constituted by streets as links or “edges” and in-
tersections as “nodes.” It is conducted with the application of
the urban network analysis (UNA) (UNA represents an
urban network analysis tool developed by the Singapore
University of Technology, designed in collaboration with
MIT. It is based on the ArcGIS software platform, which
enables the measurement of trafc network centrality),
which measures the centrality of the road network in
Shenzhen. UNA is based on the ArcGIS software, which is
applied to a spatial network so that all distances are routed
along the networks and network-based distance accounts for
network structure. UNA builds spatial connections based on
the trafc network, which is closer to people’s perception of
the real living environment.

Table 2: Indicator framework.

Factors Indicators Proxy variables

Road network
centricity

Closeness centrality (Cc) Equation (1)
Betweenness centrality (Cb) Equation (2)
Straightness centrality (Cs) Equation (3)

Street surrounding
environment

Distance from metro station (DMS) Distance from the street to the nearest metro station
Distance from bus station (DBS) Distance from the street to the nearest bus station

Number of metro and bus stations nearby
(NMBS) Number of subway and bus stops in the statistical units

Frequency of pick-ups and drop-ofs on
surrounding streets (FSS)

Te sum of pick-ups and drop-ofs frequencies of the adjacent
streets considering the spatial autocorrelation

POI density (PD) Density of POI in the statistical units
Development intensity (DI) Volume ratio in the statistical units
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Figure 2: Distance from metro station.
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Figure 3: Distance from bus station.
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Figure 4: Number of surrounding stations.
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Figure 5: OD frequency of surrounding roads.
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Figure 6: POI density of Shenzhen.
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Figure 7: Development intensity of Shenzhen.
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In our study, we choose the UNA tool mainly because it
integrates the MAC model, which can help us calculate and
visualize multiscale network centrality. In addition, it has
been used widely in recent years. Some existing studies have
applied UNA tools to simulate the best location and scale of
retail centers by predicting the passenger fow of planned
retail centers in cities [22], or to predict the location and
layout of stations around communities by simulating travel
behavior [23, 24].

3.2.2. Linear Regression Model. In the study of urban areas,
geographic data infuence spatial interactions. Linear re-
gression analysis quantifes the intensity of correlation be-
tween a dependent variable and multiple independent
variables. In this study, a multiscale linear regression model
is based on the frequency of taxi pick-up and drop-of, as
well as on the nine aforementioned indicators. In addition,
SPSS software performs regression analysis to investigate the
centrality of multiscale road networks and the statistical
characteristics of residents’ travel behaviors.

4. Empirical Study

4.1. Descriptive Statistics

4.1.1. Temporal Characteristics of Taxi Travel. Analysis of
24-hour taxi travel time reveals a decreasing trend from 0:00
to 5:00. Te lowest frequency is between 5:00 and 6:00.
Furthermore, there is a signifcant increasing trend observed
from 6:00 to 9:00. In sum, taxi travels appear to have three
typical peaks occurring in the morning (8:00 to 10:00), af-
ternoon (12:00 to 15:00), and evening (19:00 to 22:00). Tese
peaks are illustrated in Figure 8. Te average travel time of a
single taxi trip was measured to be 10.5 minutes.

Furthermore, our analysis shows that the overall travel
frequency on weekends is higher than on work days. During
daytime hours on work days, the number of trips increases
continuously from 7:00 to 16:00, with a “low peak” occurring
at 18:00. Te work days’ evening peak appears later than on
weekends (Figure 9).

4.1.2. Spatial Distribution Characteristics of Taxi Travel.
Te frequency of taxi pick-ups and drop-ofs refects resi-
dents’ demand for taxis. By analyzing their spatial distri-
bution pattern over a week, this paper found that the
activities occurring in street units have signifcant hetero-
geneity (Figure 10). Te high frequency of activities is
concentrated mainly in large transportation terminals, ur-
ban centers, major public service facilities, leisure and en-
tertainment sites, and tourist attractions. As Figure 10
illustrates, the taxi pick-up and drop-of hotspots are pri-
marily located in Luohu center, Futian center, and Nanshan
center. Tey also exhibit a clear decreasing distribution from
south to north. Taxi hotspot areas include neighborhoods
located around major public service facilities (Shenzhen
Hospital of Traditional Chinese Medicine, Shenzhen Second
People’s Hospital, Shenzhen Library, Concert Hall, and
Museum) and important tourist attractions (Window of the

World and Dameisha Baths), as well as large residential
areas. In addition, the airport, terminals, high-speed rail
stations, train stations, bus stations, and other major
transportation hubs also exhibit an increased level of taxi
activities.

