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Excessive use of social media is a developing concern in the twenty-first century.(is issue needs to be addressed before it has any
more significant consequences than what we are currently experiencing. As a preventive technique, advertisements and
awareness-raising campaigns about the detrimental impact of digital technologies are used.(e application of novel mathematical
techniques and terminologies in this field of study will have significant potential to enhance healthy living by preventing certain
ailments.(is is the most compelling justification for conducting a new study with the most up-to-date techniques at our disposal.
(is study investigates clear and concise transmission in order to generate a deterministic mathematical model of social media
addiction SMA using the fractal-fractional (FF) derivative operator. Also, the analysis of the SMAmodel in terms of the invariant
domain, the existence of a positive invariant solution, and equilibria assumptions are stated in a detailed manner. Besides that, the
basic reproduction numberR0 < 1 is computed, demonstrating that the proposedmethodology is more efficacious.(eAtangana-
Baleanu FF differential operators are recently defined in FF differential operators that are applied to characterize the SMAmodel’s
mathematical algorithm.We investigated the numerical behaviour of theSMA in three ways: (i) changing the fractional-order (α)

as well as the fractal-dimension (℘); (ii) changing α while keeping ℘ constant; and (iii) changing ℘ while keeping α constant. Our
examined visualizations and simulation studies using MATLAB for the numerical modelling of the aforementioned system
showed that the novel developed Atangana-Baleanu FF differential operators produce remarkable results when compared to the
classical frame.

1. Introduction

With the popularity of networking communication comes
an increase in the psychoactive properties of this techno-
logical innovation. Numerous investigations have linked
compulsive media platform use to undesirable outcomes,
including decreased efficiency, adverse social interactions,
and decreased life contentment. (e misuse of social net-
working sites has increased at an alarming rate. For example,
Facebook has 68 percent and 73 percent of the adolescent
community in the United States, respectively [1]. Over
prescription of social media addiction is connected with
impaired effectiveness appraisal, problematic interpersonal
interactions, insomnia, reduced levels of happiness, and

sentiments of hostility, stress, and melancholy, see [2–7].To
be consistent with the preponderance of the research, we
included the terms “social media addiction” (SMA) or
“addicted social networking usage” (in a non-clinical
meaning) in the entirety of that kind of analysis, while
acknowledging the concerns surrounding the terminology
[8]. Whenever it becomes more appropriate to employ
certain concepts, exclusions are created. For the purposes of
this evaluation, we characterize excessive social media
adoption as becoming extremely apprehensive regarding
social media, intrinsically incentivized, and dedicating a
significant portion of time and vitality to incorporating
social media to the juncture where an individual’s group
opportunities, intimate communication, surveys, and/or
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general well-being and well-being are jeopardized [9].(ere
is now a discrepancy in theorizing SMA, particularly how it
progresses. (ere have been multiple evaluations of con-
ceptualizations to elucidate SMA, but limited research has
addressed the mathematical frameworks implemented in
actual research on SMA. One evaluation, in particular,
barely discussed three extensively acknowledged internet
dependency scenarios. One questionnaire range of inter-
ventions includes broad scientific viewpoints (for example,
neurological aspects and behavioural insights) without
addressing relevant paradigms. Although some alternative
analyses reviewed various relevant conceptual models, an-
alyzed their flaws, and proposed hypothetical modifications,
they did not describe how scientific findings about SMA

implement these conceptualizations and the various attri-
butes in these structures. Furthermore, new scientific
findings on SMA are appearing at an astonishing rate; there
is a need for a comprehensive overview of essential math-
ematical approaches. Alemneh and Alemu [10] constructed
and examined a mathematical formulation for the dissem-
ination and prevention of SMA in global society in 2021, as
continues to follow:

S
.

(ζ) � ς + cR(ζ) − λθA(ζ)S(ζ) − (κ + ])S(ζ),

E
.

(ζ) � λθA(ζ)S(ζ) − (ϕ + ])E(ζ),

A
.

(ζ) � βϕE(ζ) − (] + ε + ψ)A(ζ),

R
.

(ζ) � (1 − β)ϕE(ζ) + εA − (]+)R(ζ),

Q
.

(ζ) � κS(ζ) + (1 − c)R(ζ) − ]Q(ζ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

(e current community is categorized into five compart-
ments depending on addiction level in the scheme (1).
Compartment 1: individuals that are likely to be exposed are
those that are not obsessed but are accessible to SMA is
represented by S(ζ). Compartment 2: individuals who utilize
SM relatively regularly yet do not become obsessed are
referred to as exposed individuals E(ζ). Compartment 3:
compulsive populace are persons who are obsessed to SM
and spend a significant amount of time doing it A(ζ).
Compartment 4: retrieved individuals are persons who have
progressed from SMA, R(ζ) is the number of individuals
who have benefited from SMA. Compartment 5: Q(ζ)

represents anyone that doesn’t use or stop using SM per-
petually. (e number of individuals in the community is:
N � S + E + A + R + Q. (e model’s suppositions are as
follows: the dissemination of the SMA issue occurs in a
confined area and is not reliant on intimate relations, racial
group, or sentient socialist system. Representatives com-
bining uniformly, and social networking dependent indi-
viduals will convey to non-addictive people when they are in
contact with the compression of habit forming. Further-
more, the mathematical expressions of this scheme are
amalgamated by employing the social networking addiction
process, which begins with the introduction of vulnerable
people into the community at a rate of ς. (ey are prompted
to transfer to the revealed condition by addicted humans

having a stress interaction incidence of and a probabilistic
transference ratio of θ. At a proportion of κ, certain vul-
nerable persons migrate to a set of individuals who never
access digital platforms. (e challenged people are divided
into two classes: one that develops obsession and advances to
the addictive class at a pace βϕ, and another that recovers
using therapy at a pace (1 − β)ϕ. Many dependent indi-
viduals transfer to the recovery class at a pace of or die as a
result of the overuse of dependence on social networks at a
ratio of ψ. People who have overcome become vulnerable
again at a ratio of or eventually discontinue access to digital
platforms at a ratio of (1 − c)ϱ. Eventually, all of the in-
habitants in each group have a spontaneous mortality rate of
]. Alemneh and Alemu [10] further examined the robustness
of the equilibria and applied Pontryagin’s maximal principle
to design the best monitoring mechanism.In past times,
fractional calculus has been consistently proven to be an
outstanding approach for illustrating the heredity properties
of diverse formations. Furthermore, fractional differential
operators have been used in a plethora of distinctive
manifestations, such as hydroelectricity, fluid dynamics,
chromatography, commerce, and viruses, utilising numer-
ous fractional strategies such as Caputo, Hadamard, Rie-
mann-Liouville, Katugumpola, Caputo–Fabrizio, Atangana-
Baleanu and fractal–fractional, see [11–13]. (is combo has
suddenly accumulated a wealth of traction, partly because
fractional differential equations have been shown to be
superb tools for displaying a few incredibly challenging
phenomena in a wide range of various and endless academic
disciplines; assessors are encouraged to [14–20]. In 2019, the
African mathematician Abdon-Atangana [21] proposed
novel differential operators with fractal derivatives based on
the combination of index law, modified Mittag-Leffler rule,
and exponential decay law. Novel formulations, according to
[20], offer additional non-local physical challenges with
fractal characteristics simultaneously. Chen et al. [21] in-
vestigated the classification of anomalous propagation by
deriving the underlying component of the numerical scheme
using fractal derivative. For the purpose of evaluating
processing performance and dispersion velocity, they
compared fractional and fractal derivatives. Wei et al. [22]
employed a scalability transformation technique to offer
fractal modelling of elastic deformation. Sania et al. [24]
introduced differential operators with fractional order and
fractal dimension to describe additional chaotic complexity,
wherein various kinds of orientations were mentioned: King
Cobra, Shilnikov, (omas cyclically symmetric, Langford,
and Rössler. Rashid et al. [25] discussed the complex os-
cillatory behaviour of a human liver model via FF derivative
operator technique. According to current evidence analysis
of the data collected for this study, none of the works have
addressed the mathematical framework of SMA involving
fractal-fractional derivatives. (e novelty of this article is the
addition of the FF fractional derivative to the SMA model.
(e improved SMA transmitting system incorporating the
fractal-fractional derivative in the Atangana-Baleanu sense is
proposed in the following framework:
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FFD
α,℘
ζ S(ζ) � ς + cϱR(ζ) − λθA(ζ)S(ζ) − (κ + ])S(ζ),

