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Compliant mechanisms with fexure hinges have been widely applied for positioners, bioengineering, and aerospace. In this study,
a new optimized design method for the mobile microrobotic platform was developed for the polishing robot system. A met-
aheuristic-based machine learning technique in combination with fnite element analysis (FEA) was developed. Te designed
platform allows three degrees of freedom with two x-and-y translations and one z-axis rotation. A new hybrid displacement
amplifcation mechanism was also developed using Scott-Russell and two-lever mechanisms to magnify the workspace of the
platform. Te leaf hinges were employed due to their large rotation, and the right circular hinges were adopted because of their
high accuracy. In modeling the behaviors of the developed platform, the artifcial neural network is formulated in combination
with the teaching-learning-based optimization (TLBO) method. Te ANN architecture was optimized through TLBO to a better
approximation. And then, three optimized case studies were conducted by the TLBO. Te data is collected through FEA
simulation. Te modeling results from the TLBO-based ANN were well established with excellent metrics of R, R2, and MSE. Te
optimized results found that the proposed MPM platform achieves a max-y stroke of 1568.1 μm, max-x stroke of 735.55 μm, and
max-θ rotation angle of 2.26 degrees. Te proposed MPM platform can operate at a high displacement amplifcation ratio of
over 9.

1. Introduction

Compliant mechanisms play a vital role in ultrahigh pre-
cision engineering, such as stable switch [1, 2], vibration-
assisted cutting [3], manipulations/microgrippers [4], fast
servo in precision machining, energy harvester [5], align-
ment of optics [6], robotics [7], and so on. Compared with
rigid-link counterparts, compliant mechanisms can propose
a high resolution with precise smooth motion due to the
excellent advantages such as without backlash, no friction,

reduced assembly, cheap manufacture, and monolithic
structure.

Currently, many planar compliant mechanisms from
one degree of freedom (DOF) to three-DOF motions have
been developed by using series architecture, parallel chain,
or hybrid series-parallel type. Te one DOF mechanisms
often have a high accuracy with a minimal parasitic motion,
but these mechanisms have still limited in some applications,
e.g., positioners [8]. Ten, two DOF mechanisms have been
designed to propose more complicated applications, i.e.,
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scanner [9]. Te two DOF mechanisms possess a decoupled
property. Although one or two DOF mechanisms can
achieve a wide stroke, simple control, and high accuracy but
their applications are still limited. Terefore, three DOF
mechanisms have been developed as alternatives for many
planar applications as a positioner, manipulation, and so
forth [10]. However, the workspace of two translations and
one rotation of the existing three DOF mechanisms are still
small. To overcome such drawbacks, a kinematic structure
with better properties is needed to provide a high load
capacity, large stroke, high safety factor, and high stifness.
Hence, three DOF mechanisms have attracted much at-
tention and become a hot topic for researchers.

Generally speaking, complaint mechanisms, which are
acted by piezoelectrical actuators (PZT), have limited
workspace. To overcome this drawback, many displacement
amplifcation mechanisms were proposed to amplify the
stroke of PZTs, such as Scott–Russell mechanism, lever and
bridge types [11]. In addition, a lot of other researchers have
also designed many diferent types of three-DOF compliant
positioning platforms with desired characteristics. A
micropositioning stage with 3-DOF was designed [12]. In
this study, the compliance matrix and fnite element method
were utilized to build the stifness and the input coupling
ratio of the stage. Besides, the parameters of the stage were
optimized to minimize the input coupling ratio. A 3-DOF
spatial precision manipulation was designed and analyzed
[13]. Te translational and angular displacements were
analyzed in this article. Besides, a 3-DOF translational
mechanism was proposed, and it was analyzed via the
pseudo-rigid-body model (PRB) method [14]. By using the
PRB technique, another 3-DOF mechanism with two
translations and one rotation was designed and analyzed
[15]. Tis type for nanopositioning application was analyzed
by a compliance matrix [16].

Although the discussed 3-DOF stages have been
designed with multiple excellent characteristics, but the
structure is still complicated. Moreover, the workspaces are
still limited. Considering an application of 3-DOF compliant
mechanisms in the robots, a planar micropositioning plat-
form was designed, and the manufacturing error was ana-
lyzed [17]. Almost the behavior analysis of the previous
stages employed some popular analytical techniques, such as
PRB and compliance matrix. With high nonlinear charac-
teristic behavior, modeling of them has a large error. Tis
causes a large manufacturing error, decreasing the practical
positioning ability. To overcome this obstacle, a new ap-
proach based on machine-learning-based methods and
metaheuristics is devoted in the present article. Te artifcial
neural network (ANN) is combined with the teaching-
learning-based optimization algorithm (TLBO) in modeling
the behaviors of a new XYθmobile positioning microrobotic
platform.Te developedmicrorobotic platform can basically
be applied for vibration-based polishing robot applications.

Motivated by the gaps between the existing studies, this
paper presents an optimized design method for a three-DOF
mobile microrobotic platform for use in polishing robot
application.Te developed platform is able to provide a large
workspace in the x-and-y translations and rotation around

the z-axis. In modeling the behaviors of the proposed
microrobotic platform, artifcial neural network is adopted
to resolve the stroke and safety factor. To overcome the ANN
limitations, the TLBO algorithm was extended to optimize
the ANN approximate accuracy. Ten, the geometrical
factors of the proposed microrobotic platform were opti-
mized by adopting the TLBO algorithm. Finally, three case
studies are considered to confrm the accuracy and efec-
tiveness of the proposed methodology.

