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&e relatedness between a country or a firm and a product is a measure of the feasibility of that economic activity. As such, it is a
driver for investments at a private and institutional level. Traditionally, relatedness is measured using networks derived by
country-level co-occurrences of product pairs, that is counting how many countries export both. In this work, we compare
networks andmachine learning algorithms trained not only on country-level data, but also on firms, which is something not much
studied due to the low availability of firm-level data. We quantitatively compare the different measures of relatedness, by using
them to forecast the exports at the country and firm level, assuming that more related products have a higher likelihood to be
exported in the future. Our results show that relatedness is scale dependent: the best assessments are obtained by using machine
learning on the same typology of data one wants to predict. Moreover, we found that while relatedness measures based on country
data are not suitable for firms, firm-level data are very informative also for the development of countries. In this sense, models built
on firm data provide a better assessment of relatedness.We also discuss the effect of using parameter optimization and community
detection algorithms to identify clusters of related companies and products, finding that a partition into a higher number of blocks
decreases the computational time while maintaining a prediction performance well above the network-based benchmarks.

1. Introduction

Relatedness [1], a key tool of the economic complexity
framework [2], refers either to the similarity between two
economic activities or between an activity and an economic
actor. As such, it is also known as coherence [3] in the
standard economic literature. &is concept can be easily
applied to different sets of such activities, such as the export
basket of countries [4, 5], the technology portfolios of
companies [6–8], or regional diversification patterns [9]. In
these cases, relatedness is a measure of the feasibility of an
activity (e.g., exporting a product) with respect to what an
economic actor already does. &is tool is, at present, widely
adopted by policymakers and institutions such as the World
Bank Group [10, 11] and the European Commission [12, 13]
to inform governments and the private sector with respect to

industrial and innovation policy, both at a country and
regional level.

Relatedness being a general concept, the precise way to
assess the similarity between two activities or the feasibility
of an activity for an economic actor is, a priori, not de-
termined. As a consequence, various formulations coexist in
the literature; most of them are however related to the so-
called co-occurrences, that is counting how many countries
are exporting a couple of products (the more the counting,
the more related the two products will be). &is is equivalent
to projecting the input data (a bipartite economic actor-
activity network, typically a country-product network) into
one of the two layers [14], usually the economic activities, for
instance the exported products. For example, the projection
of the bipartite country-product network into the layer of
products gives rise to a monopartite network of products.

Hindawi
Complexity
Volume 2022, Article ID 2095048, 12 pages
https://doi.org/10.1155/2022/2095048

mailto:alboragiambattista@gmail.com
https://orcid.org/0000-0001-8154-1607
https://orcid.org/0000-0002-4478-3292
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2095048


Among the various possibilities, Teece et al. [3] proposed to
use the t-statistics of co-occurrences in industries with
respect to a randomized diversification of firms. Hidalgo
et al. [4] introduced the product space, in which the co-
occurrences of exported products are normalized with
respect to their ubiquity. Zaccaria et al. [5] normalized
the co-occurrences with respect to both ubiquity and
diversification, considering the nested structure of the
country-product network, the idea being that highly
diversified countries carry a relatively small amount of
information. In the cases above, the result is an almost
fully connected network, whose pictorial representation
is not very informative and, most importantly, no effort
is present to remove any possible noise. So various at-
tempts to filter such projections are present in the lit-
erature. Saracco et al. [15] proposed to statistically
validate the single links with respect to a null configu-
ration model [16]. Cimini et al. [17] however showed that
the adoption of different null models leads to different
filtered networks; see also Dosi et al. [18] and Bottazzi
and Pirino [19] for a critical discussion of the conse-
quences of using different null models while computing
relatedness.

&is situation calls for a framework to systematically
compare and validate the different relatedness measures.
Our proposal is to use an out-of-sample prediction task for
this purpose. Tacchella et al. [20] and Straccamore et al. [21]
have shown that standard co-occurrence methods perform
worse than autocorrelation benchmarks, and that tree-based
machine learning algorithms such as random forest [22, 23]
provide the present state-of-the-art with respect to the as-
sessment of relatedness. Albora et al. [24] described this
approach in detail, providing a comparison between dif-
ferent machine learning algorithms.

Having established that the relatedness between a
country and a product is better assessed by means of ma-
chine learning, a natural question arises, namely whether the
country data provide an optimal assessment, given the fact
that companies, and not countries, are actually producing
the exported products. Moreover, often recommendations
are given to the private sector, so one could expect that
algorithms should be trained on companies, and not
countries. In this article, we provide a systematic and
quantitative comparison of machine learning and network-
based approaches to forecasting new products both at the
country and firm level. In particular, we will leverage a
database of more than 70000 Italian firms and compare it
with country-level data, providing a cross-database analysis
for both training and testing. Our results provide quanti-
tative evidence about which algorithm and which database
should be used to optimally assess relatedness; moreover, we
are able to economically motivate these results by investi-
gating the different structures of the two databases and how
the algorithms extract the relevant information.

