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With the mobility and ease of connection, wireless sensor networks have played a significant role in communication over the
last few years, making them a significant data carrier across networks. Additional security, lower latency, and dependable
standards and communication capability are required for future-generation systems such as millimeter-wave LANs,
broadband wireless access schemes, and 5G/6G networks, among other things. Effectual congestion control is regarded as of
the essential aspects of 5G/6G technology. It permits operators to run many network illustrations on a single organization
while maintaining higher service quality. A sophisticated decision-making system for arriving network traffic is necessary to
confirm load balancing, limit network slice letdown, and supply alternative slices in slice letdown or congestion. Because of
the massive amount of data being generated, artificial intelligence (AI) and machine learning (ML) play a vital role in
reconfiguring and improving a 5G/6G wireless network. In this research work, a hybrid deep learning method is being
applied to forecast optimal congestion improvement in the wireless sensors of 5G/6G IoTnetworks. +is proposed model is
applied to a training dataset to govern the congestion in a 5G/6G network. +e proposed approach provided promising
results, with 0.933 accuracy, and 0.067 miss rate.

1. Introduction

+e wireless sensor networks have played a significant part
in communiqué in the last few years [1–3]. In the end, the
revolution in wireless communication includes a wide range
of standard networks. With various wireless networks, the
most popular is mobile wireless communication, which has a
high data bandwidth. It uses transport layer to transmit data
and a precise protocol for broadcasting mobile wireless
communication. +e transport layer protocol utilizes a
congestion control device to maintain reasonable network
resource distribution even when demand exceeds the net-
work’s capacity and resources. If this occurrence is utilized
in a mobile wireless communication medium like 5G and
does not meet the platform’s necessities, the wireless

network’s routine will deteriorate. Managing wireless net-
work congestion is one of the most severe aspects of the
transport layer protocols.

Decreases in wireless sensor network (WSN) nodes are
primarily due to a lack of congestion control [4, 5]. Another
problem resulting from this decrease is packet loss and
bandwidth deterioration [6]. Buffer size, queue size, band-
width, link bandwidth, and packet harm of interconnection
amongst nodes are all examples of network resources. A
wide range of applications is affected by congestion control
[7], including event-based, continuous, query-driven, and
hybrid. Various protocols in the Transmission Control
Protocol (TCP) and Stream Control Transmission Protocol
(SCTP) [8] use congestion control to keep traffic moving.
Congestion control is required in many situations, like
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packet collisions, interference, channel conflict, and buffer
overflow, but not in others, such as dead links, buffer size
shortages, and slow mainframes.

+e fifth development of cellular networks [9–15] is 5G. It
is a brand-new wireless technology that is sweeping the globe.
More users will enjoy multigigabit per second peak data rates,
ultra-fast reaction times, upgraded reliability, massive net-
work volume, prolonged accessibility, and other reliable user
experience thanks to 5G wireless technology. +e experiences
of a new user are possible due to upgraded performance and
efficiency, as well as the connection of new sectors.

Because of the fast development of (5G) applications and
rising demand for high-speed communiqué networks, the
advent of a new 6G technology is expected inside the coming
ten years. +rough the ability to scale down in data rates,
power, and mobility, 5G is intended to seamlessly link many
embedded sensors in nearly anything, giving incredibly lean
and low-cost connection options. 6G systems are expected to
be more diverse than their predecessors, allowing for ap-
plications such as augmented and virtual reality, available
instant messaging, constant intelligence, the Internet of
+ings, and existing mobile usage scenarios. Numerous
sources claimed that the 6G technology might be available
around 2030.

Millimeter-wave LANs, broadband wireless access
schemes, and 5G or 6G networks require more safety, re-
duced latency, more secure standards, and higher trans-
mission efficiency. One of the primary aspects of 5G/6G
technology is efficient congestion control, which allows
operatives to route many network instances on the same
arrangement for increased service superiority. Due to the
enormous data volume, artificial intelligence and machine
learning are critical to reconfigure and enhance a 5G/6G
technology routine. +e application of ML to networking
systems can control congestion in 5G/6G networks. Because
of its predicted performance when applied to complicated
issues, machine learning [16] will be a significant driver of
future communications.