4.2. Road Network Centrality. Te spatial heterogeneity of
multiscale road network centrality helps to identify the
response characteristics of road network centrality to scale.
In addition, spatial heterogeneity determines at which scale
its relationship is most harmonious with the spatial distri-
bution of the dynamic fow of taxis. We use actual trajectory
distances instead of the Euclidean distances between origin
and destination as the length of the trip because people are
sensitive to the relatively-expensive price of taxi trips, which
correlates with the actual trajectory distance. According to
the analysis of the taxi travel distribution in Shenzhen for a
week, 50%, 85%, and 95% of the travel distance were within
2844m, 7945m, and 14537m, respectively. Tis paper se-
lects the centrality of four scales (global, 3 km, 8 km, and
15 km radius).

4.2.1. Road Global Centrality. Figure 11 illustrates the dis-
tribution of the three road global centrality indicators in
Shenzhen. Closeness centrality characteristics indicate that
the value of the global closeness centrality is distributed
around the city center. Furthermore, it shows a negative
correlation with its distance to the center (Figure 11(a)).
Terefore, high value areas are concentrated primarily
within the central axis of Shenzhen. Te distribution centers
of the global closeness centrality roughly match the streets’
network center. In other words, the contribution of these
streets to the trafc network in terms of their accessibility is
signifcantly greater than previously thought.

Areas with high betweenness centrality values are dis-
tributed mainly on urban trunk roads (Binhe Avenue,
Shennan Avenue, and Beihuan Avenue) and highways
(Nanping Highways, Shen-Hai Highways, and Nanguang
Highways). Tis distribution is illustrated in Figure 11(b). In
urban planning, betweenness centrality analysis can help to
increase the efciency of urban road networks and
infrastructure.

Lastly, the areas that have high values of straightness
centrality are primarily located in Luohu District, Futian
District, Nanshan District, and Baoan District. Te
straightness centrality value is signifcantly higher in the
south of Shenzhen than in the north. Furthermore, it is
higher in streets that run in the east-west direction than in
the north-south direction (Figure 11(c)). Areas with a high
value of straightness centrality have high trafc efciency,
thus benefting residents’ travel.

4.2.2. Road Local Centrality. Te centrality value in this
study was calculated by examining all nodes in the network
with a given radius. In part, these calculations are also the
results of the spatial form of the city, which is gradually
emerging as a polycentric pattern. Shenzhen is a city
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Figure 9: Comparison between work days and weekends in Shenzhen.
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Figure 10: Frequency of taxi pick-up and drop-of activities in Shenzhen from October 17 to October 23, 2017.
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Figure 8: 24-hour travel frequency in Shenzhen.
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experiencing both population growth and economic de-
velopment, in which development of construction land is
discontinuous due to ecological control lines. As the selected
radius is shorter, the number of nodes spanning from one
node will be smaller, making the structural characteristics of
the local road network clearer. Conversely, as the search
radius increases, the scope of the local road network also
gradually increases, revealing the spatial heterogeneity of the
road structure.

Tis study selected a series of search radii including
3 km, 8 km, and 15 km. Tey are used to measure the local
network centrality of Shenzhen (Figure 12). As the selected
search radius increases, areas with high closeness centrality
values transform from a scattered multicentered distribution
to single-centered distribution. Furthermore, the spatial
pattern of betweenness centrality varies across diferent
search radii. In other words, as the selected search radius
increases, areas with high betweenness centrality values frst
represent a decentralized distribution. After some time, they
accumulate on either side of the main roads along the east-
west direction. Lastly, there are also a number of spatial
pattern changes regarding the straightness centrality.
Namely, straightness centrality moves away from decen-
tralized distribution towards accumulation within the
southern central area of the city. Tis accumulation is
predominantly concentrated in districts (Luohu, Futian,
Nanshan, and Baoan) through main city roads (Binhai
Avenue, Shennan Avenue, Beihuan Avenue). Here, Beihuan
Avenue exhibits the highest straightness centrality values.