2. Materials and Methods

In this section, we discuss our database, the metrics to
compute relatedness, and the testing procedure.

2.1. Firm-Level Data. &e Italian National Institute of Sta-
tistics (http://www.istat.it) provided data about the export of
all Italian firms. After a preliminary cleaning procedure, we
have 71826 Italian firms exporting at least two products in
the period between 1996 and 2017 and at least one product
every year from the one on which they exported their first
product till 2017. &e exported products are classified
according to the UN-COMTRADE (comtrade.un.org)
Harmonized System, 1992 edition. &is is a hierarchical
classification encoded by a number of digits corresponding
to different levels of aggregation. For our investigation we
use 4 digits, corresponding to 1233 codes, defining as many
different products. &ese data can be organized as a set of
temporal bipartite networks, one for each year, linking
Italian firms with their exported products; at first, the weight
of each link is the export volume. &is is equivalent to
defining 22 matrices E(y) (y� 1996. . .2017) of size
71826 × 1233, where each row represents a firm and each
column a product. &e element Efp(y) is the volume of
product p (expressed in euros) that firm f exported during
the year y.

2.2.Country-LevelData. Country-level data come fromUN-
COMTRADE database (comtrade.un.org) and consist in the
exports of 169 countries in the period between 1996 and
2017. All the considerations made above still apply. In order
to match these data with the firm level, we use only the 1233
products that are present also in the Italian firms’ data. We
point out that, Italian economy being highly diversified, this
corresponds to discarding less than 1% of products (0.8%).
So, at the country level, we have 22 matrices (one per year) of
size 169 × 1233.

2.3. Data Preprocessing. Since export volumes strongly de-
pend on the size of both the economic actor (country or
firm) and the specific product, the direct use of this quantity
would introduce a strong bias. &e usual solution in the
economic complexity literature [4, 25] is to compute the
RCA values (revealed comparative advantage) introduced by
Balassa [26] defined as:

RCAfp(y) �
Efp(y)

p′Efp′(y)

f′p′Ef′p′(y)

f′Ef′p(y)
. (1)

In this way the export is normalized with respect to both
the total export of the firm and the product and, using a
physics jargon, we go from the extensive variable E to an
intensive one. In order to have a binary variable, we say that
a product p is (competitively) exported by a firm f if its RCA
is greater than 1 and with this threshold we define the binary
matrix M

Mfp(y) �
1 ifRCAfp(y)≥ 1

0 ifRCAfp(y)< 1.

⎧⎨

⎩ (2)

2.4. Relatedness Measures. &e first aim of our analysis is to
compare different approaches to measure the relatedness
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between firms and products, that is how much a firm is close
to being able to export a product. &is is something
largely studied when the economic actors are not firms
but countries; as discussed in the Introduction, two types
of approaches exist: complex networks [3–5] and su-
pervised machine learning algorithms [20, 21, 24, 27].
Here we compare these methods in an out-of-sample
forecast exercise both at the country and firm level, in
which we assume that exporting more related products is
easier. &e output of both the network-based and the
machine learning approach is an S matrix in which the
element Sfp is the relatedness between firm f and
product p.

2.4.1. Network Models. Traditionally, in order to measure
the relatedness between a country and a product, one starts
with a measure of the similarity or proximity between
products, that can be visualized as a network of products.
&e next step is the computation of the density [4] or co-
herence [8]: the average similarity between the target
product and the ones already exported by the target country.
&is is what we will call the relatedness between a country
and a product.

To compute the proximity between two products, one
counts how many countries export both, that is the number
of co-occurrences. &e weight of the link of the resulting
network of products is this quantity possibly divided by a
normalization factor. According to the latter, we can define
different types of networks. In the product space [4] we
divide the number of co-occurrences with the maximum
ubiquity between the two products (i.e., howmany countries
export that product). In formula:

B
PS
pp′ �

1
max up, up′ 


c

McpMcp′ , (3)

where up � cMcp. However, the co-occurrence of products
in a country that exports almost all the products is not so
relevant like the one in a country that exports few products.
&is is a relevant problem, given the nested structure of the
matrix M [28]. An improvement that considers this factor is
the taxonomy network [5] in which each co-occurrence is
also normalized with respect to the diversification of the
country dc � pMcp:

B
TN
pp′ �

1
max up, up′ 


c

McpMcp′

dc

. (4)

Once we have the network B, we define the relatedness S

between a country and a product by using the density [4]:

Scp �
p′Mcp′Bpp′

p′Bpp′
. (5)

In practice, we sum the export matrices E from 1996 to
2012 to obtain the total export either of the countries or of
the firms, we compute the RCA and M values from the
resulting matrix and we estimate all the weights of the links
B. &en we apply the formula above using the M matrix of

2012 to compute the relatedness S either for the countries or
for the firms that belong to the test set defined below.