2. ConceptualDesignofXYθMobilePositioning
Microrobotic Platform

A basic application of the XYθ mobile positioning micro-
robotic (MPM) platform is used for manipulations and
precise sample positioning from sub-micrometer to hun-
dreds of micrometer scales. Figure 1 illustrates a design
scheme of the MPM platform. Te proposed MPM platform
utilizes three piezoelectric stack actuators (PZT) to actuate
an input displacement to three corresponding robotic legs
(robotic leg #1, robotic leg #2, and robotic leg #3).

By arranging three robotic legs around a circle with 120
degrees and three PZTs located in a tripedalism, so-called
tripedal topology, the MPM platform can generate a loco-
motion in three DOF on a planar surface. It means that the
platform includes three main motions, such as two trans-
lations along the x-and-y axes and one rotation (θz) around
the z-axis.

Overall, the MPM platform was manufactured with a
monolithic fexure-basedmechanism.Te fabrication will be
carried out via wire electrical discharged machining
(WEDM). Each robotic leg was also a fexure structure that
consists of a hybrid displacement amplifcation mechanism
(HDAM) in combination with a leaf hinge. Te robotic leg
#1 was defned in a local coordinate of O1X1Y1. Te robotic
leg #2 and the robotic leg #3 were defned in a local coor-
dinate of O2X2Y2 and O3X3Y3, respectively. More details of
the HDAM are presented in next section. Under actuating
the three PZTs simultaneously, the mobile platform of the
microrobot makes two translations δx1 and δy1, and a ro-
tation θ1.

Technical requirements and specifcations of the MPM
platform in the design phase are expected to achieve large
strokes in the translations over 1000 (μm) or higher than
1mm and a wide rotation. Furthermore, a high safety factor
of over 1.8 is required. Te mentioned importantly technical
specifcations of the MPM platform can fulfl the practical
applications. In addition, Al 7075-T651 is chosen to man-
ufacture the microrobotic platform. Te properties of Al
7075-T651 are listed, including a density of 2810 kg/m3,
Poisson ratio of 0.33, yield stress of 503MPa, and Young’s
modulus of 71.7GPa.

Figure 2 illustrates the assembly scheme of XYθ mobile
positioning microrobotic platform.

As shown in Figure 2, it includes the following key
components:

(1) Preload crew,
(2) PZT mounting plate,
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(3) PZT actuator,
(4) Intermediate plate,
(5) Prototype,
(6) Anti-vibration fxing plate,
(7) Fixed hole.

As depicted in Figure 2, the prototype of the proposed
microrobotic platform was mounted on the intermediate
plate. Te PZTs were fxed on the PZTmounting plate, and
the preload screw was employed to adjust the PZT in contact
with the input port of the platform. Finally, the whole of the
system was put on the anti-vibration table.

A basic application of the proposed MPM platform is
able to be employed for polishing robot system, as given in
Figure 3. Te proposed platform is mounted on the station.
Te polished sample is located on the mobile platform
through fxing screws while the end-efector of the robotic
arm brings the polishing tool.

When three PZTs act, the platform causes a micro-vi-
bration for the sample. Te micro-vibration is aimed to
reduce the friction between the sample and the polishing
tool. Tis leads to improvement of the surface roughness of
the fnal workpiece. Tis machining process is considered as
a vibration-assisted polishing process.

Te dimensional scheme of the proposedMPM platform
is provided in Figure 4, and the main dimensions are given

in Table 1. Te thickness of the platform in the out plane (z-
axis) is 8mm.

2.1. Analysis of Hybrid Displacement Amplifcation Module.
Figure 5 provides a new hybrid displacement amplifer. Te
suggested HDAM is built by a combination of Scott–Russell
mechanism (SRM) amplifer with a two-lever displacement
(TLD) amplifer.Te hybrid amplifer is moved based on the
deformation of right circular hinges. In the beginning, an
input displacement of 135 μm along the x-axis is acted to the
SRM amplifer, and this displacement amplifer is rotated
around the fulcrum (1) and then, the output motion of the
SRM is transformed to the input port of the TLD amplifer,
and this mechanism is rotated about the fulcrum (2) the
output displacement is collected along the y-axis. Finally, the
output motion of the proposed HDMA is kept to transfer to
the leaf hinge (see Figure 1) so that the MPM platform is
moved.

To illustrate the amplifcation ratio of the proposed
HDMA, the proposed HDMA is meshed and simulated
by fnite element analysis (FEA) ANSYS 2019R1 software.
Te number of nodes and elements are about 29047 and
16867, respectively. Te quality of the mesh is measured
by the Skewness technique with an average value of
0.44906. Te results of the HDMA are provided in
Table 2.

Robotic leg #1

Robotic leg #3

Robotic leg #2

Robotic leg #2

Robotic leg #3

Robotic leg #1

Input displacement (PZT)

Input displacement (PZT)

Input displacement
(PZT)

Fulcrum 2

Fulcrum 1

Fixed holes

Fixed holes

Platform

Two-lever
displacement

amplifier

Scott-Russell
displacement amplifier

Output
displacement

Y1

X1

Y1

δy1

δx1

θ1

O1 X1

Right circular
hings

Right circular
hings

Leaf hinge

Base

Figure 1: Design scheme of XYθ mobile positioning microrobotic platform.
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Te results of Table 2 indicates that the amplifcation
ratio of the proposed hybrid amplifer is about 12.43 with a
high safety factor (SF) over 1.4 when the input displacement
is from 90 μm to 145 μm. Besides, the stress is still lower than
the yield stress of the material (503MPa).

2.2. Initial Evaluation of Static and Dynamic Behavior of
Microrobotic Platform. In order to evaluate the initial
specifcations of the proposed MPM platform, the static and
dynamic behaviors are simulated by ANSYS software. Te
three PZTs are employed simultaneously with 135 μm, and
the output stroke/displacement of the robotic leg #1 is
measured. Figure 6(a) shows the boundary conditions for
simulating the platform. Te number of nodes is 71202, and
the number of elements is 41045. Skewness average value is
about 0.4877, as given in Figure 6(b).

