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In the process of water treatment, coagulation is an important process to remove minerals and organic particles from raw water,
which has typical time delay and nonlinearity. )e effect of coagulation directly affects the turbidity of the effluent. According to
the good correlation between the mean equivalent diameter of floc particles and the turbidity of effluent water, the image
processing method is used to preprocess the floc image, the parameters of floc particles are quantitatively analyzed, and the mean
equivalent diameter of floc particles is obtained, which is used as one of the bases for the control of coagulant dosage. However, no
matter whether the coagulation process in actual situations interferes with the outside world or not, the equivalent diameters of
floc particles after coagulation may have abnormal and invalid values, which may lead to a problem that there is a large difference
between the mean equivalent diameter of floc particles calculated by a least square method and themean valid equivalent diameter
of floc particles. In response to this problem, this article proposes an optimal calculation method of the mean equivalent diameter
of floc particles based on the maximum correntropy criterion (MCC) to reduce the negative impact of the abnormal and invalid
equivalent diameters of floc particles on the mean equivalent diameter and provide an important reference data for the precise
dosing control of coagulants. Finally, the feasibility of the theoretical results is verified by several numerical experiments.

1. Introduction

)e traditional water treatment process mainly includes
steps such as coagulation, sedimentation, filtration, and
disinfection. Coagulation is an important process to remove
minerals and organic particles in raw water, and its effect
directly affects the turbidity of the effluent. When the co-
agulant is added to the raw water for a period of intense
mixing, the coagulant is evenly and rapidly distributed in the
water so that these colloidal particles in the water lose their
stability. )e interaction force between the destabilized
colloidal particles will change from repulsion to attraction,
so they collide continuously and slowly aggregate and finally
form floc particles with certain strength, size, and density.
)is process is called coagulation, which has typical time-
delay and nonlinear characteristics [1–3]. With the devel-
opment of computer technology, the method of using image
processing technology to detect the shape of floc particles

and extract the characteristic parameters of floc particles has
gradually become a current research focus [4] to control the
coagulant dosage. )e camera can capture a large number of
floc images in the coagulation tank. After image pre-
processing and feature extraction of the floc images, the
equivalent diameters of the floc particles can be calculated by
formula. )e weighted average calculation of the equivalent
diameters of floc particles can obtain the mean equivalent
diameter of floc particles, which can be used as one of the
important parameters to characterize the overall situation of
coagulation. When the coagulant dosage is within an ap-
propriate range, the floc particles slowly aggregate and
become denser, which leads to fast sedimentation of floc
particles, clear water, and low turbidity. At this time, the
mean equivalent diameter of the floc particles is also within a
reasonable range. )e mean equivalent diameter of floc
particles is adjusted by controlling the dosage of the coag-
ulant so that the mean equivalent diameter of floc particles
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keeps approaching the set value of the mean equivalent
diameter of floc particles and realizes the accurate control of
the coagulant dosage and effluent turbidity [5]. Since there is
a good correlation between the mean equivalent diameter of
floc particles and the turbidity of effluent after flocculation
and sedimentation, taking the mean equivalent diameter of
floc particles as one of the control parameters for auto-
matically controlling the dosage of coagulant can achieve
better coagulation and sedimentation effect and obtain the
expected effluent turbidity [6, 7].