FFD
α,℘
ζ E(ζ) � λθA(ζ)S(ζ) − (ϕ + ])E(ζ),

FFD
α,℘
ζ A(ζ) � βϕE(ζ) − (] + ϵ + ψ)A(ζ),

FFD
α,℘
ζ R(ζ) � (1 − β)ϕE(ζ) + ϵA − (] + ϱ)R(ζ),

FFD
α,℘
ζ Q(ζ) � κS(ζ) + (1 − c)ϱR(ζ) − ]Q(ζ).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

having initial conditions (S,E,A,R,Q) � (S0,E0,A0,R0,

Q0), where FFDα,℘
ζ (.) denotes the FF operator in terms of

Atangana-Baleanu derivative operator, whilst α presents the
fractional-order and ℘ denotes the fractal-dimension, re-
spectively. Furthermore, Table 1 contains explanations of all
attributes. Recently, Alemneh and Alemu [10] demonstrated
the mathematical modeling with optimal control analysis of
SMA. Kongson et al. [27] expounded the estimates for SMA

model pertaining to the Atnagana-Baleanu fractional de-
rivative operator in the Caputo context. Leveraging the
aforementioned proclivity, we employ a newly formed ar-
bitrary order derivative in the SMA model. (e main
purpose of this research is to investigate the SMAmodel via
a pioneering FF derivative operator in the Atangana-Baleanu
sense and to characterize the complexities of the uniqueness
and existence of the aforementioned framework response by
utilizing the Picard-Lindlöf and contraction mapping
techniques. Furthermore, to the best of our knowledge, there
is no previous paper related to SMA qualitative aspects of
fractal–fractional derivative based on the Atangana-Baleanu
context. As a result, the main objective of this paper is to
bridge that gap. Graphical results demonstrate that while
fixing and varying fractional-order and fractal-dimension
how they affect the model’s characterizations.(is article’s
entire tasks are organized into five portions, which are
provided as they continue to be implemented: Section 2
summarizes and presents the core notions and relevant
formulations of FF derivatives in the Atangana-Baleanu
interpretations. Section 3 describes the analysis of the model
that corresponds to the positivity, bounded domain, in-
variant region, and equilibria points via the FF derivative
operator technique. Section 4 illustrates and performs a
convergence and uniqueness investigation for the above-
mentioned SMA with the aid of the FF derivative operator
and the numerical formulation of the Newton polynomial
approach. Section 5 deals with the numerical outcomes and
description of the suggested SMA model’s solution. (e
prime focus of the planned study is on which we will exhibit
simulation consequences. Ultimately, Section 6 summarizes
the remarks and discusses the promising possibilities of the
fractal-fractional SMA model.

2. Preliminaries

In what follows, it is vital to investigate some fundamental
FF operator notions prior to continuing on to the formal
model. Consider there be a function y(ζ), which is con-
tinuous and fractal differentiable on [c, d] and has fractal-

dimension ℘ and fractional-order α, in addition to the
specifications in [21, 24].

Definition 2.1 (see [21, 24]). Suppose there be a FF operator
of y(ζ) having power law kernel in terms of Rie-
mann–Liouville (RL) can be expressed in the form:

FFPDα,p

0,ζ (y(ζ)) �
1
Γ(r − α)

d

dζ℘
􏽚
ζ

0
(ζ − ϖ)r− α− 1y(ϖ)dϖ, (3)

where (dy(ϖ)/dϖ℘) � lim
ζ↦ϖ

(y(ζ) − y(ϖ)/ζ℘ − ϖ℘) and
r − 1< α,℘≤ r ∈ N.

Definition 2.2 (see [21, 24]). Suppose there be a FF operator
of y(ζ) having exponential kernel in terms of RL can be
expressed in the form:

FFEDα,℘
0,ζ (y(ζ)) �

M(α)

1 − α
d

dζ℘
􏽚
ζ

0
exp −

α
1 − α

(ζ − ϖ)􏼒 􏼓y(ϖ)dϖ, (4)

such that M(0) � M(1) � 1 with α> 0,℘≤ r ∈ N.

Definition 2.3 (see [21, 24]). Suppose there be a FF operator
of y(ζ) with Mittag-Leffler kernel in terms of RL can be
expressed in the form:

FFEDα,℘
0,ζ (y(ζ)) �

ABC(α)

1 − α
d

dζ℘
􏽚
ζ

0
Eα −

α
1 − α

(ζ − ϖ)􏼒 􏼓y(ϖ)dϖ,

(5)

such that ABC(α) � 1 − α + (α/Γ(α)) with α> 0,℘≤ 1 ∈ N.

Definition 2.4 (see [21, 24]). (e corresponding FF integral
form of (3) is described as:

FFP
J
α
0,ζ(y(ζ)) �

℘
Γ(α)

􏽚
ζ

0
(ζ − ϖ)α− 1ϖ℘− 1y(ϖ)dϖ. (6)

Definition 2.5 (see [21, 24]). (e corresponding FF integral
version of (4) is described as:

FFP
J
α
0,ζ(y(ζ)) �

α℘
M(α)

􏽚
ζ

0
ϖ℘− 1y(ϖ)dϖ +

℘(1 − α)ζ℘− 1y(ζ)

M(α)
.

(7)

Definition 2.6 (see [21, 24]). (e corresponding FF integral
form of (5) is described as:

FFP
J
α
0,ζ(y(ζ)) �

α℘
ABC(α)

􏽚
ζ

0
ϖ℘− 1

(ζ − ϖ)α− 1y(ϖ)dϖ

+
℘(1 − α)ζ℘− 1y(ζ)

ABC(α)
.

(8)

Definition 2.7 (see [14]). Let y ∈ H1(δ, c), δ < c and the
Atangana-Baleanu-Caputo derivative operator is defined as:
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ABC
c D

α
ζ (y(ζ)) �

ABC(α)

1 − α
􏽚
ζ

c
y′(ϖ)

·Eα −
α(ζ − ϖ)α

1 − α
􏼠 􏼡dϖ, α ∈ [0, 1],

(9)

where ABC(α) represents the normalization function.