Figure 7 depicts the stress concentration. It is found that
the high stress appeared on the surfaces of leaf hinges and
right circular hinge.

Te deformation of the MPM platform is provided in
Figure 8.

Te initial evaluation showed that the amplifcation ratio
of the proposed MPM platform is about 9.85, with a high
safety factor (SF) over 1.7 when the input displacement is
from 90 μm to 145 μm. Besides, the stress is still smaller than
the yield stress of material (503MPa), as depicted in Table 3.

Te dynamic behavior is achieved by FEA simulations.
Te four natural frequencies for the frst mode shapes in-
clude 102.036Hz, 113.81Hz, 113.9Hz, and 154.84Hz, re-
spectively, as provided in Table 4. Considering a resonance
of the proposed MPM platform with the PZTs and others,
the frst mode shape is a z-axis translation.Te second mode
shape is the x-axis translation.Te third mode shape is the z-
axis translation. Finally, the fourth mode shape is the z-axis
rotation.

2.3. Formulation of Optimization Problems. Te character-
istics of the proposed MPM platform are desirable to gain
the two main design targets, including a large stroke (δy1)
and a high safety factor.

When the stroke is enhanced, the rotation of the plat-
form (θ1) is also improved. A good SF over 1.8 can ensure a
long working time. Based on the initial evaluations in the
previous parts, it determined that the performances of the
proposedMPM platform are strongly afected by varying the
thickness values of right circular hinges (A, B, C, D) and the
thickness of the leaf hinges (E).

Tree optimization problems of the proposed MPM
platform are considered as follows.

Case #1.: maximize the stroke
Find design variables: X � [A, B, C, D, E]

7

6

5

4

3

2

1

Figure 2: Assembly scheme of XYθmobile positioning microrobotic platform: (1) preload crew, (2) PZTmounting plate, (3) PZTactuator,
(4) intermediate plate, (5) prototype, (6) anti-vibration fxing plate, (7) fxed hole.
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Maximize :f1(X). (1)

Bounds of design variables (unit: mm):

0.8≤A≤ 0.9

0.7≤B≤ 0.8

0.6≤C≤ 0.7

0.55≤D≤ 0.6

45≤E≤ 50

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

Case #2.: maximize the safety factor
Find design variables: X � [A, B, C, D, E]

Maximize :f2(X). (3)

Bounds of design variables (unit: mm):

0.8≤A≤ 0.9

0.7≤B≤ 0.8

0.6≤C≤ 0.7

0.55≤D≤ 0.6

45≤E≤ 50

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

Case #3.: maximize the stroke and the safety factor
simultaneously (multi-objective optimization problem)
Find design variables: x � [A, B, C, D, E]

Maximize :f1(X)

Maximize :f2(X)
. (5)

Bounds of design variables (unit: mm):

0.8≤A≤ 0.9

0.7≤B≤ 0.8

0.6≤C≤ 0.7

0.55≤D≤ 0.6

45≤E≤ 50

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

where X is a vector of design variables. Parameters A, B,
C, and D are the thickness of right circular hinges.
Parameter E is the thickness of leaf hinges. Te stroke
and safety factor are represented as f1(X) and f2(X),
respectively.

3. Proposed Modeling and
Optimization Method

As designed in Figure 1, the proposed MPM platform is a
monolithic architecture with three robotic legs. Te trans-
lations and rotationmotions of the platform are totally based
on the elastic motions of the leaf hinges and right circular
hinges.

Because the MPM platform is built using the concept of
fexure-based mechanism, so-called compliant mechanism,

Robotic arm

Microrobotic platform

Station

End-effector

Sample

Figure 3: Application of microrobotic platform for polishing.
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it inherits many excellent properties such as low weight,
reduced assemble, simple fabrication, and without kine-
matic joints in comparison with rigid-link counterparts.
Nevertheless, mathematical equations in modeling of the
static behaviors of the MPM platform is difcult to exactly
formulate because it has not kinematic joints. Terefore,
the leaf hinges and right circular hinges are treated as
virtual joints.

As a result, a modeling method based on ANN is chosen
in approximating the stroke and the safety factor. In order to
enhance the prediction ability of the ANN, the TLBO al-
gorithm is employed. And then, the TLBO is extended to
handle the three optimization cases of the MPM platform.
Te fowchart of the proposed modeling and optimization
techniques is provided in Figure 9.

3.1. Simulation Technique for Microrobotic Platform. In or-
der to collect the data of the performances of the MPM
platform, the FEA implements are carried out, as seen in
Figure 10. With fve design variables, twenty-seven exper-
imental samples are made.

(i) Build 3D model of the proposed MMP platform.
(ii) Design variables (A, B, C, D, and E) and output

performances (stroke and safety factor) are
parameterized.

(iii) Defne properties of material Al 7075-T651.
(iv) Determine boundary conditions and a load/input

displacement from PZT.
(v) Simulate the MPM platform by fnite element

method (FEM).
(vi) Collect the data.
(vii) If the data sets are not satisfed, it will return to

adjust the range of variables.

3.2.ANNOptimization byTLBO. In this study, feedforward-
learning ANN technique is selected to formulate the
modeling of stroke and safety factor for the proposed MPM
platform. Basically, ANN is operated based on human brain

Figure 4: Mechanical scheme of proposed XYθ monolithic mechanism: (a) XYθ stage, (b) parameters.

Table 1: Dimensions of theXYθmicrorobotic platform (unit: mm).