Due to the important role of equivalent diameters of floc
particles in modern water treatment automation control
technology, scholars at home and abroad have carried out a
lot of research on the extraction and application of the
equivalent diameters of floc particles. To address the
problem of hysteresis of obtaining water quality indicators in
the water treatment process, Dai et al. [8] used micro-eddy
current flocculation technology to detect floc particles. )ey
combined the relationship between the equivalent diameter
and the fractal dimension to determine the coagulant dosage
and alleviate the time-delay problems in water treatment by
analyzing and determining the coagulant dosage on the
coagulation effect and the equivalent diameters of floc
particles. Asensi et al. [9] developed a fully automatic ac-
tivated sludge floc identification and morphological char-
acterization toolbox based on digital image analysis and
statistical processing. )e toolbox could determine char-
acteristic parameters such as the equivalent diameters of floc
particles, which was mainly used to help study the char-
acteristics of activated sludge flocs in urban sewage treat-
ment plants. Khan et al. [10] used a microscope to collect floc
images, used a state-of-the-art image segmentation algo-
rithm to segment floc images with different equivalent di-
ameters in different fluctuation ranges, and extracted
morphological characteristic parameters for sludge volume
index (SVI) and mixed liquor suspended solids (MLSS)
modeling to explore the feasibility of applying the algorithm
model to various plants in different regions. Chen et al. [11]
used image acquisition system and data processing system to
collect and process floc images in real time, took the mean
equivalent diameter of floc particles calculated by the least
square method as the target for controlling the coagulant
dosage, and then automatically corrected the set system
control parameters through flow and turbidity feedback so
as to save the coagulant consumption and ensure the quality
of the effluent from the sedimentation tank. Gao [12] used
image processing technology to detect floc images, obtained
various floc parameters that fluctuated within the correct
range, and analyzed the effect of different flocculation time
and coagulant dosage on the equivalent diameters of floc
particles. It can provide a data reference for solving the
problems of time delay and accuracy of dosing amount in the
process of coagulation and dosing in water plants. Chen et al.
[13] applied digital image processing technology to water
treatment process control, improved the original water
treatment experimental equipment, and used image pro-
cessing algorithms to complete the extraction and analysis of
the feature parameters of floc images in the coagulation
process. )e noncontact detection of floc properties in the

flocculant addition control system provided an effective
solution for water plants to improve the automation level of
water treatment. Wang [14] used machine vision technology
to explore the morphological change law of floc aggregation
in the coagulation process and corresponded the charac-
teristic parameters of floc particles such as porosity and
equivalent diameters of floc particles with the factors that
actually affected the flocculation process. Simulations were
carried out to study the factors affecting the flocculation
process and results, and the mean equivalent diameter of floc
particles was determined as one of the key factors to regulate
and control the flocculation process.

Although the above studies were only scattered and
preliminary discussions on the application of the equiva-
lent diameters of floc particles in the automatic process of
water treatment, they have already demonstrated the im-
portance of the equivalent diameter of floc particles in the
automatic control technology of coagulant dosage. Re-
searchers at home and abroad not only extracted the in-
ternal relationship between geometric parameters such as
the equivalent diameters of floc particles and the coagulant
dosage but also explored the internal relationship between
other parameters of floc particles and the coagulant dosage,
which alleviated the lag of water quality indicators in water
treatment to a certain extent. However, the problem of
accurate calculation of relevant parameters such as the
mean equivalent diameter of floc particles still needs to be
solved urgently in the application of precise control of
coagulant dose. In the actual water treatment process of the
water plant, the effect of coagulation is greatly affected by
the actual environment. )e influence of microorganisms,
abnormal coagulant dosage, equipment leakage, and air
temperature will lead to abnormal settlement in the floc
particles after coagulation [15, 16]. For example, when the
weather is hot, the microbes in the sludge will decompose
and produce gas, which will cause trace bubbles in the
sludge. )e gas leakage in the equipment will cause the gas
content in the water to be too high, and the low temper-
ature will affect the reaction speed of the coagulant. )ese
objective factors will affect the effect of the aggregation and
sedimentation of floc particles so that the captured floc
images can not reflect the actual situation of the sedi-
mentation tank, and the equivalent diameters of floc
particles calculated based on these images will have a small
number of abnormal and invalid values. In addition, no
matter how the coagulation effect is, there may also be a
small number of abnormal and invalid values in the cal-
culated equivalent diameters of floc particles without in-
terference from the objective environment. )e abnormal
and invalid values will lead to a large deviation between the
mean equivalent diameter obtained by the least square
method and the mean valid equivalent diameter of floc
particles so that the current coagulation effect cannot be
accurately evaluated. )erefore, a new data processing
optimization method of the mean equivalent diameter of
floc particles is examined, which is of great significance to
eliminate the negative effect of the abnormal and invalid
equivalent diameters of a small number of floc particles on
the mean equivalent diameter of floc particles.
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In view of the abnormal and invalid values of the
equivalent diameters of floc particles during the coagulation
process, maximum correntropy criterion (MCC) [17–19]
will be introduced in this article, and an optimal method will
be proposed to calculate the mean equivalent diameter of
floc particles based on MCC. )is method optimizes the
process of solving the mean equivalent diameter of floc
particles, reduces the calculation error caused by abnormal
and invalid equivalent diameters, and achieves the purpose
of accurately calculating the mean equivalent diameter of
floc particles, which provides an important reference data
for the precise dosing control of subsequent coagulants.