3. Qualitative analysis of SMA

In this section, we demonstrate that SMA presented in (1) is
epidemiologically viable by ensuring that the system’s
corresponding model parameters are non-negative for every
time-step ζ. (is is based on the more straightforward ar-
gument that the SMA model with non-negative ICs be-
comes non-negative for all ζ > 0. (e preceding is a lemma.

Lemma 3.1. Suppose there be the initial data G≥ 0 , where
G(ζ) � (S(ζ),E(ζ),A(ζ),R(ζ),Q(ζ)) . ;us the SMA sys-
tem (1) are positive for allζ > 0.
Also, lim

ζ↦∞
N(ζ)≤ (ς/])havingN(ζ) � S(ζ)+

E(ζ) + A(ζ) + R(ζ) + Q(ζ).

Proof. Assume that Ξ � sup ζ > 0: G(ζ)> 0 ∈ [0, ζ]{ }.
(erefore, Ξ> 0, the first equation of the framework (1)
consists of following

S(ζ)

dζ
� ς + cϱR(ζ) − λθA(ζ)S(ζ) − (κ + ])S(ζ), (10)

with η � λθA(ζ), then (10) diminishes to

S(ζ)

dζ
� ς − ηS(ζ) − (κ + ])S(ζ). (11)

It follows that

d

dζ
S(ζ)exp (κ + μ)ζ + 􏽚

Ξ

0
η ϕ1( 􏼁dϕ1􏼠 􏼡􏼨 􏼩

� ς (κ + μ)ζ + 􏽚
Ξ

0
η ϕ1( 􏼁dϕ1􏼠 􏼡.

(12)

Consequently, we have

S(Ξ)exp (κ+)μΞ + 􏽚
Ξ

0
η ϕ1( 􏼁dϕ1􏼠 􏼡 − S(0)

� ς exp (κ + μ)y1 + 􏽚
Ξ

0
η ϕ2( 􏼁dϕ2􏼠 􏼡dy1.

(13)

Note that

S(Ξ) � S(0)exp − (κ + μ)Ξ − 􏽚
Ξ

0
η ϕ1( 􏼁dϕ1􏼠 􏼡

+ exp − (κ + μ)Ξ − 􏽚
Ξ

0
η ϕ1( 􏼁dϕ1􏼠 􏼡

× 􏽚
Ξ

0
ς exp (κ + μ)y1 + 􏽚

Ξ

0
η ϕ2( 􏼁dϕ2􏼠 􏼡dy1 > 0.

(14)

(us, we can obtain G(ζ)> 0 for any ζ > 0 by repeating
the previous methods for the leftover equations of model (1).

Now adding the SMA cohorts lead to the subsequent

dN
dζ
≤ ς − ]N − ψA. (15)

If there is no death to the SMA, then

dN
dζ
≤ ς − ]N. (16)

(erefore, we have

lim
ζ↦∞

N(ζ)≤
ς
]
, (17)

which is the desired proof.
Further, in order to show the invariant region for the

proposed SMA system (1), suppose

∇ � (S,E,A,R,Q) ∈ R5
+: 0<N(ζ)≤

ς
]

􏼚 􏼛. (18)
□

Lemma 3.2. ;e domain represented by ∇ is positively in-
variant for the SMA system (1) along with non-negative
ICsS,E,A,R,Q> 0for allζ ≥ 0.

Proof. In view of (12), then we have

Table 1: Table of specified variables and their descriptions

Parameters Explanation Data estimated References
ς Acquisition of susceptible people 0.5 Supposed
] natural death rate 0.05 [39]
λ Addiction transfer percentage to vulnerable persons 0.1-0.8 [39]
θ Interaction proportion of vulnerable people involving addicted people 0.2 [39]
β Percentage of uncovered persons who get obsessed 0.7 [39]
ψ induce mortality rate 0.01 Supposed.
ϕ People who quit the exposed group 0.25 [39].
ϵ Addicts who enter the rehabilitated group as a result of the therapy 0.7 [40]
κ Susceptible persons who do not take and/or stop utilizing SM 0.01 Supposed.
c (e percentage of rehabilitated people susceptible to SMA 0.35 [41]
ϱ People who depart the rehabilitated category 0.4 [40]
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dN
dζ

� ς − ]N. (19)

(erefore, we have (dN/dζ)≤ 0, ifN(0)≥ (ς/]). (us, we
have

N(ζ)≤N(0)exp(− ]ζ) +
ς
]

(1 − exp(− ]ζ)), (20)

which shows that, the domain presented by ∇ is posi-
tively invariant. Moreover, if N(0)> (ς/]) or N(ζ) ap-
proaches to ς/] asymptotically. Hence, the domains
presented by ∇ capture all of the possibilities in R5

+. □

3.1. Existence and nonnegativity of the solution. Further, we
investigate the existence and nonnegativity of the SMA

system (2).

Theorem 3.3. If there be a unique solution of the system (2)
and capture the solution inR5

+.

Proof. In order to prove the solution of the system (2) is
positive, we have

FFD
α,℘
0,ζ S(ζ)|S�0 � ς≥ 0,

FFD
α,℘
0,ζ E(ζ)|E�0 � 0,

FFD
α,℘
0,ζ A(ζ)|A�0 � βϕE(ζ)≥ 0,

FFD
α,℘
0,ζ R(ζ)|R�0 � (1 − β)ϕE + ϵA(ζ)≥ 0,

FFD
α,℘
0,ζ Q(ζ)|Q�0 � κS(ζ) +(1 − c)ϱR(ζ)≥ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

which indicates that the system (2) solution exist in
R5

+∀ζ > 0. Summing up all cohorts in (2), we have
FFDα,℘

0,ζ N(ζ) � ς − ]N. (22)

Moreover, we have

lim
n↦∞

supN(ζ)≤
ς
] (23)

and hence, the biologically viable domain for the system
(2) can be represented by

∇1 � (S,E,A,R,Q) ∈ R5
+: 0<N(ζ)≤

ς
]

􏼚 􏼛. (24)
□

(e framework for SMAmentioned-above (2) in the FF
operator in the Atangana-Baleanu sense is implemented to
provide the outcomes in the next subsection.

3.2. Stability result for disease free case. (e stability out-
comes for the SMA framework introduced by at disease free
equilibrium (DFE) E0 are explored in this section. We can
get the respective formulas by changing the right side terms
of the SMA (2) to zero, as

FFD
α,℘
0,ζ S(ζ) � 0,

FFD
α,℘
0,ζ E(ζ) � 0,

FFD
α,℘
0,ζ A(ζ) � 0,

FFD
α,℘
0,ζ R(ζ) � 0,

FFD
α,℘
0,ζ Q(ζ) � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

we have the following DF E as follows

E0 �
ς

κ + ]
, 0, 0, 0,

κς
](] + κ)

􏼠 􏼡. (26)

Furthermore, the fundamental reproduction number
R0, which may be determined by applying the next gen-
eration methodology for the scheme, can be used to examine
the robustness of DFE at E0. (e infectious cohorts in the
SMA system (2) are E,A, and the matrices F and V are
obtained as follows:

F �

λθAS

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦andV � ((] + ϕ)E − ϕβE +(] + ϵ + ψ)A

− (1 − β)ϕE +(] + ϱ)R).