Par. Value Par. Value Par. Value Unit
a 97 f 86 A 0.8≤A≤ 0.9 mm
b 43 g 40 B 0.7≤B≤ 0.8 mm
c 86 h 54 C 0.6≤C≤ 0.7 mm
d 30 m 60 D 0.55≤D≤ 0.6 mm
e 52 n 32 E 45≤E≤ 50 mm
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[18]. In the reasoning of ANN, the geometrical parameters
and output responses of the MPM platform are embedded
into the programming. An ANN programming includes
three main signals such as input, hidden, and output layer.
To efectively operate, the learning rate, momentum rate,
bias, minimum error, and activation function should be
appropriately defned. Operation of the ANN can gain a high
efectiveness when it can ensure a minimal training error.
Tis can be well done when the weight and bias are rea-
sonably updated.

Although the ANN can build nonlinear behavior
modeling but the accuracy is still strongly dependent on its
controllable factors. To solve this limitation, the TLBO [19]
is applied to optimize the ANN architecture. One of themost

problems is how to defne exactly the number of hidden
nodes in hidden layer. Te following equation is utilized to
resolve this problem.

Number of hidden nodes � (2∗ inputs) + outputs. (7)

With fve design variables corresponding to one output
performance, the hidden layer is 11 nodes. An optimization
of ANN by TLBO is provided in Figure 11.

In the optimization problem, the objective function is
mean square error (MSE) which is defned as below:

MSE �
1
k
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Figure 5: Proposed hybrid displacement amplifer: (a) 3D, (b) 2D, (c) meshing, (d) mesh quality.

Table 2: Results of amplifcation ratio of proposed HDMA.

Input (μm) Output (μm) Amplifcation ratio (μm/μm) Stress (MPa) Safety factor
90 1118.9 12.43 217.09 2.31
105 1305.4 12.43 253.27 1.98
125 1554.1 12.43 301.52 1.66
135 1678.4 12.43 325.64 1.54
145 1802.7 12.43 349.76 1.43
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Figure 6: Simulation of the microrobotic platform: (a) boundary conditions, (b) mesh quality.

High stress 

High stress 

A: Static Structural
Equivalent Stress
Type: Equivalent (von-Mises) Stress
Unit: MPa
Time: 1
8/7/2022 9:58 PM

271.63 Max
241.45
211.27
181.09
150.91
120.73
90.55
60.37
30.19
0.010028 Min

Figure 7: Stress concentration.
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where, t is the measured target and t is the predicted target,
and k is the dimension of inputs, so-called the number of
data points.

Additionally, the coefcient of determination (R2) is
computed to estimate the regression model:

R2
�


k
i�1 ti − t(  ti − t( 

����������������������


k
i�1 ti − t( 

2


k
i�1 ti − t( 

2
 , (9)

where t is the actual target, t is the predicted target, and t is
the average target.

3.3. Optimization of Microrobotic Platform by TLBOMethod.
According to the TLBO algorithm, a good teacher can train a
better learner.Te task of teachers in a classroom is critically
important [19]. Te leaner is a population where a vector of
design is a course vector. Te two main strategies of the
TLBO include teaching and learning.

3.3.1. Teaching Strategy. Te teacher strategy proposes some
key ideals as follows.

(i) Search the teacher with best solution from the
population.

(ii) Determine the mean results of learners (Mj,i) with
respect to a specifc subject.

(iii) Te teacher’s ability afects the quality of students by
following equation.

Dmj,k,i � rj,i Xj,kbest,i − TFMj,i . (10)

where, Dmj,k,i is the increased mean value. Xj,kbest,i is the best
learner (i.e., teacher) in jth subject.TF is the teaching factor. rj,i
is a random value in [0, 1].Te TF value is either 1 or 2.Te TF
value is randomly determined by the following formula:

TF � round[1 + rand(0, 1) 2 − 1{ }]. (11)

After that, the existing solution is updated by the fol-
lowing equation in the teacher strategy.

Xj,k,i
′ � Xj,k,i + Dmj,k,i, (12)

where, Xj,k,i
′ is the updated value of Xj,k,i. If the results of this

phase are satisfed, and then, they are considered as inputs
for the learner strategy.

3.3.2. Learning Strategy. Te learners can study somethings
from other students in a classroom. At any iteration i, a
learner is compared with the other learners. Specifcally, U
and V are two learners which are compared together
(XU,i
′ ≠XV,i
′ ) by following formula.

Xj,U,i
″ � Xj,U,i

′ + rj,i Xj,U,i
′ − Xj,V,i

′ , if f XU,i
′ <f X

’
V,i 

Xj,U,i
″ � Xj,U,i

′ + rj,i Xj,V,i
′ − Xj,U,i

′ , if f XV,i
′ <f XU,i

′ 
.

⎧⎪⎨

⎪⎩
(13)

Xj,U,i
″ is accepted when the value of objective function is

better. Flowchart of the TLBO method is given in Figure 12.

4. Results and Discussion

In this part, modeling behaviors of the MPM platform is
provided. Besides, the optimization problems of the pro-
posed platform are performed. Te optimized results are
validated.

Max deformation

A: Static Structural
Total Deformation
Type: Total Deformation
Unit: μm
Time: 1
8/7/2022 10:06 PM

1488.7 Max
1323.3
1157.9
992.5
827.08
661.66
496.25
330.83
165.42
0 Min

Figure 8: Deformation simulation.

Table 3: Results of static behavior.

Input (μm) Output (μm) Amplifcation ratio Stress (MPa) Safety factor
90 886.59 9.85 181.09 2.77
105 1034.4 9.85 211.27 2.38
125 1231.4 9.85 251.51 1.99
135 1329.9 9.85 271.63 1.85
145 1428.4 9.85 291.75 1.72
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Table 4: Results of dynamic behavior with input displacement of 135 μm.