2. Preliminaries

)e equivalent diameter means that when a particle has the
same or similar physical properties to a spherical particle, we
can replace the diameter of the particle with the diameter of
the spherical particle. In water treatment, the sedimentation
characteristics of floc particles are complicated. )e floc
particles are in a discrete state during the sedimentation
process; their mass, size, and characteristics do not change;
and the sedimentation velocity of the floc particles is not
disturbed. )e mathematical expression to characterize the
particle settling motion often adopts the Stokes formula
[11, 20], whose specific form is as follows:

v �
ρ − ρ0( 􏼁g

18μ
d
2
s , (1)

where v is the settling velocity of the floc particle, ρ is the floc
density, ρ0 refers to the density of water, g is the acceleration
of gravity, μ is the viscosity coefficient of water, and ds is the
diameter of the floc particle.

Further studies show that as the diameter of the floc
particle changes, the density of the floc particle changes
according to the following formula:

ρ − ρ0 � d
− kp

s , (2)

where kp is a coefficient, whose value is generally 1.2 ∼ 1.5,
depending on the coagulant filling rate and the quality of raw
water. Combining the above formulas (1) and (2), it can be
concluded that the relationship between the diameter and
the sedimentation velocity of the floc particle can be ob-
tained as

v �
gd

2− kp( 􏼁
s

18μ
. (3)

)e above analysis is based on the assumption that the
floc particle is spherical, but we know that the actual floc
particle is in an irregular state, and its sedimentation speed
should indeed be slower than that of the spherical floc
particle of the same volume. )e size and shape of floc
particles can be well reflected by the floc images collected by
industrial cameras. Each floc region in the image reflects the
state of floc particle movement during the coagulation
process. )e image of a floc particle in the 2D plane can be
characterized by four parameters [11, 21]: the size-related

area of the floc particle, the shape-related perimeter of the
floc particle, the vacant area in the middle of the floc particle
related to the degree of looseness, and the length to width
ratio of the floc particle. )ese features represent the
characteristics of the floc particle.)e above four parameters
can be converted into ϕi using the following formula:

ϕi � 2
��
si

π

􏽲

1 − 1 −
2 ���

siπ
√

li
􏼠 􏼡k1􏼢 􏼣

× 1 − 1 −
1

mi

􏼠 􏼡k2􏼢 􏼣 × 1 −
si0

si

k3􏼠 􏼡,

(4)

where ϕi is the equivalent diameter of the ith floc particle; si

is the area of the ith floc particle; li is the perimeter of the ith
floc particle; si0 is the hollow area of the ith floc particle; mi is
the length to width ratio of the ith floc particle; and k1, k2,
and k3 are the coefficients of the perimeter li, the length to
width ratio mi, and the hollow area si0, respectively. k1, k2,
and k3 are all decimals ranging from 0 to 1, which can be
selected according to actual conditions.

By the above analysis and calculation, the equivalent
diameter of a floc particle can be extracted from the image of
the floc particle. )e equivalent diameter of the floc particle
is an important characteristic parameter of the floc particle
and has a good correlation with the turbidity of water. It not
only reflects the quality of the coagulation effect but also
relates to whether the subsequent effluent turbidity meets
the water supply requirements. Taking it as one of the target
values to control the coagulant dosage can achieve a good
control effect. It can be seen from the above formula (3) that
the larger the equivalent diameter of the floc particle, the
faster the settling velocity of the floc particle, that is, the
better the integrity of floc particles, the more sufficient the
sedimentation and the smaller the turbidity of the sedi-
mented water.)e change of the equivalent diameters of floc
particles can not only reflect the quality of the coagulation
effect but also relate to whether the utilization of the co-
agulant can achieve the maximum benefit.