(27)

Hence, the fundamental reproductive number can be
calculated as

R0 � 􏽥ρ FV
− 1

􏼐 􏼑 �
λςβϕθ

(κ + ])(ϕ + ])(] + ϵ + ψ)
. (28)

3.3. Strength number. Following the work [28], we will
present the strength number.In recent years, the concept of
reproduction in a specific infectious problem has been ex-
tensively used in epidemiology modelling. As predicted by
the concept, two components, F and V, will be identified in
(27)

FV− 1
− μI􏼐 􏼑 � 0 (29)

will be employed to generate the reproductive number
[29]. (e nonlinear portion of the classes that are infected is
how the component F, which is quite intriguing, gets derived

z

zA
A
N

􏼒 􏼓 �
[N − A]

N2 . (30)

Again, we have

z
2

zA2
(N − 1)

N3􏼠 􏼡

�
− 2[N − A]

N3

�
− 2(ς − ](S(ζ) + E(ζ) + R(ζ) + Q(ζ))) − βϕE(ζ) + ϵA(ζ)

(S(ζ) + E(ζ) + A(ζ) + R(ζ) + Q(ζ))
3 .

(31)

Complexity 5



At DFE E0 � (ς/κ + ], 0, 0, 0, κς/](] + κ)), we have

z
2

zA2
(N − 1)

N3􏼠 􏼡 �
− 2 ς − ] S0 + E0 + R0 + Q0( 􏼁( 􏼁 − βϕE0 + ϵA0

S0 + E0 + A0 + R0 + Q0( 􏼁
3

�
− 2 ς − ] S0 + Q0( 􏼁( 􏼁

S0 + Q0( 􏼁
3 .

(32)

In this case, we have the following

FA �

− 2λ ς − ] S0 + Q0( 􏼁( 􏼁

S0 + Q0( 􏼁
3

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (33)

(en det(FAV− 1 − μI) � 0 leads to

A0 �
− 2λ]3(κ + ] − 1)

ς2
< 0. (34)

(erefore, the dispersion will have a single magnitude and
fade out if there is no regeneration mechanism, which is
indicated by a value of A0 � 0. Furthermore, A0 > 0 denotes
a strength that will trigger a renewingmechanism, indicating
that the expansion will contain multiple waves. However,
biologists will give a precise explanation of the aforemen-
tioned number.

Theorem 3.4. ;e DFE at E0 for SMA model (2) is locally
asymptotically stable whenR0 < 1satisfying the assumption

arg μj􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌>
φπ
2

. (35)

Proof. To illustrate the provided hypothesis, we must first
acquire the Jacobianmatrix by evaluating SMA system (2) at
the DFE E0, we have

JE0
�

− (κ + ]) 0 −
λςθ
κ + ]

cϱ 0

0 − (ϕ + ])
λςθ
κ + ]

0 0

0 βϕ − (ϵ + ψ + ]) 0 0

0 (1 − β)ϕ ϵ − (ϱ + ]) 0

κ 0 0 (1 − c)ϱ − ]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(36)

(enegative eigenvalues are − ], − (] + κ), − (] + ϱ), − (]+

ϕ) and remaining eigenvalues can be achieved from the
following expression μ2+ (ϵ + ψ + ϕ + 2])μ + (ϕ + ])(ϵ+
ψ + ])− (λςβϕθ/κ + ]).the coefficients (ϵ + ψ + ϕ + 2]) and
(ϕ + ])(ϵ + ψ + ]) − (λςβϕθ/κ + ]) are positive, for the DFE
case, the value ofR0 should be less than 1. So that the Rough-
Hurtwiz condition is satisfied for the assumptions presented
if and only if (ϵ + ψ + ϕ + 2])> 0, (ϕ + ])(ϵ + ψ+ ]) − (λςβ
ϕθ/κ + ])> 0 and (ϵ + ψ + ϕ + 2])(ϕ + ])(ϵ + ψ + ])−

(λςβϕθ/κ + ])> 0. (us, the Rough-Hurtwiz condition
promise the local asymptotic stability of the SMA system
presented (2) at DFE E0. (e aforesaid results were achieved
utilizing the FF framework as described and utilized in
[30]. □

3.4. Endemic equilibrium and their stability. (e endemic
equilibria of the SMA (2) designated by E1 � (S∗,E∗,A∗,
R∗,Q∗) and the outcome indicated in (2) are presented in
this subsection as

S∗ �
(] + ϵ + ψ)(] + ϕ)

λβϕθ
,

E∗ �
(] + ϵ + ψ) ςβϕλθ(ϱ + ]) − (κ + ])(ϵϕ(ϱ + ]) + ϵϱ]) − (ψ + ])(κ + ])(] + ϕ)(] + ϱ) − ϵ]2(] + κ)􏼐 􏼑

λβϕθ(βϕcϱ(ψ + ]) − ϕcϱ(ϵ + ϱ + ]) +(ϵ + ψ + ])(] + ϕ)(ϱ + ]))
,

A∗ �
ςβϕλθ(ϱ + ]) − (κ + ])(ϵϕ(ϱ + ]) + ϵϱ]) − (ψ + ])(κ + ])(] + ϕ)(] + ϱ) − ϵ]2(] + κ)􏼐 􏼑

λθ(βϕcϱ(ψ + ]) − ϕcϱ(ϵ + ϱ + ]) +(ϵ + ψ + ])(] + ϕ)(ϱ + ]))
,

R∗ �
((α − 1)(] + ψ) − ϵ)(ςβλϕθ − (] + ϕ)(κ + ])(] + ϵ + ψ))

λβθ(βϕcϱ(ψ + ]) − ϕcϱ(ϵ + ϱ + ]) +(ϵ + ψ + ])(] + ϕ)(ϱ + ]))
,

Q∗ �
κ
]

(] + ϵ + ψ)(] + ϕ)

λβϕθ
􏼠 􏼡 +

ϱ(1 − c)

]
((α − 1)(] + ψ) − ϵ)(ςβλϕθ − (] + ϕ)(κ + ])(] + ϵ + ψ))

λβθ(βϕcϱ(ψ + ]) − ϕcϱ(ϵ + ϱ + ]) +(ϵ + ψ + ])(] + ϕ)(ϱ + ]))
.

(37)
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Theorem 3.5. ;e SMA presented by (2) has the following
assertions:

(a) if R0 > 1, then system (2) exhibits unique endemic
equilibrium.

(b) if R0 � 1, then system (2) has forward bifurcation.
(c) ifR0 < 1, then system (2) does not contain the endemic

equilibrium point or has backward bifurcation.

4. The fractal-fractional SMA model

Here, we used the novel FF methodology in this section to
reassemble the classical integer-order SMA system with a
non-singular and nonlocal kernel (2). (e SMA framework
that ensues when the FF operator is taken into account is (2).