No. Mode shape Natural frequency
(Hz)

(1) z-axis
translation

B: Model
Total Deformation 1
Type: Total Deformation
Frequency: 102.36 Hz
Unit: mm
8/7/2022 10:13 PM

0.003909 Max
0.0034747
0.0030403
0.002606
0.0024717
0.0017373
0.001303
0.00086867
0.00043433
0 Min

102.36

(2) x-axis
translation

B: Model
Total Deformation 2
Type: Total Deformation
Frequency: 113.81 Hz
Unit: mm
8/7/2022 10:14 PM

0.0.0042927 Max
0.0038157
0.0033388
0.0028618
0.0023848
0.0019079
0.0014309
0.00095394
0.00047697
0 Min

113.81

(3) z-axis
translation

B: Model
Total Deformation 3
Type: Total Deformation
Frequency: 133.9 Hz
Unit: mm
8/7/2022 10:15PM

0.0.0037589 Max
0.0033412
0.0029236
0.0025059
0.0020883
0.0016706
0.001253
0.00083531
0.00041765
0 Min

113.9
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4.1. Setup of Simulations andDataCollection. From Figure 5,
the boundary conditions are seen.Tree input displacements
from three PZTs are acted simultaneously. Te stroke (δy1)
along the y-axis is measured. Besides, the safety factor is
calculated. AL 7075-T651 is employed for the platform. Te
results of 27 experiments are given in Table 5.

4.2. Parametric Evaluation. To assess the associations of the
geometrical parameters to the behaviors of the proposed
MPM platform, analysis of variance (ANOVA) is adopted to
solve this issue. Te ANOVA results of stroke are given in
Table 6. Moreover, the sensitive plot of whole inputs to the
stroke is illustrated in Figure 13. Te results indicated that

Table 4: Continued.

No. Mode shape Natural frequency
(Hz)

(4) z-axis rotation

B: Model
Total Deformation 4
Type: Total Deformation
Frequency: 154.87 Hz
Unit: mm
8/7/2022 10:15PM

0.0.0054344 Max
0.0048306
0.0042268
0.003623
0.0030191
0.0024153
0.0018115
0.0012077
0.00060383
0 Min

154.84

Stage 2:
Modeling

Start 

Create FEM model for microrobotic platform

Parameterize design variables and objectives

Finite element analysis

Measure output responses

Datasets put into ANN code

Optimize ANN by TLBO

Optimization for single
function by TLBO

Define design variables, objective functions

Stage 1:
Simulations

Predict the optimal solutions

Stage 3:
Optimization

Optimization for multiple
functions by TLBO

Prototype: Mobile microrobotic platform 

Figure 9: Flowchart of modeling and optimizing method for microrobotic platform.
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the contributions of the parameters are listed as follows: C
(37.65%), D (12.47%), E (7.20%), B (0.61%), and A (0.47%).

As shown in Table 7, the contributions of the input
parameters on the safety factor are ordered as follows. Te
highest contribution is C (29.35%), A (5.78%), E (1.43%), B
(1.98%), and D (0.06%), as provided in Figure 14.

4.3. Modeling Behaviors of Microrobotic Platform by ANN-
BasedTLBO. Modeling behaviors of the MPM platform is
carried out through the ANN. To improve the efec-
tiveness of the ANN technique, the TLBO is embedded
into the ANN programming. Firstly, the collected data in
Table 5 comprised of training, testing, and validating. Te

Start 

Create 3D mechanical model of microrobotic platform

Define design variables and objectives

Determine materials, boundaries and loads

Collect data

Layout number of experiments

Parameterize design variables, objectives

Are
performances

satisfied?

No

Yes

End 

Figure 10: Proposed simulation scheme for microrobotic platform.

Start

Data: training, testing, and validating

ANN: inputs, hidden layer, outputs

TLBO parameters: population, termination criterion

Generate teacher and learner phases

Evaluate cost function

Compare and select global best solution

Best ANN architecture: suitable weight and bias

Is termination
criterion
satisfied ?

End

yes

no

Calculate mean of population

Input Hidden layer Output

w1j
w2j

wnj

x1

x2

xn

y

ANN architecture

Figure 11: Scheme of optimization of ANN by TLBO.
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optimized ANN architecture can fnd the best weights
and biases. Te modeling accuracy of the optimized ANN
is assessed by metric computation of the MSE and R2.

Furthermore, the correlation coefcients (R) are also
computed. Te modeling results of the stroke and safety

factor achieved very well with high R values, as plotted in
Figures 15 and 16(a), respectively. Te best performance,
the prediction error, and the diference among the pre-
diction and numerical values are provided, as seen in
Figures 15, 16(c), and 16(d), respectively.

Begin 

Initialize population (students) and termination criterion 

Compute mean of each design variable and best solution (teacher)

Previous solution being preserved

Is new solution greater
than existing one?

Accept as Xnew

Previous solution being preservedAccept as Xnew

Modify solution replied on best solution
Xnew = Xi + rand * ( Xteacher – (TFXmean))

Xnew = Xi + rand * ( Xi – Xii) Xnew = Xi + rand * ( Xii – Xi)

Choose randomly any a solution Xii

Is Xi better than Xii?

Is new solution greater
than existing one?

Is termination criterion
satisfied?

Achieve best solution

End 

no yes 

no yes 

no yes 

no 

yes 

Figure 12: Flowchart of teaching-learning-based optimization method.
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Table 5: Numerical results for the MPM platform.