4.3. Regression Analysis. Regression analysis is crucial for
understanding the relationship between multiscale road
network centrality and the spatial distribution characteris-
tics of taxi pick-ups and drop-ofs. In this study, the re-
gression analysis takes the taxi pick-up and drop-of
frequency during the week (from October 17 to October 23,
2017) as the dependent variable, and the road network
centrality and the surrounding environment as the inde-
pendent variables. According to the analysis of the distri-
bution of taxi travels in Shenzhen for one week, 50%, 85%,
and 95% of the travel distance are 2844m, 7945m, and
14537m, respectively, so the analysis is applied in four
search radiuses (3 km, 8 km, 15 km, and global).

Te selection of independent variables in multiple linear
regression is very important. In order to establish the best
equation, the independent variables with strong infuence on

the dependent variable should be selected into the regression
equation as much as possible, while the independent vari-
ables with weak infuence on the dependent variable should
be excluded as much as possible. We analyzed the corre-
lation matrix of the multiscale (3 km, 8 km, 15 km, and
global) independent variable indicators in Table 3. Most of
the correlation coefcients of the indicators are under 0.6. It
is worth noting that the absolute values of the correlation
coefcients of two pairs of indicators are between 0.6 and
0.8. Te correlation coefcients of Cs (8 km) and DMS, Cs

(15 km) and DMS are − 0.641 and − 0.707. Teir correlations
were more signifcant. Ten, we used stepwise regression
methods for further indicator selections that none of the
independent variables outside the model are statistically
signifcant, while all variables within the model are statis-
tically signifcant (Table 4).

Te R2 value at each scale is 0.584 (3 km), 0.579 (8 km),
0.577 (15 km), and 0.573 (global), respectively (Table 4). All
the p values of the signifcance test are 0.000. Te VIF values
of all the variables are below 3 indicating no excessive
multicollinearity [25]. We know that a VIF of 5 and above is
not good for regression model because it might render other
signifcant variables redundant [26]. Te result shows that
the regression models can explain the frequency of taxi pick-
up and drop-of at a good ftness, and the explanatory
variables in the models can well explain the taxi travel be-
havior. According to the taxi trajectory distances analysis, a
majority of the taxi trips are short in Shenzhen (half of the
trips are shorter than 3 km and 85% of the trips are shorter
than 8 km) which is diferent from Shanghai [27]. Te R2 of
the model varies at diferent scales. From the search radii of
3 km search to the Shenzhen global scale, R2 gradually de-
creases as the search radius increases. Terefore, it is useful
to study the typical travel distance for a specifc city as well as
to develop a multiscale travel behavior model.

Te regression analysis shows that both the road network
centrality (which varies by scale) and the surrounding en-
vironment correlate diferently with taxi pick-ups and drop-
ofs. Te signifcant moderating efects of the model are
presented in Table 4. Te signifcance of the models is ana-
lyzed at three confdence levels of 99%, 95%, and 90%. Te
regression results show that the frequency of taxi trips at each
scale is signifcantly positively correlated with the between-
ness centrality (p< 0.01). Furthermore, the higher the transit
and connectivity function of nodes within the network, the
higher the frequency of taxi pick-up and drop-of will be. In
comparison, closeness centrality does not correlate with taxi
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Figure 11: Global centrality spatial distribution of Shenzhen. (a) Closeness centrality. (b) Betweenness centrality. (c) Straightness centrality.

Complexity 9



Table 3: Correlation matrix of indicators of independent variables at multiscales.