4.1. Existence-uniqueness outcomes of FF-SMA. Now, the
existence-uniqueness of the SMA obtained in the FF op-
erator are succinctly discussed in (2). To do so, we shall use a
FF derivative to generate the generic Cauchy problem:

FFD
α,℘

0, ζ
Λ(ζ) � Υ(ζ,Λ(ζ)),

Λ(0) � Λ0.

⎧⎪⎪⎨

⎪⎪⎩
(38)

In view of Definition (12), the right hand side of (38)
yields:

ABC(α)

1 − α
d

dζ
􏽚
ζ

0
Υ(u,Λ(u))Eα −

α
1 − α

(ζ − u)
α

􏼒 􏼓du

� ℘ζ℘− 1Υ(ζ,Λ(ζ)).

(39)

Considering the implementation of the appropriate
integral, the following conclusions are drawn as:

Λ(ζ) �
1 − α

ABC(α)
℘ζ℘− 1Υ(ζ,Λ(ζ)) +

℘α
ABC(α)Γ(α)

􏽚
ζ

0
(ζ − u)

α− 1Υ(u,Λ(u))u℘− 1du + Λ(0).

(40)

Employing the Picard-Lindelöf method, we have

􏽙

η2

η1

� Ip ζp􏼐 􏼑 × M0 Λ0( 􏼁, (41)

where Ip(ζp) � [ζp− μ1, ζp+μ1],M0(Λ0) � [ζ0 − ]1, ζ0 + ]1].
Accordingly, surmise that

Z � sup
ζ∈􏽑

η2

η1

‖Υ‖ (42)

Furthermore, the norm is written as follows:

‖I‖∞ � sup
ζ∈􏽑

η2

η1

‖I‖,
(43)

and consider the operations

Θ C Ip ζp􏼐 􏼑,Mb ζp􏼐 􏼑􏽨 􏽩􏽨 􏽩⟶ C Ip(b),Mb ζp􏼐 􏼑􏼐 􏼑, (44)

described as

ΘΥ(ζ) � Υ0 +
1 − α

ABC(α)
℘ζ℘− 1Υ(ζ,Λ(ζ)) +

α℘
ABC(α)Γ(α)

􏽚
ζ

0
(ζ − u)

α− 1Υ(u,Λ(u))u℘− 1du.

(45)

(e essential objective is to illustrate that the afore-
mentioned operator can convert a completely empty metric
space onto itself. We also aim to illustrate that it has the
potential to map contractions. First and foremost, we show
that

ΘΛ(ζ) − Λ0
����

����≤ b,

ΘΛ(ζ) − Λ0
����

����≤
1 − α

ABC(α)
℘ζ℘− 1

‖Υ(ζ ,Λ(ζ))‖∞ +
α℘

ABC(α)Γ(α)

􏽚
ζ

0
(ζ − u)

α− 1
‖Υ(u,Λ(u))‖u℘− 1du

≤
1 − α

ABC(α)
℘ζ℘− 1

I +
α℘

ABC(α)Γ(α)
I􏽚

ζ

0
(ζ − u)

α− 1u℘− 1du.

(46)

Inserting u � ζx, then produces the foregoing

ΘΛ(ζ) − Λ0
����

����≤
1 − α

ABC(α)
℘ζ℘− 1

I +
α℘

ABC(α)Γ(α)
Iζα+℘− 1

B1(℘, α).

(47)

(erefore,

ΘΛ(ζ) − Λ0
����

����≤ b↦I<

bB1(℘, α)

(1 − α/ABC(α))℘ζ℘− 1 +(α℘/ABC(α)Γ(α))ζα+℘− 1.

(48)

(en, surmisingΛ1,Λ2 ∈ C[Ip(ζp),Mb(ζp)]. To obtain
at the following result, apply the Banach fixed point theorem:

ΘΛ1 − ΘΛ2
����

����≤LΩ Λ − Λ2
����

����∞, (49)

where LΩ < 1.

ΘΛ1 − ΘΛ2
����

����≤
1 − α

ABC(α)
℘ζ℘− 1 Υ ζ,Λ1( 􏼁 − Υ ζ,Λ2( 􏼁

����
����

+
α℘

ABC(α)Γ(α)
􏽚
ζ

0
(ζ − u)

α− 1u℘− 1 Υ ζ, u1( 􏼁 − Υ ζ, s2( 􏼁
����

����du,

(50)

Owing to the contraction mapping Υ, we have
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ΘΛ1 − ΘΛ2
����

����≤
1 − α

ABC(α)
℘ζ℘− 1

LΛ Λ1 − Λ2
����

����∞

+
α℘

ABC(α)Γ(α)
LΛ Λ1 − Λ2

����
����∞􏽚

ζ

0
(ζ − u)

α− 1u℘− 1du

≤
1 − α

ABC(α)
℘ζ℘− 1

LΛ Λ1 − Λ2
����

����∞

+
α℘

ABC(α)Γ(α)
LΛ Λ1 − Λ2

����
����∞ζ

α+℘− 3
B1(℘, α).

(51)

Consequently, we have

ΘΛ1 − ΘΛ2
����

����≤
1 − α

ABC(α)
℘ζ℘− 1

LΛ +
α℘

ABC(α)Γ(α)
LΛζ

α+℘− 3
B1(℘, α)􏼠 􏼡 Λ1 − Λ2

����
����∞

<
1 − α

ABC(α)
℘a℘− 1

LΛ +
α℘

ABC(α)Γ(α)
LΛa

α+℘− 3
B1(℘, α)􏼠 􏼡 Λ1 − Λ2

����
����∞.

(52)

If the supposition made is correct, then

LΛ <
1 − α

ABC(α)
℘a℘− 1

LΛ +
α℘

ABC(α)Γ(α)
LΛa

α+℘− 3
B1(℘, α),

(53)

then the contraction criterion is achieved, i.e.,

ΘΛ1 − ΘΛ2
����

����≤ Λ1 − Λ2
����

����∞. (54)

In a nutshell, the proof is completed by demonstrating
that there is only one solution.

In the next, we describes the numerical solutions for the
proposed SMA system.

4.2. Newton polynomial approach. Here, we configure a
comprehensive analysis of the numerical approach, which
relies on an efficient Newton polynomial method. (is
methodology, which was also originally envisioned in [34], is
more effective than some of the previous methods available
in the analysis. To continue further with the approach, we
apply the equation:

FFDα,℘
ζ Λ(ζ) � Υ(ζ,Λ(ζ)). (55)

Integrating (55) with respect to ζ, produces

Λ(ζ) − Λ(0) �
1 − α

ABC(α)
℘ζ℘− 1Υ(ζ,Λ(ζ)) +

α℘
ABC(α)Γ(α)

􏽚
ζ

0
(ζ − u)

α− 1u℘− 1Υ(ζ,Λ(ζ))du.

(56)

Taking W(ζ,Λ(ζ)) � ℘ζ℘− 1Υ(ζ,Λ(ζ)), then (56)
reduces to

Λ(ζ) − Λ(0) �
1 − α

ABC(α)
W(ζ,Λ(ζ)) +

α
ABC(α)Γ(α)

􏽚
ζ

0
(ζ − u)

α− 1
W(u,Λ(u))du.