No. A (mm) B (mm) C (mm) D (mm) E (mm) Stroke (μm) Safety factor
1 0.85 0.75 0.65 0.6 50 1274.459 1.795
2 0.8 0.75 0.65 0.6 50 1271.977 2.216
3 0.9 0.75 0.65 0.6 50 1247.641 1.819
4 0.85 0.7 0.65 0.6 50 1270.549 2.003
5 0.85 0.8 0.65 0.6 50 1291.601 1.900
6 0.85 0.75 0.6 0.6 50 1316.365 1.747
7 0.85 0.75 0.7 0.6 50 1144.243 2.017
8 0.85 0.75 0.65 0.55 50 1355.784 1.905
9 0.85 0.75 0.65 0.65 50 1219.778 1.951
10 0.85 0.75 0.65 0.6 45 1292.106 1.945
11 0.85 0.75 0.65 0.6 55 1114.789 1.915
12 0.83 0.73 0.63 0.58 51.41 1285.452 1.896
13 0.86 0.73 0.63 0.58 48.58 1339.131 1.989
14 0.83 0.76 0.63 0.58 48.58 1350.635 1.612
15 0.86 0.76 0.63 0.58 51.41 1343.359 1.978
16 0.83 0.73 0.66 0.58 48.58 1245.309 2.223
17 0.86 0.73 0.66 0.58 51.41 1231.288 1.959
18 0.83 0.76 0.66 0.58 51.41 1359.739 2.101
19 0.86 0.76 0.66 0.58 48.58 1320.488 1.967
20 0.83 0.73 0.63 0.61 48.58 1370.22 1.806
21 0.86 0.73 0.63 0.61 51.41 1371.444 1.933
22 0.83 0.76 0.63 0.61 51.41 1362.347 1.929
23 0.86 0.76 0.63 0.61 48.58 1278.259 1.784
24 0.83 0.73 0.66 0.61 51.41 1158.641 2.032
25 0.86 0.73 0.66 0.61 48.58 1231.481 2.034
26 0.83 0.76 0.66 0.61 48.58 1190.894 2.002
27 0.86 0.76 0.66 0.61 51.41 1210.883 2.261

Table 6: Analysis of variance for the stroke.

Source DF Seq SS Contribution (%) Adj SS Adj MS F-value P value
Model 20 120513 89.49 120513 6025.7 2.56 0.124
Linear 5 78626 58.39 74177 14835.4 6.29 0.022
A 1 629 0.47 402 401.5 0.17 0.694
B 1 816 0.61 538 538.3 0.23 0.650
C 1 50697 37.65 42836 42836.3 18.17 0.005
D 1 16789 12.47 22090 22089.6 9.37 0.022
E 1 9695 7.20 8915 8914.8 3.78 0.100
Square 5 11426 8.49 11673 2334.7 0.99 0.494
A∗A 1 3 0.00 543 542.9 0.23 0.648
B∗B 1 847 0.63 0 0.1 0.00 0.995
C∗C 1 971 0.72 2371 2371.5 1.01 0.355
D∗D 1 1855 1.38 125 125.0 0.05 0.826
E∗E 1 7750 5.76 7236 7236.3 3.07 0.130
2-Way interaction 10 30461 22.62 30461 3046.1 1.29 0.392
A∗B 1 3646 2.71 3897 3897.1 1.65 0.246
A∗C 1 1382 1.03 1339 1338.9 0.57 0.480
A∗D 1 6 0.00 149 148.8 0.06 0.810
A∗E 1 612 0.45 654 654.0 0.28 0.617
B∗C 1 5120 3.80 6498 6498.5 2.76 0.148
B∗D 1 8707 6.47 7900 7900.3 3.35 0.117
B∗E 1 2376 1.76 2570 2570.0 1.09 0.337
C∗D 1 7492 5.56 7488 7488.1 3.18 0.125
C∗E 1 1115 0.83 1103 1102.8 0.47 0.520
D∗E 1 6 0.00 6 5.9 0.00 0.962
Error 6 14147 10.51 14147 2357.9
Total 26 134661 100.00
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As depicted in Figures 15 and 16, the proposed artifcial
intelligent technique had better performances than those
achieved from the linear regression.

4.4. Parameter Optimization. In this part, the TLBO algo-
rithm is initialized with a population of 50 and iterations of
5000. Te optimization programming is implemented

Pareto Chart of the Standardized Effects
(response is Stroke, α = 0.05)
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Figure 13: Sensitivity plot of design variables to the stroke.

Table 7: Analysis of variance for safety factor.

Source DF Seq SS Contribution (%) Adj SS Adj MS F-value P value
Model 20 0.396108 72.62 0.396108 0.019805 0.80 0.679
Linear 5 0.210502 38.59 0.167944 0.033589 1.35 0.359
A 1 0.031505 5.78 0.041489 0.041489 1.67 0.244
B 1 0.010822 1.98 0.003362 0.003362 0.14 0.726
C 1 0.160082 29.35 0.109272 0.109272 4.39 0.081
D 1 0.000303 0.06 0.001510 0.001510 0.06 0.814
E 1 0.007789 1.43 0.010727 0.010727 0.43 0.536
Square 5 0.020878 3.83 0.020510 0.004102 0.16 0.967
A∗A 1 0.006593 1.21 0.001006 0.001006 0.04 0.847
B∗B 1 0.000844 0.15 0.000710 0.000710 0.03 0.871
C∗C 1 0.010358 1.90 0.012192 0.012192 0.49 0.510
D∗D 1 0.000886 0.16 0.002319 0.002319 0.09 0.770
E∗E 1 0.002196 0.40 0.002143 0.002143 0.09 0.779
2-Way interaction 10 0.164728 30.20 0.164728 0.016473 0.66 0.731
A∗B 1 0.001177 0.22 0.001342 0.001342 0.05 0.824
A∗C 1 0.056306 10.32 0.056556 0.056556 2.27 0.182
A∗D 1 0.000000 0.00 0.000038 0.000038 0.00 0.970
A∗E 1 0.000713 0.13 0.001278 0.001278 0.05 0.828
B∗C 1 0.004343 0.80 0.003475 0.003475 0.14 0.721
B∗D 1 0.018617 3.41 0.018649 0.018649 0.75 0.420
B∗E 1 0.057861 10.61 0.060386 0.060386 2.43 0.170
C∗D 1 0.000085 0.02 0.000084 0.000084 0.00 0.955
C∗E 1 0.022801 4.18 0.023640 0.023640 0.95 0.367
D∗E 1 0.002825 0.52 0.002825 0.002825 0.11 0.748
Error 6 0.149333 27.38 0.149333 0.024889
Total 26 0.545441 100.00
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Figure 14: Sensitivity plot of design variables to the safety factor.
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Figure 15: Modeling for stroke by ANN-combined TLBOmethod: (a) training, (b) performance, (c) error, (d) predicted vs measured value.
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MATLAB R2019 environment. Te optimized results for
the three case studies are provided in Table 6. From Fig-
ure 17, the rotation angle (θz) around the O point of the
proposed MPM platform is measured by FEA ANSYS
software. From Table 8, the y-stroke is the displacement
along the y-axis at O1 point. Te y-stroke is the optimized
displacement which is predicted from the proposed met-
aheuristic-intelligent method (ANN-TLBO). Te x-stroke
is the displacement along the x-axis at O1 point. Te
x-stroke, the stress and the rotation angle are calculated
from the FEA ANSYS software.