2.4.2. Random Forest. &e measure of relatedness given by
the use of machine learning algorithms based on decision
trees has been shown to provide a better assessment of the
probability for the future exports of countries than network-
based approaches [20]. In particular, it has been shown that
random forest [23] and XGBoost [29] are the most per-
forming algorithms for the task of assessing relatedness [24].
In this article, we decided to adopt the random forest (RF)
since, even if with country-level data XGBoost gets slightly
superior results [24], the computational time required to
train a random forest is much lower, so it allows us to make a
more complete analysis with a tuning of the hyper-
parameters and, as we will see, the use of community de-
tection algorithms.

Before talking about the training procedure, we need to
talk about how we split the data. When we are working with
country-level data, we use all the countries both for the
training and the testing of the algorithms, but when we work
with firm-level data, we split the firms into three datasets:
20000 firms are used to train the algorithm, another 20000
are used for the validation procedure to make the tuning of
the hyperparameters, and the remaining 31826 firms are
used to do the test. &e reason why we do not use all the
firms in the training as we do with country-level data is that
firms are much more than countries and using all of them
would increase the computational time. &e firms in each of
the three datasets are chosen randomly.

For each product p, we build a random forest that has the
task to predict if firms (or countries) will export p after 5
years. In the case of firm-level data, during the training
procedure, the features are given by the concatenation of the
12 RCA matrices 20000 × 1233 between 1996 and 2007 in
order to have a single matrix 240000 × 1233, in which each
row contains the RCA values in a year y of a firm that
belongs to the training set. &e labels of the training are
given by the concatenation of the column p of the M ma-
trices from 2001 to 2012. So, during the training, the model
learns if with a certain configuration of the RCA values in
year y (i.e., the export basket of a firm), the firm can start to
export the product p after 5 years.

&ere are some hyperparameters that can be optimized
to improve the performance of the random forest and to
avoid overfitting. Here we take into considerationmax depth
and min sample leaf [30]. &e value of the first hyper-
parameter regulates the maximum depth of the tree, if one of
the trees of the random forest reaches this value during its
construction, its training stops even if not all the training
samples are perfectly classified. So, if the trees are very deep
and the too many splits bring to overfitting, to avoid it we
can lower the max depth. &e value of the second hyper-
parameter regulates the minimum value of training samples
that a leaf node must have. If during the training the al-
gorithm finds a split that creates a node with less samples
than the value ofmin sample leaf, this split is discarded. So, a
high value of min sample leaf prevents the random forest
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from creating nodes with few training samples that are the
ones that bring to overfitting. In order to optimize the
hyperparameters, we train different random forests varying
the value of one of the hyperparameters at once, then we
perform a test using the firms of a validation set and we
choose the value of the hyperparameter that brings to the
higher best F1 score.

Once found the optimal values of max depth and min
sample leaf, we train a random forest with these values and
we do the test with the firms in the test set. Giving the RCA
values of 2012 as input to the random forest related to a
product p, it returns a vector with the column p of the S
matrix, so with all the 1233 random forests we build the
whole Smatrix for the firms needed in the test set. &e same
procedure can be repeated for the 169 countries.

In Results section, we are going to compare the models
trained on countries and the ones trained on firms to make
predictions about countries or firms. &is cross-test may
change depending on the peculiar value used as an input. In
particular, one may use directly RCA instead of the binary
M. Our idea is to always use the most informative input.
When we train the random forest on firm-level data and we
also do the test on firm-level data, we use RCA; however, if
we train the model on firm-level data to make predictions on
countries, we use M values as input variables. &e reason is
that countries and firms have very different RCA values since
they are very different objects. Indeed, the average nonzero
RCA value for firms is about 500, while for countries it is 2,
so for a firm RCA� 4 is a low value, while for a country it is
well above average. So, in what follows, when we show the
results of a model that has been trained on firms to make
predictions on countries the input variable is the M values,
instead, if we make predictions on firms, the input variable is
RCA.&e same goes for the models trained on country-level
data, if the predictions are on firms we use M, while if they
are on countries, we use RCA.

2.5. Testing Procedure. In order to test the goodness of the
relatedness assessment, we assume that firms (or countries)
will export in the future products with the higher S (re-
latedness) values. In particular, we build the models dis-
cussed above by using data from 1996 to 2012, from which
we compute the S matrix. &e comparison of these relat-
edness measures with the M (2017) matrix can be seen as
evaluating the output of a binary classifier. In particular, the
hypothesis is that higher the Sfp the more likely will be that
firm f will start to export product p. &is is analogous to
common machine learning classification exercises [30, 31],
so in order to compare the goodness of the different re-
latedness metrics, we can use the performance indicators we
introduce in Section 2.6. However, given the strong self-
correlation of the export matrices, what interests us is not
predicting if firms will export products that they already
export, but if they will export new products. For this reason,
when we do the comparison of the S matrix with M (2017),
we consider only the activations of new products, or in other
words, we remove the elements (f, p) that do not satisfy this
requirement:

RCAfp(2012)< 0.25. (6)

In this way, we look at how good the model is in pre-
dicting the activation of new products by firms. &e value
0.25 of the threshold follows [20, 24]. &e idea is that using a
threshold RCA< 1 would increase the noise in the test set
given by products whose RCA value for a firm fluctuates
around 1. Moreover, predicting that a firm can be com-
petitive in the export of a product on which its RCA value is
already close to 1 is less interesting with respect to a firm
genuinely becoming competitive. In order to check the
robustness of our findings, we repeated the forecast exercise
using different values of the threshold finding similar results.
As already said, to build the model we use a set of 20000
firms (training set) and to make the comparison with M
(2017) we use a separate set of 31826 firms (test set), in this
way the test is out of sample because during the construction
of the model no year between 2013 and 2017 is used and the
firms from which the model learns are not the ones on which
we make predictions.

When we work with countries, there are some differ-
ences, since the countries are only 169 we use all of them
both to train the model and to do the test. &e other dif-
ference is that with country-level data we use a stronger
definition of activation in order to align the results with the
ones published in [24]:

RCAcp(y)< 0.25∀y ∈ [1996, 2012]. (7)

&e main reason we chose to use two different defini-
tions of activations is that, while countries always export at
least one product in the years from 1996 to 2012, a firm may
have been created in a certain year and, before that year, it
does not appear in the export data.

2.6. Performance Indicators. In this section, we describe the
indicators which quantify the goodness of the forecast.
When evaluating a binary classification, the choice of the
performance indicator depends on both the research pur-
pose and the database structure [32, 33]. In our case, the
fraction of ones in theMmatrices of firms is only the 0.4% of
the total elements, the remaining being equal to zero. So, we
have to deal with a very high class imbalance and for this
reason we have to carefully choose our performance indi-
cators. For instance, if we would use indicators that involve
the true negatives like accuracy, they would get very high
values because even if we do not guess any true positive, the
number of true negatives will likely be huge. Here we make a
quick description of the indicators we use:

(i) Precision [32]: It is the number of true positives
divided by all the positives, respectively, how many
products we guess to be competitively exported by
firms after 5 years and how many products we
expected to be exported considering also the wrong
predictions.

(ii) P@K:&e precision@K corresponds to the fraction
of the top K positives that are correctly predicted
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or, in other words, the fraction of elements that the
model guesses if we ask it to tell us the K most
probable positives.

(iii) mP@K &e mean precision@K is computed con-
sidering only the first K predicted products sep-
arately for each firm, then we look at how much of
them are correct and finally we average on the
firms. By using mP@K, we quantify the correctness
of our possible recommendations of K products,
on average, for a firm. In this sense, mP@K is a
local measure of performance, while P@K con-
siders the whole matrix.

(iv) Recall [32]: It is the number of true positives di-
vided by the sum of true positives and false
negatives.

(v) F1 Score [34, 35]: Precision and recall vary by
changing the scores’ binarization threshold (the
value we use to define positives and negatives).
Usually the higher it is the precision, the lower it is
the recall and vice versa. F1 score is a harmonic
mean of these twometrics and its value is high only
if both of them are relatively high. We define as
best F1 score the F1 score computed by finding the
threshold that maximizes it.

(vi) ROC-AUC [36, 37]: It is computed by ranking all
the scores and computing for each possible
threshold the true positive rate (TPR) and the false
positive rate (FPR). In this way, we draw a curve in
the TPR/FPR plane and the ROC-AUC corre-
sponds to the area under this curve. It can be seen
as the probability that, if we randomly select a
positive and a negative element, the first will re-
ceive a higher score [38]. With highly imbalanced
data, due to the high number of true negatives, the
ROC-AUC tends to give too optimistic results
[39, 40]. For a random classifier, ROC-AUC� 0.5.

(vii) AUC-PR:&e area under the precision-recall curve
is the area under the curve that, in the plane de-
fined by precision and recall, is obtained by varying
the scores’ binarization threshold. Since true
negatives are not considered, its value is not misled
by the class imbalance [39].

(viii) MCC [41]: Matthews’ correlation is computed
using the scores’ binarization threshold that
maximizes the F1 score. It is a metric that considers
all the four classes of the confusion matrix and also
the class imbalance issue [42, 43].

Precision, recall, F1 score, and MCC require a threshold
to define if the value of the score should be associated with a
positive or negative prediction. In these cases, we chose the
threshold that maximizes the F1 score.

3. Results

3.1. Random Forest on Firms vs Product Space on Countries:
Worked Examples. In this section, we present data-driven
examples to compare the different forecasts on future exports

of the same Italian firms given by (i) a product space (PS)
approach built on country-level data and (ii) a random forest
(RF) trained on firm-level data. What we want to highlight is
not only that the RF hasmore predictive power than the PS, as
we will quantify better later, but also that the choice of the
data with which we build the model is fundamental.