(57)

At ζp+1 � (n + 1)Δζ, we have

Λ ζp+1􏼐 􏼑 − Λ(0) �
1 − α

ABC(α)
W ζp,Λ ζp􏼐 􏼑􏼐 􏼑 +

α
ABC(α)Γ(α)

􏽚
ζp+1

0
ζp+1 − u􏼐 􏼑

α− 1
W(u,Λ(u))du.

(58)

(erefore, we have

Λ ζp+1􏼐 􏼑 � Λ(0) +
1 − α

ABC(α)
W ζp,Λ ζp􏼐 􏼑􏼐 􏼑 +

α
ABC(α)Γ(α)

􏽘

p

ι�2

􏽚
ζι+1

ζι
ζp+1 − u􏼐 􏼑

α− 1
W(u,Λ(u))du.

(59)

To estimate the mapping, employ the Newton polyno-
mial W(ζ ,Λ(ζ)), we have

Up(u) � W ζp− 2,Λ ζp− 2􏼐 􏼑􏼐 􏼑

+
W ζp− 1,Λ ζp− 1􏼐 􏼑􏼐 􏼑 − W ζp− 2,Λ ζp− 2􏼐 􏼑􏼐 􏼑

Δζ
u − ζp− 2􏼐 􏼑

+
W ζp,Λ ζp􏼐 􏼑􏼐 􏼑 − 2W ζp− 1,Λ ζp− 1􏼐 􏼑􏼐 􏼑 + W ζp− 2,Λ ζp− 2􏼐 􏼑􏼐 􏼑

2(Δζ)
2

u − ζp− 2􏼐 􏼑 u − ζp− 1􏼐 􏼑.

(60)

Substituting (60) into (57), yields

Λp+1
� Λ0 +

1 − α
ABC(α)

W ζp,Λ ζp􏼐 􏼑􏼐 􏼑

+
α

ABC(α)Γ(α)
􏽘

p

ι�2
􏽚
ζι+1

ζι
ζp+1 − u􏼐 􏼑

α− 1
W ζℓ− 2,Λ

ℓ− 2
􏼐 􏼑􏼐

+
W ζℓ− 1,Λ

ℓ− 1
􏼐 􏼑 − W ζℓ− 2,Λ

ℓ− 2
􏼐 􏼑

Δζ
u − ζℓ− 2( 􏼁

+
W ζℓ,Λ

ℓ
􏼐 􏼑 − 2W ζℓ− 1,Λ

ℓ− 1
􏼐 􏼑 + W ζℓ− 2,Λ

ℓ− 2
􏼐 􏼑

2(Δζ)
2 u − ζℓ− 2( 􏼁 u − ζℓ− 1( 􏼁⎞⎠du.

(61)

Simple computations yield
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Λp+1
� Λ0 +

1 − α
ABC(α)

W ζp,Λ ζp􏼐 􏼑􏼐 􏼑

+
α

ABC(α)Γ(α)
􏽘

p

ι�2
􏽚
ζι+1

ζι
ζp+1 − u􏼐 􏼑

α− 1
W ζℓ− 2,Λ

ℓ− 2
􏼐 􏼑du + 􏽚

ζι+1

ζι
ζp+1 − u􏼐 􏼑

α− 1 W ζℓ− 1,Λ
ℓ− 1

􏼐 􏼑 − W ζℓ− 2,Λ
ℓ− 2

􏼐 􏼑

Δζ
u − ζℓ− 2( 􏼁du

⎧⎨

⎩

+ 􏽚
ζι+1

ζι
ζp+1 − u􏼐 􏼑

α− 1 W ζℓ,Λ
ℓ

􏼐 􏼑 − 2W ζℓ− 1,Λ
ℓ− 1

􏼐 􏼑 + W ζℓ− 2,Λ
ℓ− 2

􏼐 􏼑

2(Δζ)
2 u − ζℓ− 2( 􏼁 u − ζℓ− 1( 􏼁du}.

(62)
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Figure 1: (a) Displays of susceptible individuals S(ζ) (b) Displays of exposed individuals E(ζ) using a Newton polynomial approach for
decreasing fractional-order α and increasing fractal-dimension ℘.
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Figure 2: (a) Displays of addicted individuals A(ζ) (b) Displays of recovered individuals R(ζ) using a Newton polynomial approach for
decreasing fractional-order α and increasing fractal-dimension ℘.
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Note that

Λp+1
� Λ0 +

1 − α
ABC(α)

W ζp,Λ ζp􏼐 􏼑􏼐 􏼑

+
α

ABC(α)Γ(α)
􏽘

p

ι�2
W ζℓ− 2,Λ

ℓ− 2
􏼐 􏼑 􏽚

ζι+1

ζι
ζp+1 − u􏼐 􏼑

α− 1
du

+
α

ABC(α)Γ(α)
􏽘

p

ι�2

W ζℓ− 1,Λ
ℓ− 1

􏼐 􏼑 − W ζℓ− 2,Λ
ℓ− 2

􏼐 􏼑

Δζ

􏽚
ζι+1

ζι
ζp+1 − u􏼐 􏼑

α− 1
u − ζℓ− 2( 􏼁du

+
α

ABC(α)Γ(α)
􏽘

p

ι�2

W ζℓ,Λ
ℓ

􏼐 􏼑 − 2W ζℓ− 1,Λ
ℓ− 1

􏼐 􏼑 + W ζℓ− 2,Λ
ℓ− 2

􏼐 􏼑

2(Δζ)
2

􏽚
ζι+1

ζι
ζp+1 − u􏼐 􏼑

α− 1
u − ζℓ− 2( 􏼁 u − ζℓ− 1( 􏼁du.

(63)

Using the fact that

􏽚
ζι+1

ζι
ζp+1 − u􏼐 􏼑

α− 1
du �

(Δζ)
α

(p − ι + 1)
α

− (p − ι)α􏼈 􏼉

α
,

􏽚
ζι+1

ζι
u − ζι− 2( 􏼁 ζp+1 − u􏼐 􏼑

α− 1
du �

(Δζ)
α+1

(p − ι + 1)
α
(p − ι + 2α + 3) − (p − ι + 1)

α
(p − ι + 3α + 3)􏼈 􏼉

α(α + 1)
,

􏽚
ζι+1

ζι
ζp+1 − u􏼐 􏼑

α− 1
u − ζℓ− 2( 􏼁 u − ζℓ− 1( 􏼁du �

(Δζ)
α+2

α(α + 1)(α + 2)

× (p − ι + 1)
α 2(p − ι)2 +(3α + 10)(p − ι) + 2α2 + 9α + 12􏽨 􏽩 − (p − ι)α 2(p − ι)2 +(5α + 10)(p − ι) + 6α2 + 18α + 12􏽨 􏽩􏽮 􏽯.