From the achieved results of Table 8, it revealed that the
optimized strokes in the y-axis of the MPM platform can
obtain 1555.6763 μm, 1300.6 μm, and 1568 μm for case #1,
case #2, and case #3, respectively. Besides, the x-axis strokes
of the platform are 266.4μm, 735.55μm, and 714μm for case
#1, case #2, and case #3, respectively. Te safety factor of the

platform is over 1.5. Meanwhile, the stress appeared in three
case studies is always lower than the yield stress (503MPa) of
AL 7075-T651.Tis guarantees a long working strength for the
platform. Te stress is calculated by the following equation.

S �
Syield

SF
, (14)

where, S represents the stress of the MPM platform. Syield is
the yield stress of AL 7075-T651. SF is the safety factor.

Based on the output stroke of the proposed MPM
platform, the displacement amplifcation ratio can be cal-
culated by following formula.

AR �
OS

IS

, (15)
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Figure 16: Modeling for safety factor by ANN-combined TLBOmethod: (a) training, (b) performance, (c) error, (d) predicted vs measured
value.
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where, AR is the displacement amplifcation ratio. Te OS
and IS note the output y-stroke and input stroke.

By using equation (15), the AR values are about 11.54 for
case study #1, 9.63 for case study #2, and 11.61 for case study
#3.

4.5.Validations ofOptimizedResults. By using the optimized
design parameters, the prototypes are built in Inventor
software, and then, the simulations are performed to verify
the optimized results. As given in Table 9, the errors between
the proposed method and the simulation method are under
9%.Te proposed method is reliable optimization technique
in modeling and optimizing the MPM platform.

5. Conclusions

Tis article has presented an optimized design method for the
mobile microrobotic platform. Te proposed MPM platform
was built via using two combinedmodules, including the hybrid
displacement amplifcation mechanism and leaf hinges. Te
developedHDAMwas created by combination of Scott–Russell
mechanism and two-double lever amplifcation mechanism.
Te new proposed HDAM amplifer could allow a large am-
plifcation ratio.With such a high amplifcation value, it ensured
a large output stroke for the MPM platform. Te developed
MPMplatformwas able to be employed for locating the sample
in the polishing robot system.Te platform could achieve three
motions, including two translations and one rotation.

In modeling the stroke and safety factor of the MPM
platform, the ANN was used in combination with the

TLBO method. By using the TLBO, the ANN architecture
was optimized to a better approximation. And then, three
optimized case studies were studied by the TLBO to
improve the stroke and safety factor. Moreover, the case
studies also demonstrated the efectiveness of the
methodology. In this study, the FEM data was combined
with ANN, TLBO for modeling process. Te results of this
paper could be listed as follows.

Te modeling results from the TLBO-based ANN were
well established. Te metrics were relatively good with
the values of R and R2 being near 1 while the values of
MSE were very small.
Te established intelligent predictors were better than
the linear regression. Te predicted values from the
TLBO-ANN were close to the measured values.
In case study #1, the optimized platform could operate
with the y-axis stroke over 1558.6763 μm and a safety
factor of 1.58.
In case study #2, the optimized platform could achieve
a large y-axis of 1300 μm and a safety factor of 2.3.
In case study #3, the optimized platform could displace
a large y-axis of 1568.1 μm and a safety factor of 2.04.
In summary, the proposed MPM platform could
achieve a max-y stroke of 1568.1 μm, max-x stroke of
735.55 μm, and max-θ rotation angle of 2.26 degrees.
Te stress of three cases were still lower than the yield
stress of Al 7075-T651.
Te proposed MPM platform could achieve a high
displacement amplifcation ratio at least of 9.

Table 8: Optimum results for three case studies.

TLBO for single-
objective problems

Cases Optimal solutions
(mm) y-stroke (μm) x-stroke

(μm) Safety factor Stress (MPa) Rotation angle (degree)

Case 1 A� 0.9, B� 0.8, C� 0.6,
D� 0.6, E� 50 1558.6763 266.4 1.58 318.35 1.85

Case 2 A� 0.87, B� 0.7,
C� 0.6, D� 0.55, E� 49 1300.6 735.55 2.33 215.87 1.97

TLBO for multi-
objective problems

Cases Optimal solutions
(mm) Stroke (μm) x-stroke

(μm) Safety factor Stress (MPa) Rotation angle (degree)

Case 3 A� 0.89, B� 7.97,
C� 0.6, D� 0.55, E� 45 1568.1 714 2.04 246.56 2.26

Table 9: Validation results.