&e first reason why a model that is trained on country-
level data produces worse forecasts on firms’ future exports
is that what is similar from the point of view of a country is
oftentimes not similar from the point of view of a firm too.
To clarify this point we take an example from the data: in
2012 a historic firm (firm A) that deals with jewelry, in
particular with corals, exported the products (Table 1).

&e RF trained on firm-level data correctly predicts that
this firm in 2017 will export the product with HS code 7113
that is Jewellery articles of precious metal or of metal clad with
precious metal. However, PS wrongly predicts the product
0307 that is Molluscs, whether in shell or not, live, fresh,
chilled, frozen. So, while the RF understood that firm A deals
with jewelry, the PS recommended molluscs. &e reason is
that the firm exports corals and in a country where there are
corals there are also molluscs. If you are a country and you
have the sea you will have both firms that treat corals to
export jewelry and firms that treat and export molluscs and
other seafood products, but if you are a single firm either you
treat jewelry or you treat seafood products. So, the PS found
a relation between corals and molluscs that is relevant only if
you are a country.

Another reason why the PS built on country data is not
suitable for forecasting future exports of firms lies in the
specialized nature of firms. A big difference between a
country and a firm is that the first tends to diversify and
export as many products as possible, while the second is
specialized in a category of products [44]. When one builds
the PS using country-level data one observes and counts the
co-occurrences between different products following the
nested pattern of the export data (see Figure 1(a)). In
particular, simple products are exported by almost all
countries and so the PS counts a large number of co-oc-
currences with the complex products. On the contrary,
complex products are exported by only those countries that
export most of the products, including the less sophisticated
ones. So, one can expect that, by using such a model, when
one tries to forecast the future exports of a firm specialized in
complex products one can wrongly predict that firm to
export random simple products.

In Figure 1 we show a real example to clarify this point.
On the left plot, we show the adjacency matrix of the

bipartite firm-product network. Companies are on the
vertical axis while products are on the horizontal axis. &e
ordering of rows and columns is given by the BRIM
community detection algorithm [45]. &e orange points
highlight the products that firms exported in 2012. &e
evident modular structure of the firm-product matrix re-
flects the specialized nature of firms. We selected as a target
firm an important company specialized in the design and
production of kitchens (firm B) that in the last 20 years
exported products for more than 500 million euros.&e firm
exported ten products in 2012, eight of which belong to the
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same block. According to the PS model built on country-
level data, themost related product, and so its best guess for a
future export of the target �rm, is newspapers, journals, and
periodicals (magenta arrow). �e un-relatedness of this
product with respect to the target �rm is self-evident.
Moreover, newspapers belong to a di�erent block than the
one on which the �rm is active, in particular, no products of
this block are exported by the �rm, and obviously, if we
check these predictions, in 2017 the �rm will not export
journals. When we ask the same question to a RF built on
�rm-level data, the output is electric water, space, and soils
heaters, which belongs to the same block where the target
�rm already exports 8 products. Moreover, in 2017 the �rm
will start exporting also electric heaters. It is evident that,
while the RF understood what category of products the �rm
deals with, the PS did not. �e fact is that, being built on
country-level data, the PS did not learn the specialized
nature of �rms; what it knows is that among the countries
there are many co-occurrences between newspapers and the
products of the target �rm, but this is only a consequence of

the fact that many countries export newspapers since it is a
simple product. We can see this from the right plot. On the
horizontal axis we report the products in decreasing order of
ubiquity (that is highly anti-correlated with the complexity)
and on the vertical axis we report the countries in increasing
order of diversi�cation. Newspapers in 2012 are exported by 30
countries; they are less sophisticated than electric heaters,
which are exported by 18 countries. We highlighted with blue
points one of the ten products exported in 2012 by the target
�rm, that is Furnaces and ovens; industrial or laboratory and it
is exported by 29 countries. Journals and ovens have 18 co-
occurrences, while electric heaters and ovens have only 10 co-
occurrences, so it is evident that PS built on these data learns
that ovens are more similar to journals than to electric heaters
because of the nested structure of the matrix.

3.2. Firm-Level Relatedness Outperforms. In the previous
section, we show that the modular structure of the �rms’
database allows for a better quanti�cation of relatedness

Table 1: Example of exported products by �rm A. Clearly, this �rm deals with jewelry and corals and in the last 20 years it exported these
products for about 10 million euros.