(64)

Furthermore, we have

Λp+1 � Λ0 +
1 − α

ABC(α)
W ζp,Λ ζp􏼐 􏼑􏼐 􏼑

+
α(Δζ)

α

ABC(α)Γ(α + 1)
􏽘

p

ι�2
W ζℓ− 2,Λ

ℓ− 2
􏼐 􏼑 (p − ι + 1)

α
− (p − ι)α􏼈 􏼉

+
α(Δζ)

α

ABC(α)Γ(α + 2)
􏽘

p

ι�2
W ζℓ− 1,Λ

ℓ− 1
􏼐 􏼑 − W ζℓ− 2,Λ

ℓ− 2
􏼐 􏼑􏽮 􏽯

× (p − ι + 1)
α
(p − ι + 2α + 3) − (p − ι + 1)

α
(p − ι + 3α + 3)􏼈 􏼉

+
α(Δζ)

α

2ABC(α)Γ(α + 2)
􏽘

p

ι�2
W ζℓ,Λ

ℓ
􏼐 􏼑 − 2W ζℓ− 1,Λ

ℓ− 1
􏼐 􏼑 + W ζℓ− 2,Λ

ℓ− 2
􏼐 􏼑􏽮 􏽯

× (p − ι + 1)
α 2(p − ι)2 +(3α + 10)(p − ι) + 2α2 + 9α + 12􏽨 􏽩􏽮

− (p − ι)α 2(p − ι)2 +(5α + 10)(p − ι) + 6α2 + 18α + 12􏽨 􏽩}.

(65)

(erefore, a general approximate solution of the SMA is
as follows:
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Figure 3: Displays of individuals who quit or not usingQ(ζ) social
media using a Newton polynomial approach for decreasing frac-
tional-order α and increasing fractal-dimension ℘.
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Figure 4: (a) Displays of susceptible individuals S(ζ) (b) Displays of exposed individuals E(ζ) using a Newton polynomial approach for
decreasing fractional-order α and fractal-dimension ℘ � 0.7.
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Figure 5: (a) Displays of addicted individuals A(ζ) (b) Displays of recovered individuals R(ζ) using a Newton polynomial approach for
decreasing fractional-order α and fractal-dimension ℘ � 0.7.
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Λp+1 � Λ0 +
1 − α

ABC(α)
℘ζ℘− 1p W ζp􏼐 ,Λ ζp􏼐 􏼑

+
α(Δζ)

α

ABC(α)Γ(α + 1)
􏽘

p

ι�2
℘ζ℘− 1ι− 2 W ζℓ− 2,Λ

ℓ− 2
􏼐 􏼑 (p − ι + 1)

α
− (p − ι)α􏼈 􏼉

+
℘α(Δζ)

α

ABC(α)Γ(α + 2)
􏽘

p

ι�2
ζ℘− 1ι− 1 W ζℓ− 1,Λ

ℓ− 1
􏼐 􏼑 − ζ℘− 1ι− 2 W ζℓ− 2,Λ

ℓ− 2
􏼐 􏼑􏽮 􏽯

× (p − ι + 1)
α
(p − ι + 2α + 3) − (p − ι + 1)

α
(p − ι + 3α + 3)􏼈 􏼉

+
℘α(Δζ)

α

2ABC(α)Γ(α + 2)
􏽘

p

ι�2
ζ℘− 1ι W ζℓ,Λ

ℓ
􏼐 􏼑 − 2t

℘− 1
ι− 1 W ζℓ− 1,Λ

ℓ− 1
􏼐 􏼑 + ζ℘− 1ι− 2 W ζℓ− 2,Λ

ℓ− 2
􏼐 􏼑􏽮 􏽯

× (p − ι + 1)
α 2(p − ι)2 +(3α + 10)(p − ι) + 2α2 + 9α + 12􏽨 􏽩 − (p − ι)α 2(p − ι)2 +(5α + 10)(p − ι) + 6α2 + 18α + 12􏽨 􏽩􏽮 􏽯.

(66)

4.3. New numerical technique for SMA FF-AB derivative
model. (e objective of this task is to provide a structured

approach technique for interacting with the (1) social media
framework, using the FF operator in the Atangana-Baleanu
context. converting the (2) system to the FF-Atangana-
Baleanu derivative configuration as follows:

ABRDα,℘
0,ζ (S(ζ)) � ℘ζ℘− 1

F1(S,E,A,R,Q, ζ),
ABRDα,℘

0,ζ (E(ζ)) � ℘ζ℘− 1
F2(S,E,A,R,Q, ζ),

ABRDα,℘
0,ζ (A(ζ)) � ℘ζ℘− 1

F3(S,E,A,R,Q, ζ),
ABRDα,℘

0,ζ (R(ζ)) � ℘ζ℘− 1
F4(S,E,A,R,Q, ζ),

ABRD
α,℘
0,ζ (Q(ζ)) � ℘ζ℘− 1

F5(S,E,A,R,Q, ζ).

(67)

Employing the AB fractional integral operator, the
preceding conclusions were made as
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Figure 6: Displays of individuals who quit or not using Q(ζ) using a Newton polynomial approach for decreasing fractional-order α and
fractal-dimension ℘ � 0.7.
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S(ζ) � S(0) +
℘ζ℘− 1

(1 − α)

ABC(α)
F1(S,E,A,R,Q, ζ)

+
α℘

ABC(α)Γ(α)
􏽚
ζ

0
ξ℘− 1

(ζ − ξ)
α− 1

F1(S,E,A,R,Q, ζ)dξ,

E(ζ) � E(0) +
℘ζ℘− 1

(1 − α)

ABC(α)
F2(S,E,A,R,Q, ζ)

+
α℘

ABC(α)Γ(α)
􏽚
ζ

0
ξ℘− 1

(ζ − ξ)
α− 1

F2(S,E,A,R,Q, ζ)dξ,

A(ζ) � A(0) +
℘ζ℘− 1

(1 − α)

ABC(α)
F3(S,E,A,R,Q, ζ)

+
α℘

ABC(α)Γ(α)
􏽚
ζ

0
ξ℘− 1

(ζ − ξ)
α− 1

F3(S,E,A,R,Q, ζ)dξ,

R(ζ) � R(0) +
℘ζ℘− 1

(1 − α)

ABC(α)
F4(S,E,A,R,Q, ζ)

+
α℘

ABC(α)Γ(α)
􏽚
ζ

0
ξ℘− 1

(ζ − ξ)
α− 1

F4(S,E,A,R,Q, ζ)dξ,

Q(ζ) � Q(0) +
℘ζ℘− 1

(1 − α)

ABC(α)
F5(S,E,A,R,Q, ζ)

+
α℘

ABC(α)Γ(α)
􏽚
ζ

0
ξ℘− 1

(ζ − ξ)
α− 1

F5(S,E,A,R,Q, ζ)dξ.