However, the parameter ϕi still cannot fully characterize
the overall effect of coagulation. In practical application, the
equivalent diameter of each floc particle is calculated
according to formula (4), and then the mean equivalent
diameter Φ, which is regarded as a key parameter for the
control of coagulant dosage, is calculated in real time
according to the equivalent diameters of floc particles ob-
tained within a certain time. )e mean equivalent diameter
Φ is expressed as follows:

Φ �
􏽐

N
i�1 niϕi( 􏼁

􏽐
N
i�1 ni( 􏼁

, (5)

where N represents the number of floc particles with dif-
ferent equivalent diameters, and ni represents the number of
floc particles whose equivalent diameter is ϕi.

According to the above analysis, we can display the floc
image collected in real time on the computer and calculate si,
li, mi, and si0 of the ith floc particle in formula (4) by image
preprocessing, image segmentation, and other image
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processing technologies, which lead to obtain ϕi. Finally, we
can obtain the mean equivalent diameter Φ of floc particles
by substituting ϕi and ni into formula (5).

3. Main Results

In the actual water treatment process of water plant, the
influence of microorganisms, too much or too little coag-
ulant dose, equipment leakage, and air temperature will lead
to abnormal aggregation and settlement of floc particles.
)is will make the captured floc images cannot reflect the
real state of the sedimentation tank, and the calculated floc
equivalent diameters will have some abnormal and invalid
values. In addition, no matter whether the coagulation effect
is disturbed by the environment or not, the equivalent di-
ameters of floc particles calculated from floc images will also
have some abnormal and invalid values, so that the mean
equivalent diameter of floc particles calculated by the tra-
ditional calculation method (the least square method)
cannot accurately characterize the coagulation effect. To
weaken the influence of the invalid equivalent diameters of
floc particles on the mean equivalent diameter of floc
particles, MCC will be introduced to optimize the calcula-
tion process of the mean equivalent diameter of floc particles
so as to provide important reference data for accurately
describing the actual coagulation effect. Because of its good
robustness [22], MCC is widely used in many fields, such as
computer vision [23], feature extraction [24, 25], and signal
processing [26–28]. It is mainly used to deal with non-
Gaussian noise and outliers [27, 29, 30]. MCC is based on
entropy [31], which in turn derives from information theory.
Correlation entropy is used to measure the similarity be-
tween two variables, which is expressed as follows:

Vσ(A, B) � E kσ(A − B)􏼂 􏼃, (6)

where E(∗ ) is the expectation of ∗ , kσ(·) represents the
Gaussian kernel function, and σ represents the kernel width
of kσ(·). Usually, the joint probability distribution between
variables A and B is unknown, and only a finite amount of
data A � (a1, a2, . . . , aN) and B � (b1, b2, . . . , bN) can be
available, which make the estimator of correlation entropy
(6) can be represented as

􏽢Vσ(A, B) �
1
N

􏽘

N

i�1
kσ ai − bi( 􏼁, (7)

where kσ(ai − bi) � e− (ai− bi)
2/2σ2 .

As we all know, the mean square error (MSE) is a
measure that reflects the degree of difference between the
estimator and the estimated value, and it is a global measure.
Compared to the MSE, MCC is a local metric whose value
mainly depends on the probability along the A � B direc-
tion, and the local extent depends on the kernel size σ. )e
Gaussian kernel functions for various kernel widths are
shown in Figure 1. As can be seen from Figure 1, the
convergence rate of the function varies with the size of the
kernel width. For large errors or outliers, the kernel function
has better robustness. When the error between A � B is
large, the kernel function of A � B gets a small value or even

a value close to zero so that the calculation process can avoid
the negative impact caused by outliers and has a good stable
performance in the case of data anomalies caused by in-
terference. Figures 2 and 3 illustrate the difference between
the mean square error and the correlation entropy. In this
article, an optimization model is constructed by MCC to
eliminate the adverse effects of abnormal and invalid values
(abnormal and invalid equivalent diameters of floc particles)
on the mean equivalent diameter of floc particles.