Code Description HS section
0508 Coral and similar materials 1
7103 Precious (excluding diamond) and semi-precious stone 14
7117 Imitation jewelry 14
9601 Ivory, tortoise-shell, horn, coral, and other animal carving material and articles 20

Products grouped by BRIM blocks

target firm

exports

C
om

pa
ni

es

0

0

1

1
0

0

8

Electric
Heaters
RF forecast

Newspaper
Jounals
PS forecast

(a)

Products Lower Ubiquity

C
ou

nt
rie

s

Higher
Diversification

Journals
ubi=30

Ovens
ubi=29

18 10

Electric
Heaters
ubi=19

(b)

Figure 1: Visual representation of the predictions given by product space built on countries and random forest built on �rms. (a) Matrix
representation of the �rm-product network. �e products are grouped in blocks detected by the BRIM community detection algorithm.
Under each block we report the number of products that belong to the exports of the target �rm, �rm B (selling large kitchens). �e random
forest prediction (electric heaters, green arrow) falls in the block in which the target �rm has 8 products; the magenta arrow points to the
most probable future export (newspapers) according to a product space model built on country-level data and falls in a block in which the
�rm has no products. (b) Country-product network.�e products are sorted in decreasing order of ubiquity while the countries are sorted in
increasing order of diversi�cation. We highlighted in blue a product exported by the target �rm—ovens. As expected, the product space
forecast for the target �rm is a more ubiquitous (simpler) product that is exported by many countries and so has many co-occurrences (18)
with the ovens. �e random forest forecast is a less ubiquitous (more complex) product and for this reason it has fewer co-occurrences (10)
with the ovens.
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with respect to the nested structure of the countries da-
tabase. Now we compare a RF trained on country-level
data with a RF built on firm-level data, and we compare
the performance of the two models on the prediction of
both the future exports of firms and the future exports of
countries. &e assumption is that a higher relatedness
implies, on average, a higher probability that the country
or firm will export the target product. While in the pre-
vious section we presented specific examples, here we
provide a general, quantitative evaluation of the model’s
predictions, always using PS as a benchmark.

In Figure 2(a) we show the performance of different
models when we try to predict the future exports of firms.
&e blue bars refer to a RF trained on country-level data,
the orange ones refer to a RF trained on firm-level data and
the green ones refer to a PS built on firm-level data. We
show different indicators to show the robustness of our
results; we rescaled their values to allow a visual com-
parison. As expected from the qualitative discussion of the
previous section, RF trained on firm-level data is by far the
best choice; in particular, the model trained on country-
level data is totally unsuitable to make predictions about the
future exports of firms. Figure 2(b), the performance refers
to a prediction of the future exports of countries and,
accordingly, now the PS is built on country-level data. &is
time the RF trained on country-level performs better and
the reason is that there are relationships between products
that are not present at the firm level, like the ones discussed
above: a model built on country-level data is trained using
observations like marine countries that export both corals
and molluscs, while a model built on firm-level data is
trained using samples that, if exporting corals, will never
export molluscs. So, the former will use the co-occurrences
between molluscs and corals while the latter will not learn
them, because at the firm level this relationship does not
exist. However, the difference between country-level and
firm-level RF is smaller with respect to the plot on the left.
Strikingly, the RF trained on firm-level data performs better
than the PS trained on country-level data even if we are
making predictions on countries. We can conclude that
machine learning models trained at the firm level are able to
extract a measure of relatedness that is relevant also at the
country level, and in particular, more relevant than the
information that the PS is able to extract even at the country
level. In conclusion, firm-level data provide a relatedness
measure that is objectively better than the one given by
country-level data.

3.3.ModelComparison. In this section we compare different
models to predict the exports of firms. In particular, we
compare RF with network models like PS and taxonomy
network (TN), and we will also show the results obtained by
using a quasi-trivial benchmark, RCA itself. Indeed, onemay
think to assume an autocorrelation model and consider as
prediction score the RCA value in year y � 2012 of a firm f

on a product p. &e resulting matrix S is the relatedness
between firms and products and it is treated exactly in the

way we show in Sections 2.5 and 2.6.&e higher the RCA, the
higher the likelihood that f will start to export p.

In Figure 3 we show a radar plot in which the perfor-
mance of the PS (green line) built on firms is used to
normalize the other scores.

Each of the vertices in the radar plot refers to a different
metric and the area of each polygon is a proxy of the total
performance of the corresponding model. &e brown and
purple lines refer to the PS and the RF built on country-level
data, respectively. &ey not only perform worse than all
models trained on firm-level data, but they underperform
the RCA predictions too (red line).&e orange line is the TN
built on firm-level data, which is slightly better than the PS.
&e RF built on firms vastly outperforms all the other
models.

In Table 2 we compare the results of the models using all
the performance metrics described in the Methods section.
All the models are trained on firm-level data. &e large
majority of the classified elements are true negatives because
of the high class imbalance of the problem; so metrics that
involve the true negatives like accuracy should be avoided
since they would give very high results only because it is very
easy to predict a true negative. For instance, the ROC-AUC
is very high for all the models except the RCA one and
provides misleading results.