Case study Method
Performances

y-stroke (μm) Safety factor

Case 1 Proposed method 1558.6763 1.58
FEA results 1432.2 1.47

Error (%) 8.8 7.48

Case 2 Proposed method 1300.6 2.3
FEA results 1368.7 2.2

Error (%) 4.97 4.54

Case 3 Proposed method 1568.1 2.04
FEA results 1689.8 2.17

Error (%) 7.2 5.9
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In upcoming study, the real prototypes will be manu-
factured byWEDM.Te physical verifcations will be carried
out. Te polishing experiments will be conducted.

Data Availability

Te data used to support the fndings of this study are in-
cluded within the article.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Tis work belongs to the project grant no: T2021-11TÐ and
was funded by Ho Chi Minh City University of Technology
and Education, Vietnam.

References

[1] G. Chen and F. Ma, “Kinetostatic modeling of fully compliant
bistable mechanisms using timoshenko beam constraint
model,” Journal of Mechanical Design, vol. 137, no. 2, pp. 1–10,
2015.

[2] N. Le Chau, N. T. Tran, and T. P. Dao, “A multi-response
optimal design of bistable compliant mechanism using ef-
cient approach of desirability, fuzzy logic, ANFIS and LAPO
algorithm,” Applied Soft Computing, vol. 94, Article ID
106486, 2020.

[3] L. Mingming, D. Zhao, J. Lin, X. Zhou, B. Chen, and H.Wang,
“Design and analysis of a novel piezoelectrically actuated
vibration assisted rotation cutting system,” Smart Materials
and Structures, vol. 27, no. 9, pp. 1–9, Article ID 095020, 2018.

[4] D. N. Nguyen, N. L. Ho, T.-P. Dao, and N. Le Chau, “Multi-
objective optimization design for a sand crab-inspired com-
pliant microgripper,” Microsystem Technologies, vol. 25,
no. 10, pp. 3991–4009, 2019.

[5] X. Ma, A. Wilson, C. D. Rahn, and S. Trolier-McKinstry,
“Efcient energy harvesting using piezoelectric compliant
mechanisms: theory and experiment,” Journal of Vibration
and Acoustics, vol. 138, no. 2, pp. 1–9, 2016.

[6] M. L. Culpepper and G. Anderson, “Design of a low-cost
nano-manipulator which utilizes a monolithic, spatial com-
pliant mechanism,” Precision Engineering, vol. 28, no. 4,
pp. 469–482, 2004.

[7] L. U. Odhner and A.M. Dollar, “Te smooth curvature model:
an efcient representation of Euler-Bernoulli fexures as robot
joints,” IEEE Transactions on Robotics, vol. 28, no. 4,
pp. 761–772, 2012.

[8] R. Wang and X. Zhang, “Preload characteristics identifcation
of the piezoelectric-actuated 1-DOF compliant nano-
positioning platform,” Frontiers of Mechanical Engineering,
vol. 10, no. 1, pp. 20–36, 2015.

[9] F. Wang, X. Zhao, Z. Huo et al., “A 2-DOF nano-positioning
scanner with novel compound decoupling-guiding mecha-
nism,” Mechanism and Machine Teory, vol. 155, Article ID
104066, 2021.

[10] L. Clark, B. Shirinzadeh, Y. Tian, and B. Yao, “Development of
a passive compliant mechanism for measurement of micro/
nanoscale planar 3-DOF motions,” IEEE, vol. 21, no. 3,
pp. 1222–1232, 2016.

[11] S. Iqbal and A. Malik, “A review on MEMS based micro
displacement amplifcation mechanisms,” Sensors and Actu-
ators A: Physical, vol. 300, Article ID 111666, 2019.

[12] H. Wang and X. Zhang, “Input coupling analysis and optimal
design of a 3-DOF compliant micro-positioning stage,”
Mechanism and Machine Teory, vol. 43, no. 4, pp. 400–410,
2008.

[13] M. T. Pham, T. J. Teo, S. H. Yeo, P. Wang, andM. L. S. Nai, “A
3-D printed Ti-6Al-4V 3-DOF compliant parallel mechanism
for high precision manipulation,” IEEE, vol. 22, no. 5,
pp. 2359–2368, 2017.

[14] Y. Li and Z.Wu, “Design, analysis and simulation of a novel 3-
DOF translational micromanipulator based on the PRB
model,” Mechanism and Machine Teory, vol. 100, pp. 235–
258, 2016.

[15] U. Bhagat, B. Shirinzadeh, L. Clark et al., “Design and analysis
of a novel fexure-based 3-DOF mechanism,”Mechanism and
Machine Teory, vol. 74, pp. 173–187, 2014.

[16] W. L. Zhu, Z. Zhu, S. To, Q. Liu, B. F. Ju, and X. Zhou,
“Redundantly piezo-actuated XYθ z compliant mechanism for
nano-positioning featuring simple kinematics, bi-directional
motion and enlarged workspace,” Smart Materials and
Structures, vol. 25, no. 12, Article ID 125002, 2016.

[17] D. H. Chao, R. Liu, Y. M. Wu, L. Shi, and G. H. Zong,
“Manufacturing error analysis of compliant 3-DOF micro-
robot,” Frontiers of Mechanical Engineering in China, vol. 1,
no. 3, pp. 299–304, 2006.

[18] G. Villarrubia, F. Juan, D. Paz, P. Chamoso, and
F. De la Prieta, “Artifcial neural networks used in optimi-
zation problems,” Neurocomputing, vol. 272, pp. 10–16, 2018.

[19] R. V. Rao, V. J. Savsani, and J. Balic, “Teaching-learning-based
optimization algorithm for unconstrained and constrained
real-parameter optimization problems,” Engineering Opti-
mization, vol. 44, no. 12, pp. 1447–1462, 2012.

20 Complexity