Machine learning is a practical and broadly applicable
approach employed with traditional congestion control
mechanisms tomeet the strains of 5G Internet of+ings (IoT)
networks. +e 5G environment is being used to improve the
performance in a variety of fields, including smart cities [17],
e-Health [18], and environmental surveillance [19, 20]. Ma-
chine learning is a practical and appropriate approach that
traditional congestion control mechanisms can apply to meet
the requirements of 5G networks. +is study uses this study
for prediction based on naive Bayes and deep learning to
improve congestion management.

Machine learning techniques have become popular in
predicting optimal congestion control in 5G/6G networks.
Machine learning is mainly efficient for evaluating data and
predicting the consequence of confident events based on the
accessible sample inputs, which shape an appropriate model
for making the right decisions [3, 21].

Machine learning, a subset of deep learning, is a branch
of artificial intelligence. Automated decision-making is a
feature of machine learning. In contrast, deep learning is a
feature of computers that imitate human brain structures to

learn to think and act autonomously. Deep learning typically
prompts less ongoing human intervention than machine
learning as it uses less computing power. Deep learning can
analyze images, videos, and unstructured information in a
way that machine learning cannot.

+e primary purpose of this research work is to develop a
congestion control model to reduce the amount of con-
gestion experienced by 5G/6G networks and make to reduce
the amount of congestion experienced by 5G/6G networks
and efficiently utilize the resources already present within
these networks. +is research article is established in mul-
tiple sections: Introduction, Literature review, Methodology,
Simulation results, Research contributions, and Conclusion.

2. Literature Review

+e authors explained the network architecture of hetero-
geneous MTC networks in this research and suggested an
innovative hybrid random access technique for 5G/6G-
enabled smart cities [13, 22]. +e numerical results show
that, compared to the standard schemes, the suggested
technique considerably improves the chance of successful
access while meeting the various quality of service standards
of URLLC and MTC devices.

+e authors suggested a hybrid deep learning-enabled
efficient congestion charge [16]. +is deep learning hybrid
model combines a support vector machine with lengthy,
short-term memory. Simulating the specified model for one
week with various potential devices, slice failure scenarios,
and overflowing possibilities demonstrates its use.

+e proposed hybrid model has an accuracy rate of 93.23
percent, demonstrating its applicability. Aside from that,
other performance indicators were used to evaluate the
recommended model’s performance, including specificity,
accuracy, computation complexity, variable training, test
sets, true-false rates, and f-score.

+e authors introduced a multiarchitecture for URLLC
that allows for device intelligence, edge intellectual capacity,
and cloud intelligence [23]. +e fundamental concept of
training deep neural networks is to employ theoretical
replicas combined with real-world data to gauge latency and
dependability. In nonstationary networks, deep transfer
learning is employed in the design to fine-tune the pre-
trained DNNs. Due to the restricted processing capabilities
of the individual user and mobile edge computing server,
federated learning is used to increase learning efficiency.
Finally, they talked about potential future possibilities and
gave experimental and modeling data.

+e authors proposed a cascaded NN structure. +e first
NN tries to approximate the ideal bandwidth distribution,
while the second NN produces the convey power needed to
meet the QoS criteria with the provided bandwidth distri-
bution [24]. +e nonstationary distribution of wireless
channels and service kinds of deep transfer learning apprise
NNs in nonstationary wireless networks. In terms of QoS
assurance, simulation studies show that cascaded NNs
outperform fully linked NNs. Deep transfer learning may
also drastically minimize the number of data points needed
to train the NN.
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In this article, the authors demonstrated a deep neural
network model that utilizes a digital duplicate of the actual
network situation to train the DL algorithm offline on a
dominant server [25]. +e MME might use a pretrained deep
neural network to construct a user suggestion system in real-
time.+ey provided an optimization approach for determining
the best resource distribution and settling probability at each
AP for a particular user association scheme. +eir simulations
indicate that their strategy can attain lower normalized energy
use while requiring less computational complexity, with the
integration of prevailing technique besides method to the
performance of the optimal worldwide clarification.

According to the author’s theoretical study, (6G) tech-
nology has begun concurrently with fifth generation (5G)
technology [26]. As mobile communication technology
develops, a more stable information flow in the intelligent
transportation method can be expected. +ere are also
significant benefits to ITS reliability, which is the most
critical aspect of ITS.

+ey described 5G/6G and artificial intelligence as the
two most important technologies in the upcoming intelli-
gent transportation system. +e goal is to explain the
existing state of both domains and cross-research ad-
vancements achieved among them before examining the
blockage in recent intelligent transportation system devel-
opment and pointing forth future research directions. +ese
two disciplines will also get much attention, probably
leading to groundbreaking research findings. As a result, this
research will be made public.