C b (3 km) C s (3 km) DMS DBS NMBS FSS PD DI

C c(3 km)

− 0.064∗∗ − 0.143∗∗ 0.127∗∗ 0.206∗∗ − 0.038∗∗ − 0.039∗∗ − 0.045∗∗ − 0.069∗∗
C b (3 km) 0.590∗∗ − 0.226∗∗ − 0.140∗∗ 0.275∗∗ 0.355∗∗ 0.175∗∗ 0.290∗∗

C s (3 km) − 0.477∗∗ − 0.227∗∗ 0.222∗∗ 0.490∗∗ 0.278∗∗ 0.500∗∗
DMS 0.341∗∗ − 0.122∗∗ − 0.229∗∗ − 0.169∗∗ − 0.272∗∗

DBS − 0.213∗∗ − 0.104∗∗ − 0.131∗∗ − 0.136∗∗
NMBS 0.268∗∗ 0.194∗∗ 0.102∗∗

FSS 0.375∗∗ 0.423∗∗
PD 0.321∗∗

DI
C b (8 km) C s (8 km) DMS DBS NMBS FSS PD DI

C c(8 km)

− 0.012∗ − 0.045∗∗ 0.016∗∗ 0.039∗∗ − 0.010 − 0.009 − 0.012∗ − 0.014∗
C b (8 km) 0.392∗∗ − 0.196∗∗ − 0.125∗∗ 0.310∗∗ 0.233∗∗ 0.084∗∗ 0.138∗∗

Cs (8 km) − 0.641∗∗ − 0.241∗∗ 0.192∗∗ 0.424∗∗ 0.207∗∗ 0.412∗∗
DMS 0.341∗∗ − 0.122∗∗ − 0.229∗∗ − 0.169∗∗ − 0.272∗∗

DBS − 0.213∗∗ − 0.104∗∗ − 0.131∗∗ − 0.136∗∗
NMBS 0.268∗∗ 0.194∗∗ 0.102∗∗

FSS 0.375∗∗ 0.433∗∗
PD 0.321∗∗

DI
C b (15 km) C s (15 km) DMS DBS NMBS FSS PD DI

0 2 4 8 12 16
km

N

0.000000 - 0.000474
0.000475 - 0.000489
0.000490 - 0.000498
0.000499 - 0.000507
0.000508 - 0.000516
0.000517 - 0.000526
0.000527 - 0.000538
0.000539 - 0.000554
0.000585 - 0.003985
0.000555 - 0.000584

(a)

0 2 4 8 12 16
km

N

0.000000 - 0.000251
0.000252 - 0.002968
0.002969 - 0.005942
0.005943 - 0.009637
0.009638 - 0.013827
0.013828 - 0.019030
0.019031 - 0.025615
0.025616 - 0.035011
0.052035 - 0.472335
0.035012 - 0.052034

(b)

0 2 4 8 12 16
km

N

0.000000 - 0.689846
0.689847 - 0.726648
0.726649 - 0.748276
0.748277 - 0.762016
0.762017 - 0.773935
0.773936 - 0.782609
0.782610 - 0.791527
0.791528 - 0.801529
0.815500 - 2.223916
0.801530 - 0.815499

(c)

0 2 4 8 12 16
km

N

0.000000 - 0.000290
0.000291 - 0.000298
0.000299 - 0.000303
0.000304 - 0.000309
0.000310 - 0.000315
0.000316 - 0.000320
0.000321 - 0.000327
0.000328 - 0.000336
0.000359 - 0.003985
0.000337 - 0.000358

(d)

0 2 4 8 12 16
km

N

0.000000 - 0.000007
0.000008 - 0.000393
0.000394 - 0.000887
0.000888 - 0.001648
0.001649 - 0.002910
0.002911 - 0.005043
0.005044 - 0.008751
0.008752 - 0.014658
0.025914 - 0.472335
0.014659 - 0.025913

(e)

0 2 4 8 12 16
km

N

0.000000 - 0.740715
0.740716 - 0.765998
0.765999 - 0.784239
0.784240 - 0.796300
0.796301 - 0.805901
0.805902 - 0.813988
0.813989 - 0.821339
0.821340 - 0.828316
0.838100 - 0.869125
0.828317 - 0.838099

(f )

0 2 4 8 12 16
km

N

0.000000 - 0.000096
0.000097 - 0.000098
0.000099 - 0.000100
0.000101 - 0.000103
0.000104 - 0.000108
0.000109 - 0.000112
0.000113 - 0.000115
0.000116 - 0.000117

0.000121 - 0.003985
0.000118 - 0.000120

(g)

0 2 4 8 12 16
km

N

0.000000 - 0.000002
0.000003 - 0.000188
0.000189 - 0.000423
0.000424 - 0.000753
0.000754 - 0.001359
0.001360 - 0.002359
0.002360 - 0.004688
0.004689 - 0.008801
0.018133 - 0.472335
0.008802 - 0.018132