3.4. Random Forest Optimization: Leveraging Modular
Structure and Hyperparameters. As we have shown in the
previous sections, the firm-product export matrix has a
modular structure. In this section we investigate if such a
structure can be exploited to improve the prediction per-
formance of machine learning; in particular, we perform a
community detection on the bipartite graph and we train
each RF by giving as input only the RCA values of the
products that belong to the same block of the target product.
Community detection is characterized by a number of
different algorithms [46], so it is natural to consider various
possibilities to build the partitions. Two natural block de-
compositions can be derived from the hierarchical structure
of the harmonized system classification: the 1233 4-digits
products can be organized in 21 sections or 96 chapters (the
latter corresponding to a 2-digit aggregation level). More-
over, using community detection algorithms we can find
other partitions; in this paper, we use BRIM [45],
BILOUVAIN [47], and IBN [48].

To which extent the performance of RF can be improved
by tuning its hyperparameters is still debated [49]. Here we
discuss the effect of changing two of these parameters in
assessing relatedness: max depth and min sample leaf. &e
default values are max depth�∞ and min sample leaf� 1
[30]. However, this choice can lead to overfitting, because
each decision tree is expanded up to a perfect classification of
the training sample.

In Figure 4, we compare the performance of different RF
models trained using the partitions given by different
community detection models and with different choices of
the two hyperparameters. In particular, we compare both the
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prediction performance (quanti�ed by the best F1 score) and
computational time on a standard desktop computer.

On the right plot, each point represents one RF model
with a max depth (circles) or min sample leaf (triangles)
optimization. Close to each point we report the partition
criteria that de�nes the blocks seen by the RFs: since we train
one model for each product, each product is predicted by
using the block it belongs to. Here 1-block means that we use
all available data (so all products see all products) and
BRIM2 means that we applied the BRIM algorithm twice.
On the horizontal axis, we report the training time and on
the vertical axis the best F1 score. �e color of the points
represents the number of blocks resulting by the corre-
sponding partition. On the left plot, we compare the range of
the prediction performance spanned by the di�erent RFs
with other prediction approaches: it is evident that all
variations of RF outperform the other models.

�e results of this analysis are:

(1) min sample leaf tuning brings to better predictions,
but max depth optimization speeds up the training
time;

(2) Prediction performance is higher when using a low
number of blocks (for instance, using BRIM with 8
blocks or no partition at all). We can deduce that the
RF is, in a sense, able to recognize the blocks on its
own. However, by using the BRIM blocks we can
reach the same prediction power in less time;
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Figure 2: Comparison using di�erent metrics between random forest built on �rms and built on countries when we predict future exports of
both �rms (a) and countries (b). �e orange bars refer to a random forest that has been trained on �rm-level data, the blue bar refers to a
random forest trained on country-level data, and the green bar refers to a product space built on �rms (a) or country (b) data. �e best
assessment of relatedness at the country and at �rm level is given by the relative random forest. However, the relatedness computed at the
�rm level performs better than the product space also at the country level.
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Figure 3: Model comparison in assessing �rms’ relatedness. Each
vertex refers to a performance indicator normalized with respect to
a product space built on �rms. Models built on countries perform
worse than the RCA benchmark. Taxonomy network performs
better than the product space. �e random forest trained on �rms
results to be the best model overall.
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(3) �e more blocks we de�ne with the community
detection models, the more the RF is trained quickly;
however, the performance tends to decrease;

(4) �e 2-digit aggregation represents a bad de�nition of
relatedness, since the RF trained with these blocks is
the one that performs worse; for instance, IBN de-
�nes almost the same number of blocks and requires
about the same computational time, but performs
signi�cantly better.

(5) Also the 21 HS sections do not represent a good
de�nition of relatedness. �is can be seen by com-
paring the performance with using BRIM2, which
provides the same performance with more blocks
(42) and so less computational time;

(6) Even if we consider the worst model, that is the 2-
digit blocks and the optimization on max depth, the
best F1 score is signi�cantly better than the one of the
network models.

Now we motivate these results by investigating how
these choices in¢uence the training of the RF.

Result 1: max depth speeds up the training time because
it represents a more drastic constraint than min sample leaf.
Indeed, the average depth of a tree without any constraint is
about 60, while the optimal value of max depth we �nd is
usually less than 10 (it is 15 only if we do not use blocks), and
shallower trees are trained faster. On the other hand, min
sample leaf is a less drastic cut: what changes is at the level of
the leaf nodes, so it is targeted to the removal only of the
splits that bring to over�tting, and for this reason the
performance is better. We can imagine that we have a real
tree with some sick leaves and we have to remove the sick
leaves knowing that the probability to have a sick leaf is
proportional to the length of the branch. What we can do is
either cut all the branches longer than a certain threshold or
remove the sick leaves one by one. �e �rst option corre-
sponds to a max depth tuning, it is faster, but it reduces the
quality of the tree. �e second option corresponds to a min
sample leaf tuning, it requires more time, but the quality of
the resulting tree is better.

Results 2 and 3: since the RF is able to recognize the
blocks on its own, if we provide a good partition of the
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Figure 4: Performance of the random forest by varying the hyperparameters and the partitions that de�ne the feature vector given as an
input for each product. �e results are optimized by tuning of max depth (circles) ormin sample leaf (triangles). We also write the adopted
partition and the color of the points represent the resulting number of blocks. On the horizontal axis, we report training time and on the
vertical axis a performance indicator. Usingmore data (larger blocks for each product) provides better performance but takes longer time for
training; smaller blocks lead to faster but less precise results. In any case, as evinced by the zoom given by the red lines on the plot on the left,
random forest always outperforms the other models.