+e authors described 5G/6G URLLC spectrum sharing
[27]. According to a consensus, in 6G, ultra-Reliable Low
Latency Communication (URLLC) is still a critical application,
just like it was in 5G. Spectrum resources are limited to meet
increasing bandwidth demands, subsequent in offensive ex-
pectancy. Because of crashes in the typical spectrum, the
channels are also unstable. Interference between various
communication technologies exacerbates the issues in unli-
censed bands. As a result, it is necessary to develop practical
spectrum distribution algorithms to enable URLLC in 5G and
6G.

+e authors presented a cluster content caching topology
that uses distributed caching and centralized signal dispensation
to its maximum potential [28]. Using the cluster content cache,
remote radio heads linked to a shared edge cloud can avoid
unnecessary traffic on the backhaul. +e proposed structure
enhances QoS guarantees while decreasing local storage power
costs using traceable expressions for sufficient capacity and
energy efficiency performance [29].

Two distributed techniques can be used in tandem with
the suggested cluster content caching framework to realize
its potential fully. +e simulation results back up the ana-
lytical findings and show how cluster content caching in
C-RANs improves performance.

Authors studied mobile terminal digital media appli-
cation technologies employing edge computing and virtual
reality techniques [30]. +ey used simulated experiments to
evaluate the performance of the SD-CEN design and FWA in
edge computing to the PSO–CO technique, WRR algorithm,
and Pick-XK algorithm. +e results suggested that it may

lower the response time of real-time face recognition sys-
tems while also improving user experience. +e SD-CEN
network design built on the FWA approach offers additional
benefits than the standard cloud computing design and a
single MEC device.

In this work, the authors examine the valuable connections
between CAVs and an ITS and suggest a unique architectural
paradigm [31]. +eir suggested system may support multilayer
applications across different Radio Access Technologies (RATs)
and includes a smart arrangement line for optimizing each
RAT’s performance. In this study [32], this research demon-
strated the future 5G cellular network, through its expansion of
machine infrastructures and the idea of mobile edge com-
puting, delivers appropriate surroundings for dispersed
monitoring, and control activities in the smart grids. +ey
showed how advanced distributed to state estimate methods in
a 5G environmentmay help Smart Grids.+ese indicated novel
distributed state estimation approaches, concentrating on
distributed optimization and discussing how they may be
integrated into future 5G Smart Grid services.

+e most current research accomplishments in
H-CRAN system architecture and essential technologies are
discussed. +e authors’ research describes a heterogeneous
cloud radio access network that uses cloud computing to
achieve integrated large-scale mutual processing for de-
creasing co-channel interferences [33].+e H-CRAN system
design is characterized as software-defined and consistent
with software-specified networks. Node C is the latest
communication entity that will meet the prevailing inherited
base places and function as the baseband element pool for all
accessible distant radio minds.

+e standards show advantages, and unresolved barriers
of adaptive big-scale collaborative longitudinal signal, col-
laborative radio strategic planning, network task configu-
ration management, and self-administration are all being
investigated. +e main roadblocks to H-CRAN promotion
are explored in frontal restricted resource distribution op-
timization and energy harvesting.

In contrast to the previous studies, this research paper
presents a smart traffic congestion control in 5G/6G net-
works using hybrid deep learning techniques to predict the
traffic congestion. +e proposed research combined the 5G/
6G network with the hybrid deep learning techniques while
managing large amounts of data in huge networks to identify
the network traffic congestion. +e proposed approach ef-
fectively constructs a generic architecture for detecting
network traffic congestion centered on the identified sig-
nificant characteristics to address the known challenges.

3. Methodology

+e prime objective of this research work is to design a
congestion control model to alleviate 5G network con-
gestion while providing better use of available network
resources. An intelligent model is proposed to accom-
modate the complexities in predicting the optimal con-
gestion of the 5G network. +e primary purpose of this
proposed congestion control approach is to reduce 5G/6G
network congestion by making the best possible use of the
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currently available resources. Hybrid deep learning is a
distinguishing feature of this approach, and it is currently
playing an active role in developing it. +e proposed model
is revealed below in Figure 1.