(h)

0 2 4 8 12 16
km

N

0.000000 - 0.754832
0.754833 - 0.775369
0.775370 - 0.792543
0.792544 - 0.808192
0.808193 - 0.820201
0.820202 - 0.833115
0.833116 - 0.843777
0.843778 - 0.857321

0.882947 - 1.250533
0.857322 - 0.882946

(i)

Figure 12: Spatial distribution of Shenzhen’s local roads centrality. (a) Closeness centrality (3 km). (b) Betweenness centrality (3 km). (c)
Straightness centrality (3 km). (d) Closeness centrality (8 km). (e) Betweenness centrality (8 km). (f ) Straightness centrality (8 km). (g)
Closeness centrality (15 km). (h) Betweenness centrality (15 km). (i) Straightness centrality (15 km).
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trips at all scales. On the other hand, straightness centrality
has a negative correlation with the frequency of taxi pick-up
and drop-of at 3 km and 8 km scale (p< 0.01).

Te indicators of the street surroundings can refect the
travel demand. Te further away from the metro and bus
stations, the more demand there is for taxis. Areas with high
density of public transport stations tend to be more con-
centrated, and the demand for cab trips will also be in-
creased. Street surrounding environment indicators (FSS,
PD, and DI) are positively related to higher taxi pick-up and
drop-of frequency (p< 0.01), which is largely consistent
with previous research [21, 28].

 . Conclusion

As centrality is crucial for understanding the structural
characteristics of dense trafc networks, the indicators of
road network centrality are of vital importance in urban
planning and transportation management. Tis paper has
analyzed the temporal and spatial distribution charac-
teristics of taxi pick-ups and drop-ofs in Shenzhen,
China. Taking streets as units of study, road network
analysis examined the centrality of multiscale road net-
works. After that, the paper modeled the frequency of taxi
pick-ups and drop-ofs with multiscale network

Table 4: Regression analysis result.

3 km 8 km 15 km Global
B VIF B VIF B VIF B VIF

Network centricity
Closeness centrality (Cc) — — — — — — — —

Betweenness centrality (Cb) 0.033∗∗∗ 1.594 − .002∗∗∗ 1.273 0.001∗∗∗ 1.130 4.296E− 6∗∗∗ 1.042
Straightness centrality (Cs) − 0.752∗∗∗ 2.052 − − .073∗∗∗ 1.537 — — — —

Street surrounding
environment

Distance from metro station
(DMS) — — — — 0.007∗∗∗ 2.37 0.004∗∗∗ 1.221

Distance from bus station(DBS) 0.053∗∗∗ 1.094 0.069∗∗∗ 1.104 0.059∗∗∗ 1.177 0.061∗∗∗ 1.177
Number of metro and bus
stations nearby (NMBS) 5.441∗∗∗ 1.174 4.766∗∗∗ 1.210 5.261∗∗∗ 1.225 7.436∗∗∗ 1.170

Frequency of pick-ups and drop-
ofs on surrounding streets (FSS) 0.184∗∗∗ 1.549 0.184∗∗∗ 1.511 0.184∗∗∗ 1.418 0.185∗∗∗ 1.413

POI density (PD) 1023.040∗∗∗ 1.228 1030.083∗∗∗ 1.229 1035.381∗∗∗ 1.232 999.631∗∗∗ 1.229
Development intensity (DI) 0.058∗∗∗ 1.468 0.056∗∗∗ 1.390 0.055∗∗∗ 1.326 0.055∗∗∗ 1.328
R 2 0.584 0.579 0.576 0.573

Adjust R2 0.584 0.579 0.576 0.573
F 6467.459 6350.188 6273.354 6189.468
Sig 0.000 0.000 0.000 0.000

∗Sig <0.1; ∗∗Sig <0.05; ∗∗∗Sig <0.01.

Table 3: Continued.