Table 2: Prediction performance of �rm-basedmodels. Our problem is characterized by a huge number of true negatives, and this precludes
the use of metrics such as accuracy and ROC-AUC. In any case, the random forest outperforms all other models.

RCA Random forest Product space Taxonomy network
Best F1 0.050 0.166 0.110 0.126
AUC-PR 0.006 0.083 0.046 0.056
ROC-AUC 0.519 0.936 0.919 0.928
Precision@1000 0.156 0.399 0.207 0.265
mP@5 0.047 0.264 0.237 0.235
MCC 0.052 0.169 0.113 0.130
TP 2703 15584 11482 12706
FP 33387 100292 126310 116773
FN 69037 56156 60258 59034
TN 38952640 38885735 38859717 38869254
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products what we can obtain is, at most, that we do not
decrease its predictive power; however, if the selected par-
tition contains too many blocks, we reduce the information
the RF can learn, since each model has fewer products to see,
and in this way we have a decrease in performance. However,
with a higher number of blocks the training is faster for two
reasons: the first is that the input has less features and the
second is that, without a lot of products that have nothing to
do with what we want to predict, the decision trees need less
cuts and a lower depth.

Results 4 and 5: let us consider the jewelry firm we
discussed in Section 3.1. As we can see from Table 1, its
products are spread into different HS sections and chapters.
So, the HS does not provide good partitions for relatedness
analyses at the firm level.

Result 6: this result has practical consequences. If one
wants to speed up the training of the algorithm through the
use of (possibly good) partitions and a max depth optimi-
zation, in any case, the RF will outperform all network
models. Note, however, that realistic applications do not
usually require real-time investigations.

4. Conclusions

&e concept of relatedness, or coherence, is usually applied
to quantify the closeness between an economic actor such as
a country or a firm and an activity such as competitively
exporting a given product. &e possible practical applica-
tions of relatedness assessments are widespread; for instance,
policymakers and institutions may want to quantify how
much a developing country is far from entering into a given
market (given its present export diversification) before
deciding on an investment strategy, or if a new product is
feasible given the present export basket of a firm. In both the
mainstream and in the economic complexity literature,
relatedness is measured in two steps. First of all, one builds a
network of economic activities, typically products, in which
the weights of the links are given by the so-called co-oc-
currences: the more countries export both products, the
more the two will be similar. Different ways of building such
networks coexist in the literature.&e second step consists in
computing the relatedness as the average similarity between
the exports of a given country and the target product. In this
article, we discuss and investigate two radical improvements:
the use of supervised machine learning and firm-level, in-
stead of country-level, data. In order to quantitatively
compare the resulting different measures of relatedness, we
test them against a forecast task, the assumption being that,
on average, an economic actor will likely diversify in
products that are relativelymore related to. Bymeans of both
specific examples and general statistical assessments, we are
able to show that: (i) machine learning, and in particular
random forest, outperforms network-based methods re-
gardless of the data typology; (ii) firm-level data provide a
better assessment of relatedness, in the sense that while a
model built on country-level data is totally unsuitable to
predict future exports of firms, a model built on firm-level
data is still able to accurately predict future exports of
countries. &is is due to the relative specialization of firms

that accurately tracks the similarity between products. On
the contrary, successful countries are highly diversified,
providing misleading co-occurrences; (iii) community de-
tection algorithms provide partitions in the subsets of
products which reduce the computational effort needed to
train the algorithms, and (iv) regardless of the method used
to build the relatedness measure, the optimal strategy is to
train the forecast model using data of the same typology one
wants to predict (in particular, firm-level data to build re-
latedness measures to be used at the firm level).

In summary, in order to compute the feasibility of a
product for a firm, one should use machine learning algo-
rithms trained on firm-level data, since the widespread use of
co-occurrences computed at the country level leads to poor
assessments of the relatedness.

&ese results open up a number of consequent inves-
tigations. First, the very same exercise should be replicated
with different kinds of human activities, for instance, pat-
ents. Indeed, the relatedness between technological sectors is
usually measured by counting country-level co-occurrences,
and this assessment very likely suffers from the same issues
which we have exposed, and solved, here. Second, related-
ness enters in a number of derived quantities which are used
to characterize the diversification strategies of countries,
firms, and regions. &e robustness of these quantities should
be checked in light of the findings hereby reported. Finally,
the validation strategy we propose to quantitatively compare
the different relatedness measures—a rigorous out-of-
sample forecast exercise—could be applied, more in general,
to the various concepts used in economic complexity, in
order to scientifically validate or falsify the different ap-
proaches, an issue of general relevance in the physics of
complex systems.
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