)emean equivalent diameter of floc particles calculated
by the least square method can be expressed as follows:

Φc � argmin
Φ

􏽘

N

i�1
ni ϕi − Φ( 􏼁

2
, (8)

which is an optimization problem whose solution of this
optimization problem is

Φc �
􏽐

N
i�1 niϕi( 􏼁

􏽐
N
i�1 ni( 􏼁

. (9)

According to formula (9), the mean equivalent diameter
of floc particles calculated by the least square method is the
mean of the sum of all equivalent diameters of floc particles,
which cannot eliminate the abnormal and invalid equivalent
diameter of floc particles. Considering the abnormal and
invalid equivalent diameters of floc particles, we introduce
maximum correntropy criterion [32] to weaken the influ-
ence of abnormal and invalid equivalent diameters of floc
particles on the mean equivalent diameter of floc particles.
Using MCC, the optimization problem is formulated as
follows:

ΦMCC � argmax
Φ

􏽘

N

i�1
ni exp −

ϕi − Φ( 􏼁
2

2σ2
􏼠 􏼡. (10)

Assuming f(z) � z − z ln(− z), it can be obtained as
follows:
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Figure 1: Gaussian kernel function with different kernel widths.
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exp(− x) � sup
z

(zx − f(z)). (11)

By z/zz(zx − f(z)) � x + ln(− z) � 0, we can find that
the maximum value of (zx − f(z)) can be obtained when
z � − exp(− x).

)e above derivation process is called the half-quadratic
(HQ) strategy [33, 34].

If let

z � ρi, (12)

and

x �
ϕi − Φ( 􏼁

2

2σ2
, (13)

then it is easy to get

ΦMCC � argmax
Φ

􏽘

N

i�1
ni ρi

ϕi − Φ( 􏼁
2

2σ2
− f ρi( 􏼁􏼠 􏼡, (14)

and

ρi � − exp −
ϕi − Φ( 􏼁

2

2σ2
􏼠 􏼡, (15)

where ρi is an auxiliary variable.

If we take the partial derivative of Φ of (14),
then it is easy to obtain

z 􏽐
N
i�1 ni ρi ϕi − Φ( 􏼁

2/2σ2􏼐 􏼑 − f ρi( 􏼁􏼐 􏼑􏽨 􏽩

zΦ

�
z 􏽐

N
i�1 ρini/2σ

2
􏼐 􏼑 ϕi − Φ( 􏼁

2
− 􏽐

N
i�1 nif ρi( 􏼁􏽨 􏽩

zΦ

� 􏽘
N

i�1

ρini

2σ2
􏼠 􏼡

z ϕi − Φ( 􏼁
2

􏽨 􏽩

zΦ

� 􏽘
N
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ρini

2σ2
􏼠 􏼡

z ϕ2i − 2ϕiΦ +Φ2􏼐 􏼑􏽨 􏽩

zΦ
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N

i�1

ρini

2σ2
􏼠 􏼡 − 2ϕi + 2Φ( 􏼁

� − 􏽘
N

i�1

ρiniϕi

σ2
+Φ􏽘

N

i�1

ρini

σ2
� 0,

(16)

and it is easy to get

ΦMCC �
􏽐

N
i�1 ρiniϕi/σ

2

􏽐
N
i�1 ρini/σ

2

�
􏽐

N
i�1 ρiniϕi

􏽐
N
i�1 ρini

.

(17)

We can solve the problem (14) by alternative
optimization.

Firstly, when Φ is fixed, the solution of ρi is derived as
follows:

ρ(k+1)
i � − exp −

ϕi − Φ(k)
􏼐 􏼑

2

2 σ(k+1)
􏼐 􏼑

2
⎛⎜⎝ ⎞⎟⎠, (18)

where k≥ 0 is the number of iterations.
Secondly, when ρi is fixed, the solution ofΦ can be easily

obtained as follows:

Φ(k+1)
�

1
􏽐

N
i�1 ρ

(k+1)
i ni

􏽘

N

i�1
ρ(k+1)

i niϕi. (19)

Furthermore, it is known from [23] that after each it-
eration σ2 should be updated as follows:

σ(k+1)
􏼐 􏼑

2
�

1
2􏽐

N
i�1 ni

􏽘

N

i�1
ni ϕi − Φ(k)

􏼐 􏼑
2
. (20)

)is update rule consists of the above three steps, which
are repeated until the convergence condition is achieved.
)e procedure is summarized in Algorithm 1.