Figure 1 shows that the planned model is comprised of
two stages: training as well as validation.+e training phase
is separated into three steps: data collection, preprocessing,
and training model. +e first step is data collection, which
collects the data from input parameters and supplies it into
the database. +e stored data in the database is then
preprocessed to mitigate the noisy data using feature se-
lection, handling missing values, moving averages, and
normalization. +e processed data is then forwarded to the
training model for the data via Naı̈ve Bayes and the SVM
algorithm.

By knowing the calculation of line [4].

k � Hվ + ζ, (1)

Where “ʜ” is a gradient of a line and “ζ” is the overlap,
therefore

Hվ − k + ζ � 0. (2)

Let t � (վ, k)T and T � (H − 1) then above balance can
be composed as:

T .
�→

t + ζ � 0. (3)

+is calculation is obtained from 2-dimensional paths. It
works for dimensions, known as a hyper lane.

+e route of a vector t � (վ, k)T is T defined as:

T �
վ
|t|

+
k

|t|
, (4)

Where

||t|| �

���������������

վ2+ k
2
+ . . . . . . . . . ..t

2
ζ



. (5)

As we know that

cos(θ) �
վ

||t||
and cos(μ) �

k

||t||
. (6)

Written as (4)

T � (cos(θ), cos(μ)),

T
→

. t
→

� ||T|| ||t||cos(θ),

θ � �υ − μ,

cos(θ) � cos(�υ − μ) � cos(�υ)cos(μ) + sin(�υ)sin(μ)

�
ϑ

||T||

վ
||t||

+
α

||T||

k

||t||
��

ϑվ + αk

|||T|||t||
,

T.t � ||T||||t||
υϑ + αk

||T||||t||
 ,

T.
�→

t
→

� 

ζ

i�1
Titi .

(7)

+e dot product may be associated with the overhead for
ζ dimensional vectors.

Let

Β � Μ (T .t + ζ). (8)

If sign (Β)> 0 then appropriately classified and if sign
(Β)< 0 then imperfectly classified.

Calculate f on a training dataset by dataset Π,

Βi � Μi(T .t + ζ). (9)

+e functional margin of the dataset is þ

þ � min
i�1.....τ
Βi. (10)

þ will be selected while comparing hyperplanes, where þ is the
geometric margin. +e objective is an optimal hyperplane; we
need to find T

→
and b value of the optimal hyperplane.

+e Lagrangian function is

Ă(T, ζ, μ) �
1
2

T.T − 
τ

i�1
μi[Μ : (T.t + ζ) − 1],

∇TĂ(T, ζ, μ) � T − 
τ

i�1
μiΜi ti � 0.

(11)

∇ζĂ(T, ζ, μ) � − 
τ

i�1
μiΜi � 0. (12)

From the above two equations (11) and (12), we get

T � 
τ

i�1
μiΜi ti,



τ

i�1
μiΜi � 0.

(13)

After substituting the Lagrangian function Ă, we get

T(μ , ζ) � 
τ

i�1
μi −

1
2



τ

i�1


τ

j�1
μiμjΜiΜj titj. (14)

+us

max
μ



τ

i�1
μi −

1
2



τ

i�1


τ

j�1
μiμjΜiΜj titj. (15)

Provided that μi ≥ 0 , i � 1 . . . τ 
τ
i�1μiΜi � 0

Since the constraints have disparities, we outspread
the Lagrangian multipliers technique to the Karush–
Kuhn–Tucker (KKT) circumstances. +e complementary
state of KKT is

μi Μi Ti.t
∗

+ ζ(  − 1  � 0, (16)

t∗ is the point/points where we reach the optimal.
μ is the positive value and μ for the other points are ≈ 0.
So

Μi Ti. t
∗

+ ζ(  − 1(  � 0. (17)
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Representing support vectors, as (17),

T − 
τ

i�1
μiΜi ti � 0,

T � 
τ

i�1
μiΜi ti .

(18)

To compute the value of ζ, we get

Μi Ti. t
∗

+ ζ(  − 1(  � 0. (19)

By multiplying on equal sides by Μ in (19), we get

Μ2
i Ti. t

∗
+ ζ(  −Μi(  � 0, (20)

Where 2
Μi � 1

Ti. t
∗

+ ζ(  −Μi(  � 0

ζ � Μi − Ti. ζ
∗

.
(21)

+en

ζ �
1
>



>

i�1
Μi − T.t( , (22)

> is the support vector. We will have the hyperplane on one
occasion, and then we can utilize the hyperplane to predict.
Where the hypothesis function is

c Ti(  �
+1ifT.t + ζ ≥ 0

−1ifT.t + ζ < 0
 . (23)

+e hyperplane is classified as class +1 (congestion
found), and the fact beneath the hyperplane will be classified
as −1 (congestion not found). So, fundamentally the area of
the SVM algorithm is to discover a hyperplane that could
disperse the data precisely and discover the best one, which
is often stated as the optimal hyperplane.