C c(15 km)

− 0.008 − 0.044∗∗ − 0.003 − 0.013∗ − 0.008 − 0.007 − 0.009 − 0.009
Cb (15 km) 0.274∗∗ − 0.158∗∗ − 0.102∗∗ 0.309∗∗ 0.143∗∗ 0.038∗∗ 0.054∗∗

Cs (15 km) − 0.707∗∗ − 0.246∗∗ 0.195∗∗ 0.388∗∗ 0.183∗∗ 0.353∗∗
DMS 0.341∗∗ − 0.122∗∗ − 0.229∗∗ − 0.169∗∗ − 0.272∗∗

DBS − 0.213∗∗ − 0.104∗∗ − 0.131∗∗ − 0.136∗∗
NMBS 0.268∗∗ 0.194∗∗ 0.102∗∗

FSS 0.375∗∗ 0.433∗∗
PD 0.321∗∗

DI
C b (global) C s (global) DMS DBS NMBS FSS PD DI

C c(global)

− 0.005 − 0.308∗∗ 0.002 0.059∗∗ − 0.008 − 0.006 − 0.009 − 0.011∗
C b (global) 0.065∗∗ − 0.037∗∗ − 0.053∗∗ 0.190∗∗ 0.035∗∗ − 0.004 − 0.025∗∗

C s (global) − 0.225∗∗ − 0.154∗∗ 0.122∗∗ 0.259∗∗ 0.130∗∗ 0.225∗∗
DMS 0.341∗∗ − 0.122∗∗ − 0.229∗∗ − 0.169∗∗ − 0.272∗∗

DBS − 0.213∗∗ − 0.104∗∗ − 0.131∗∗ − 0.136∗∗
NMBS 0.268∗∗ 0.194∗∗ 0.102∗∗

FSS 0.375∗∗ 0.433∗∗
PD 0.321∗∗

DI
∗∗Sig.<0.01; ∗Sig.<0.05.
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centrality. Several conclusions were obtained from these
analyses.

Firstly, peak time is correlated with commuters’ char-
acteristics. Residents’ average travel time for one trip is
10.5min, indicating that a considerable portion of the trip is
done for commuting. In addition, the diferences in taxi
travel time between work days and weekends show residents’
demand for leisure and entertainment activities during the
weekend. According to the analysis of the taxi travel dis-
tribution in Shenzhen for a week, 50%, 85%, and 95% of the
travel distance were within 2844m, 7945m, and 14537m,
respectively. Te spatial distribution of taxi travel in
Shenzhen is centrally distributed around large trans-
portation terminals, urban centers, major public service
facilities, leisure and entertainment sites, and tourist at-
tractions. Specifcally, taxi pick-ups and drop-ofs are con-
centrated in Luohu center, Futian center, and Nanshan
center. Tey also show a clear decreasing distribution from
south to north.

Secondly, as the search radius increases, the three
road network centrality indicators exhibit varying de-
grees of concentration. Firstly, the closeness centrality
exhibits the multicenter accumulation distribution, and
then, gradually transforms into a single distribution.
Secondly, areas of high values in betweenness centrality
initially show a decentralized distribution, only to later
accumulate along the east-west main roads. Lastly, the
straightness centrality is transformed from decentralized
distribution to accumulation in the southern central part
of the city.

Lastly, the regression analysis shows that both the road
network centrality (which varies by scale) and the sur-
rounding environment correlate diferently with taxi pick-
ups and drop-ofs. Te frequency of taxi trips signifcantly
positively correlates with betweenness centrality (p< 0.01).
Closeness centrality does not correlate with taxi trips at all
scales. On the other hand, straightness centrality has a
negative correlation with the frequency of taxi pick-up and
drop-of at 3 km and 8 km scale (p< 0.01). As the search
radius increases, R2 gradually decreases.

Future research on urban network centrality should
continue to explore its relationship with taxi trajectories as
well as other residents’ travel behavior. Tis type of research
will help to make efective suggestions for the road network
optimization and the allocation of relevant facilities.

Data Availability

Tis paper uses basic city information data and taxi GPS data
gathered in the week from October 17 to October 23, 2017.
Te basic city information data includes Shenzhen Road
network data, subway, and bus stop data (2017); building
census data (2016); and POI data (2018). More specifcally,
road network data were obtained from the government
website, while the building census data comes from the
Shenzhen Information Center. Te POI data represents
583,620 POI interest points obtained from the search engine
Baidu. Te data used in this research are available upon
request.
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