)e proof is completed.
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4. Simulation Results

)ere are four sets of simulation data generated for us to
verify the effectiveness of Algorithm 1, and ni

(1< � i< � N) is always equal to 1 for the convenience of
simulation.

(1) )e first set of simulation data is generated for us to
verify the effectiveness of Algorithm 1. )ere are
ninety points representing ninety valid equivalent
diameters of floc particles randomly generated in 1D
space by Gaussian distribution with mean
Φv � 1.3 mm and covariance σv � 0.2 and ten points
representing ten abnormal and invalid equivalent
diameters of floc particles by Gaussian distribution
with mean Φa � 6 mm and covariance σa � 0.3.
Using these generated data, we can compute the
conventional samples’ mean Φc by (9), the MCC-
based samples’ mean ΦMCC by Algorithm 1, and the
valid samples’ mean Φv by (9) with only considering
the valid equivalent diameters. )e positions of the
three means are shown in Figure 4. It is obvious that
the MCC-based samples’ mean ΦMCC and the valid
samples’ mean Φv are almost overlapped, whereas
the conventional samples’ mean Φc is seriously bi-
ased from the valid samples’ mean Φv due to the
existence of ten abnormal and valid equivalent
diameters.

(2) )e second set of simulation data is generated for us
to verify the effectiveness of Algorithm 1. )ere are
ten points representing ten abnormal and valid
equivalent diameters of floc particles randomly
generated in 1D space by Gaussian distribution with
mean Φa � 1.3 mm and covariance σa � 0.2 and
ninety points representing ninety valid equivalent
diameters of floc particles by Gaussian distribution
with mean Φv � 6 mm and covariance σv � 0.3.
Using these generated data, we can compute the
conventional samples’ mean Φc by (9), the MCC-
based samples’ mean ΦMCC by Algorithm 1, and the
valid samples’ mean Φv by (9) with only considering
the valid equivalent diameters. )e positions of the
three means are shown in Figure 5. It is obvious that
the MCC-based samples’ mean ΦMCC and the valid

samples’ mean Φv are almost overlapped, whereas
the conventional samples’ mean Φc is seriously bi-
ased from the valid samples’ mean Φv due to the
existence of ten abnormal and valid equivalent
diameters.

(3) )e third set of simulation data is generated for us to
verify the effectiveness of Algorithm 1. Firstly, there
are ninety points representing ninety valid equiva-
lent diameters of floc particles randomly generated
in 1D space by Gaussian distribution with mean
Φv � 1.3 mm and covariance σv � 0.2 and ten points
representing ten abnormal and valid equivalent di-
ameters of floc particles by Gaussian distribution
with mean Φa � 6 mm and covariance σa � 0.3.
Secondly, the 100 points are randomly sorted. Fi-
nally, using these generated data, we can compute
the conventional samples’ meanΦc by (9), the MCC-
based samples’ mean ΦMCC by Algorithm 1, and the
valid samples’ mean Φv by (9) with only considering

10 20 30 40 50 60 70 80 90 1000
0

1

2

3

4

5

6

7

Sample points
ϕc

ϕv
ϕMCC

Figure 4: Toy problem with ninety inliers ranging from 0.3mm to
2.6mm and ten outliers ranging from 5.6mm to 6.8mm. )e
conventional samples’ mean Φc, the valid samples’ mean Φv, and
MCC-based samples’ mean ΦMCC.

(1) Input: )e equivalent diameter ϕi (1≤ i≤N) of the ith floc particle, and the number ni (1≤ i≤N) of the ith floc particle whose
equivalent diameter is ϕi.

(2) Output: )e MCC-based samples’ mean ΦMCC.
(3) Initialize: Φ(0) � Φc, k � 0.
(4) while Not convergent do
(5) Update (σ(k+1))2← (20).
(6) Update ρ(k+1)

i ← (18).
(7) Update Φ(k+1)← (19).
(8) k←k + 1.
(9) end while
(10) ΦMCC � Φ(k) as the MCC-based samples’ mean.