+en, it is checked that if the learning criteria are met,
the trained output is stored on the cloud, and if not, it is
updated, and so on. +e trained patterns are sent to the
Fused Machine Learning (FML) approach. FML is ac-
countable for fusing the predictions of both algorithms
utilizing a fuzzy inference system. In FML, the decision level
fusion technique is tangled with machine learning to attain
higher accuracy and better decision-making.

Figure 2 shows the graphical representation of the
proposed model performance in good satisfactory and
bad with yellow, green, and blue shading, respectively.
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Figure 1: Proposed model of smart congestion control in 5G/6G networks using hybrid deep learning techniques.
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Figure 3 shows that if Naı̈ve Bayes is no, and SVM is no,
then 5G congestion control is no. Figure 4 shows that if
Naı̈ve Bayes is yes, and SVM is yes, then 5G congestion
control is yes.

+e trained patterns are then imported from the cloud
for prediction purposes in the validation phase. If the
congestion is found, a message will be displayed that
congestion is found, and the process will be rejected in case
of no.

4. Simulation Results

+is research introduces an intelligent system to predict 5G
congestion better and more efficiently empowered with a
fused machine learning approach. +e proposed approach is
applied to a dataset from the Kaggle data repository [34].
Näıve Bayes and SVM techniques are used on the total
number of instances, 7558 to predict a real-time cyber-at-
tack. Moreover, the dataset is divided into training founds of
70% (5291 samples) and 30% (2267 samples) for the revealed
training and validation purposes. Different parameters used
for performance calculation with other metrics are conse-
quent by the formulas:

Sensitivity �
True Positive

Condition Positive
, (24)

Specificity �
TrueNegative

ConditionNegative
, (25)

Accuracy �
True Positive + True Positive

Total Population
, (26)

Miss − Rate �
 FalseNegative

Condition Positive
, (27)

Fallout �
 False Positive

ConditionNegative
, (28)

Likelihood Positive Ratio �
True Positive Ratio
False Positive Ratio

, (29)

LikelihoodNegative Ratio �
True Positive Ratio
 False Positive Ratio

, (30)

Positive PredictiveValue �
True Positive

PredictedCondition Positive
,

(31)

Negative PredictiveValue �
TrueNegative

Predicted ConditionNegative
.

(32)

Table 1 shows the proposed system prediction of 5G
congestion during the training period. 5291 samples are used
during training, divided into 2354, 2937 positive and neg-
ative samples. 1989 true positives are successfully predicted,
and no 5G congestion is identified, but 365 records are

mistakenly predicted as negatives, indicating 5G congestion.
Similarly, 2937 samples are obtained, with negative showing
5G congestion and positive representing no 5G congestion,
with 2833 samples correctly identified as negative showing
5G congestion and 104 samples inaccurately predicted as
positive, indicating no 5G congestion despite the presence of
5G congestion.

+e proposed model predicts intrusion during the val-
idation phase, as shown in Table 2. During validation,
correspondingly, a total of 2267 samples are used, divided
into 1064, 1203 positive and negative samples. It is deter-
mined that 937 samples have true positives that are suc-
cessfully forecast, and no 5G congestion is found. However,
127 records are mistakenly predicted as negatives, showing
5G congestion. Similarly, a total of 1234 samples are
gathered, with negative representing 5G congestion and
positive indicating no 5G congestion, with 1107 samples
correctly predicted as negative indicating cyber-attack and
96 samples imperfectly predicted as positive specifying no
5G congestion found the existence of 5G congestion.

Table 3 shows the proposed system prediction of 5G
congestion during the training period. 5291 samples are used
during training, divided into 2383, 2908 positive and neg-
ative samples. 1911 true positives are successfully predicted,
and no 5G congestion is identified, but 472 records are
mistakenly predicted as negatives, indicating 5G congestion.
Similarly, 2908 samples are obtained, with negative showing
5G congestion and positive indicating no 5G congestion,
with 2726 samples correctly identified as negative showing
5G congestion and 182 samples inaccurately predicted as
positive indicating no 5G congestion despite the existence of
5G congestion.