ALGORITHM 1: )e MCC-based samples’ mean ΦMCC � MCC-Mean (ϕi, ni).
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the valid equivalent diameters. )e positions of the
three means are shown in Figure 6. It is obvious that
the MCC-based samples’ mean ΦMCC and the valid
samples’ mean Φv are almost overlapped, whereas
the conventional samples’ mean Φc is seriously bi-
ased from the valid samples’ mean Φv due to the
existence of ten abnormal and valid equivalent
diameters.

(4) )e last set of simulation data is generated for us to
verify the effectiveness of Algorithm 1. Firstly, there
are ten points representing ten abnormal and valid
equivalent diameters of floc particles randomly
generated in 1D space by Gaussian distribution with
mean Φa � 1.3 mm and covariance σa � 0.2 and
ninety points representing ninety valid equivalent
diameters of floc particles by Gaussian distribution
with mean Φv � 6 mm and covariance σv � 0.3.
Secondly, the 100 points are randomly sorted. Fi-
nally, using these generated data, we can compute
the conventional samples’ meanΦc by (9), the MCC-
based samples’ mean ΦMCC by Algorithm 1, and the
valid samples’ mean Φv by (9) with only considering
the valid equivalent diameters. )e positions of the
three means are shown in Figure 7. It is obvious that
the MCC-based samples’ mean ΦMCC and the valid
samples’ mean Φv are almost overlapped, whereas
the conventional samples’ mean Φc is seriously bi-
ased from the valid samples’ mean Φv due to the
existence of ten abnormal and valid equivalent
diameters.

If the mean equivalent diameter of floc particles cor-
responding to the turbidity of the effluent within the normal
range is about 1mm-2mm, then it can be seen from Fig-
ures 4 and 6 that the corresponding coagulation effect is

good, which indicates that the turbidity of the effluent is
within the normal range, and then it can be seen from
Figures 5 and 7 that the corresponding coagulation effect is
not good, which indicates that the turbidity of the effluent is
outside the normal range.

Several sets of mean equivalent diameters of floc particles
calculated by the conventional method and the MCC-based
optimization method are presented in Table 1, and the
corresponding error rates are given. As can be seen from
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Figure 7: Toy problem with ninety inliers ranging from 4.3mm to
7.5mm and ten outliers ranging from 0.3mm to 2.2mm. )e
conventional samples’ mean Φc, the valid samples’ mean Φv, and
MCC-based samples’ mean ΦMCC.
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Figure 6: Toy problem with ninety inliers ranging from 0.3mm to
2.3mm and ten outliers ranging from 5.5mm to 7mm. )e
conventional samples’ mean Φc, the valid samples’ mean Φv, and
MCC-based samples’ mean ΦMCC.
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Figure 5: Toy problem with ninety inliers ranging from 4.6mm to
7.7mm and ten outliers ranging from 0.8mm to 2mm. )e
conventional samples’ mean Φc, the valid samples’ mean Φv, and
MCC-based samples’ mean ΦMCC.
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Table 1, the error rates of the mean equivalent diameters of
the floc particles are reduced by means of the MCC
algorithm.

5. Conclusion

According to the characteristics that the mean equivalent
diameter of floc particles is closely related to the turbidity of
the effluent, we use image processing technology to process
and extract the characteristics of the collected floc images to
obtain the relevant important parameters such as the mean
equivalent diameter of floc particles and feed them back to
the control system of coagulant dose. )is can not only
effectively improve the utilization rate of coagulants but also
liberate human resources and reduce production costs. )e
mean equivalent diameter of floc particles is an important
parameter used to describe the characteristics of floc pre-
cipitation after coagulation in the water treatment process.
In the actual operation of the water plant, no matter whether
the coagulation effect is good or bad, there will be abnormal
and invalid values in the equivalent diameters of floc par-
ticles. To avoid the deviation of the mean equivalent di-
ameter and themean valid equivalent diameter caused by the
abnormal and invalid equivalent diameters of floc particles,
the MCC algorithm is introduced in this article. )e MCC
algorithm optimizes the solution of the mean equivalent
diameter of floc particles to eliminate or reduce the influence
of the abnormal and invalid values of equivalent diameters
on the overall sedimentation in the actual situation and
provides a reference method for water treatment fields such
as tap water treatment and sewage treatment. Finally, the
validity of the theoretical results is verified by numerical
experiments.
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