+e proposed model predicts 5G congestion during the
validation phase, as shown in Table 4. During validation,
2267 samples are used, which are divided into 1132, 1135
positive and negative samples, respectively. It is determined
that 913 samples have true positives that are successfully
predicted, and no 5G congestion is found; however, 219
records are mistakenly predicted as negatives, showing 5G
congestion. Similarly, a total of 1135 samples are gathered,
with negative indicating 5G congestion and positive indi-
cating no 5G congestion, with 1015 samples correctly pre-
dicted as negative indicating cyber-attack and 120 samples
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Figure 2: Rule surface of the proposed 5G congestion control
model.
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imperfectly predicted as positive signifying no 5G conges-
tion found the existence of 5G congestion.

It is shown in Table 5 (SVM) that during training, the
performance of the proposed system in terms of accuracy
sensitivity, specificity, miss rate, and precision gives 0.911,
0.950, 0.089, 0.093, and 0.844 in terms of accuracy sensitivity,
specificity, miss rate, as well as precision, respectively. And

during validation, the proposed model gives 0.901, 0.907,
0.897, 0.099, and 0.881 in terms of accuracy sensitivity,
specificity, miss rate, and precision, respectively. In addition,
the proposed system during training gives 0.114, 8.33, 1.044,
and 0.964, and during validation, 0.102, 8.89, 0.102, and 0.920
in terms of fall out likelihood positive ratio, likelihood neg-
ative ratio, as well as negative predictive value, respectively.

Naive_Bayes = 19.7 SVM = 22.3 Congestion-Found = 22.6

Figure 3: Rule diagram of the proposed 5G congestion control model (No).

Naive_Bayes = 86.7 SVM = 68.6 Congestion-Found = 72.5

Figure 4: Rule diagram of the proposed 5G congestion control model (no).

Table 1: Proposed model training during the prediction of 5G
congestion (SVM).

Proposed model training

Input

Total number of
samples (5291) Result (output)

Expected output Predicted positive Predicted negative
True positive (TP) False positive (FP)

2354 positive 1989 365
False negative (FN) True negative (TN)

2937 negative 104 2833

Table 2: Proposed model validation during the prediction of 5G
congestion (SVM).

Proposed model validation

Input

Samples (2267) Result
Expected output Predicted positive Predicted negative

True positive (TP) False positive (FP)
1064 positive 937 127

False negative (FN) True negative (TN)
1203 negative 96 1107

Table 3: Proposed model training during the prediction of 5G
congestion (Näıve Bayes).

Proposed model training

Input

Samples (5291) Result
Expected output Predicted positive Predicted negative

True positive (TP) False positive (FP)
2383 positive 1911 472

False negative (FN) True negative (TN)
2908 negative 182 2726

Table 4: Proposed model validation during the prediction of 5G
congestion (Näıve Bayes).

Proposed model validation

Input

Samples (2267) Result
Expected output Predicted positive Predicted negative

True positive (TP) False positive (FP)
1132 positive 913 219

False negative (FN) True negative (TN)
1135 negative 120 1015
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It is shown in Table 6 (Naı̈ve Bayes) that during
training, the performance of the proposed system in terms
of accuracy sensitivity, specificity, miss rate, and precision
gives 0.876, 0.913, 0.852, 0.916, and 0.802 in terms of ac-
curacy sensitivity, specificity, miss rate, and precision re-
spectively. And during validation, the proposed model
gives 0.851, 0.884, 0.823, 0.149, and 0.806 in terms of ac-
curacy sensitivity, specificity, miss rate, and precision. In
addition, the proposed system during training gives 0.148,
6.168, 1.075, and 0.937, and during validation, 0.178, 4.966,
0.181, and 0.894 in terms of fall out likelihood positive ratio,
likelihood negative ratio, and negative predictive value,
respectively.

It is shown in Table 7 that there are 15 tests taken in
which only one is opposite to the proposed system and
human-based decision system. Also, it is shown in Table 8
that the comparison of the performance of the proposed
system indicates that the Näıve Bayes accuracy and miss rate
are 0.851 and 0.149. In SVM, it is 0.901 and 0.099, re-
spectively. It is demonstrated that the performance of the
proposed fusion-based approach is improved in terms of
0.933 accuracy and 0.067 miss rate.

Table 9 compares the performance of the proposed
5G/6G network congestion control, which employs a
hybrid deep learning technique with the previous ap-
proaches [16, 35, 36]. It is clearly shown that the proposed
technique is better than the previous results in terms of
accuracy and miss rate.

5. Research Contribution

+e congestion of data traffic in 5G/6G networks has posed
as major challenges in terms of congestion and delay to the
current networks. In order to cope with these challenges, a
hybrid deep learning approach has been proposed to predict

Table 5: Proposed congestion control model performance in training and validation (SVM).

SVM Accuracy Sensitivity TPR Specificity TNR Miss-rate (%) FOR Fall-out FPR LR+ Lr- PPV (precision) NPV
Training 0.911 0.950 0.089 0.093 0.114 8.33 1.044 0.844 0.964
Validation 0.901 0.907 0.897 0.099 0.102 8.89 0.102 0.881 0.920

Table 6: Performance of proposed system in training and validation using different statistical measures (Näıve Bayes).

Naı̈ve Bayes Accuracy Sensitivity TPR Specificity TNR Miss-rate (%) FOR Fall-out FPR LR+ Lr- PPV (precision) NPV
Training 0.876 0.913 0.852 0.916 0.148 6.168 1.075 0.802 0.937
Validation 0.851 0.884 0.823 0.149 0.178 4.966 0.181 0.806 0.894

Table 7: Fusion results of the proposed cyber-attack detection model.

S. NO. Näıve Bayes SVM +e proposed cyber-attack
detection model

+e human expert decision of the
cyber-attack detection model

Probability of
correctness

Probability
of errors

1 19.1 (no) 24.1 (no) 17.4 (no) No 1 0
2 3.5 (no) 71.1 (yes) 22.6 (no) No 1 0
3 27.1 (no) 24.1 (no) 22.6 (no) No 1 0
4 27.1 (no) 24.1 (no) 22.6 (no) No 1 0
5 27.1 (no) 24.1 (no) 22.6 (no) No 1 0
6 27.1 (no) 24.1 (no) 22.6 (no) No 1 0
7 76.1 (yes) 71.1 (yes) 72.5 (yes) Yes 1 0
8 78.1 (yes) 71.1 (yes) 72.5 (yes) Yes 1 0
9 28.1 (no) 71.1 (yes) 22.6 (no) No 1 0
10 90.5 (yes) 71.1 (yes) 72.5 (yes) Yes 1 0
11 76.1 (yes) 71.1 (yes) 72.5 (yes) Yes 1 0
12 91.3 (yes) 71.1 (yes) 22.6 (yes) Yes 1 0
13 19.1 (no) 24.1 (no) 17.4 (no) No 1 0
14 27.1 (no) 24.1 (no) 22.6 (no) No 1 0
15 19.1 (no) 24.1 (no) 22.6 (no) Yes 0 1

Table 8: Comparison of performance of the proposed system using
Naı̈ve Bayes and SVM algorithms.

Naı̈ve Bayes Accuracy 0.851
Miss rate 0.149

SVM Accuracy 0.901
Miss rate 0.099

Proposed fusion-based machine learning
approach

Accuracy 0.933
Miss rate 0.067

Table 9: Comparison of the proposed approach with previous
research work.

Accuracy Miss-
rate

Ihab et al. [35] 0.752 0.248
Najm et al. [36] 0.737 0.263
Khan, et al. [16] 0.913 0.087
Proposed approach to predict 5G/6G
congestion control 0.933 0.067
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an optimal congestion control approach that aims to alle-
viate network congestion in the emerging 5G/6G network
environment.

6. Conclusion

+e primary goal of this research to reduce congestion and
maximizing is to develop a congestion for 5G/6G networks
to reduce congestion and maximize the utilization of the
resources already present in these networks. 5G/6G network
communication is a difficult task and essential for next-
generation wireless networks and commercial businesses.
Developing a smart decision-making structure for arriving
network traffic to confirm load balancing, limiting network
communication catastrophe, and providing another in a case
of catastrophe or overcapacity situations is a big challenge
for the research community. +is research work addressed
the 5G congestion control challenge by suggesting a model
based on a hybrid deep learning technique to forecast the
optimal congestion in 5G networks. +e proposed method
can enhance network performance and provide better
outcomes regarding 0.933 accuracy and 0.067 miss rate.
[37, 38].
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