(68)

At ζn+1, We obtain the below

Sn+1
(ζ) � S(0) +

℘ζ℘− 1
(1 − α)

ABC(α)
F1 Sn,En

,An
,Rn

,Qn
, ζn( 􏼁

+
α℘

ABC(α)Γ(α)
􏽚
ζn+1

0
ξ℘− 1 ζn+1 − ξ( 􏼁

α− 1
F1(S,E,A,R,Q, ξ)dξ,

En+1
(ζ) � E(0) +

℘ζ℘− 1
(1 − α)

ABC(α)
F2 Sn,En

,An
,Rn

,Qn
, ζn( 􏼁

+
α℘

ABC(α)Γ(α)
􏽚
ζn+1

0
ξ℘− 1 ζn+1 − ξ( 􏼁

α− 1
F2(S,E,A,R,Q, ξ)dξ,

An+1
(ζ) � A(0) +

℘ζ℘− 1
(1 − α)

ABC(α)
F3 Sn,En

,An
,Rn

,Qn
, ζn( 􏼁

+
α℘

ABC(α)Γ(α)
􏽚
ζn+1

0
ξ℘− 1 ζn+1 − ξ( 􏼁

α− 1
F3(S,E,A,R,Q, ξ)dξ,

Rn+1
(ζ) � R(0) +

℘ζ℘− 1
(1 − α)

ABC(α)
F4 Sn,En

,An
,Rn

,Qn
, ζn( 􏼁

+
α℘

ABC(α)Γ(α)
􏽚
ζn+1

0
ξ℘− 1 ζn+1 − ξ( 􏼁

α− 1
F4(S,E,A,R,Q, ξ)dξ,

Qn+1
(ζ) � Q(0) +

℘ζ℘− 1
(1 − α)

ABC(α)
F5 Sn,En

,An
,Rn

,Qn
, ζn( 􏼁

+
α℘

ABC(α)Γ(α)
􏽚
ζn+1

0
ξ℘− 1 ζn+1 − ξ( 􏼁

α− 1
F5(S,E,A,R,Q, ξ)dξ.

(69)

(69) has been modified significantly, yielding the following
results:
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Figure 7: (a) Displays of susceptible individuals S(ζ) (b) Displays of exposed individuals E(ζ) using a Newton polynomial approach for
decreasing fractal-dimension ℘ and fixed α � 0.7.
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Sn+1
(ζ) � S(0) +

℘ζ℘− 1
(1 − α)

ABC(α)
F1 Sn,En

,An
,Rn

,Qn
, ζn( 􏼁

+
α℘

ABC(α)Γ(α)
􏽘
n

ℓ�0
∈ζζℓ+1ζℓ

ξ℘− 1 ζn+1 − ξ( 􏼁
α− 1

F1(S,E,A,R,Q, ξ)dξ ,

En+1
(ζ) � E(0) +

℘ζ℘− 1
(1 − α)

ABC(α)
F2 Sn,En

,An
,Rn

,Qn
, ζn( 􏼁

+
α℘

ABC(α)Γ(α)
􏽘

n

ℓ�0
∈ζζℓ+1ζℓ

ξ℘− 1 ζn+1 − ξ( 􏼁
α− 1

F2(S,E,A,R,Q, ξ)dξ ,

An+1
(ζ) � A(0) +

℘ζ℘− 1
(1 − α)

ABC(α)
F3 Sn,En

,An
,Rn

,Qn
, ζn( 􏼁

+
α℘

ABC(α)Γ(α)
􏽘
n

ℓ�0
∈ζζℓ+1ζℓ

ξ℘− 1 ζn+1 − ξ( 􏼁
α− 1

F3(S,E,A,R,Q, ξ)dξ ,

Rn+1
(ζ) � R(0) +

℘ζ℘− 1
(1 − α)

ABC(α)
F4 Sn,En

,An
,Rn

,Qn
, ζn( 􏼁

+
α℘

ABC(α)Γ(α)
􏽘

n

ℓ�0
∈ζζℓ+1ζℓ

ξ℘− 1 ζn+1 − ξ( 􏼁
α− 1

F4(S,E,A,R,Q, ξ)dξ ,

Qn+1
(ζ) � Q(0) +

℘ζ℘− 1
(1 − α)

ABC(α)
F5 Sn,En

,An
,Rn

,Qn
, ζn( 􏼁

+
α℘

ABC(α)Γ(α)
􏽘
n

ℓ�0
∈ζζℓ+1ζℓ

ξ℘− 1 ζn+1 − ξ( 􏼁
α− 1

F5(S,E,A,R,Q, ξ)dξ .

(70)
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Figure 8: (a) Displays of addicted individuals S(ζ) (b) Displays of recovered individuals E(ζ) using a Newton polynomial approach for
decreasing fractal-dimension ℘ and fixed α � 0.7.
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Figure 9: Displays of individuals who quit or not using Q(ζ)

employing the Newton polynomial approach for decreasing fractal-
dimension ℘ and fixed α � 0.7.
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Moreover, implementing
ξα− 1

Fι(S,E,A,R,Q, ξ)forι � 1, 2, . . . , 5 to describe the
expressions in (70), in the defined interval [ζℓ, ζℓ+1], the
relevant numerical strategy is constructed as

Sn+1
(ζ) � S(0) +

℘ζ℘− 1
(1 − α)

ABC(α)
F1 Sn,En

,An
,Rn

,Qn
, ζn( 􏼁

+
(Δζ)

α℘
ABC(α)Γ(α + 2)

􏽘

n

ℓ�0
ζα− 1
ℓ F1 Sℓ,Eℓ

,Aℓ
,Rℓ

,Qℓ
, ζℓ􏼐 􏼑􏽮 􏽯 × (n + 1 − ℓ)α(n − ℓ + 2α) − (n − ℓ)α(n − ℓ + 2 + 2α)( 􏼁 − ζ℘− 1ℓ− 1F1 Sℓ− 1

,Eℓ− 1
,Aℓ− 1

,Rℓ− 1
,Qℓ− 1

, ζℓ− 1􏼐 􏼑􏽮 􏽯 × (n + 1 − ℓ)α+1
− (n − ℓ)α(n − ℓ + 1 + α)􏼐 􏼑􏽮 􏽯,

En+1
(ζ) � E(0) +

℘ζ℘− 1
(1 − α)

ABC(α)
F2 Sn,En

,An
,Rn

,Qn
, ζn( 􏼁

+
(Δζ)

α℘
ABC(α)Γ(α + 2)

􏽘

n

ℓ�0
ζα− 1
ℓ F2 Sℓ,Eℓ

,Aℓ
,Rℓ

,Qℓ
, ζℓ􏼐 􏼑􏽮 􏽯 × (n + 1 − ℓ)α(n − ℓ + 2α) − (n − ℓ)α(n − ℓ + 2 + 2α)( 􏼁 − ζ℘− 1ℓ− 1F2 Sℓ− 1

,Eℓ− 1
,Aℓ− 1

,Rℓ− 1
,Qℓ− 1

, ζℓ− 1􏼐 􏼑􏽮 􏽯 × (n − ℓ + 1)
α+1

− (n − ℓ)α(n − ℓ + 1 + α)􏼐 􏼑􏽮 􏽯,

An+1
(ζ) � A(0) +

℘ζ℘− 1
(1 − α)

ABC(α)
F3 Sn,En

,An
,Rn

,Qn
, ζn( 􏼁

+
(Δζ)

α℘
ABC(α)Γ(α + 2)

􏽘
n

ℓ�0
ζα− 1
ℓ F3 Sℓ,Eℓ

,Aℓ
,Rℓ

,Qℓ
, ζℓ􏼐 􏼑􏽮 􏽯 × (n + 1 − ℓ)α(n − ℓ + 2α) − (n − ℓ)α(n − ℓ + 2 + 2α)( 􏼁 − ζ℘− 1ℓ− 1F3 Sℓ− 1

,Eℓ− 1
,Aℓ− 1

,Rℓ− 1
,Qℓ− 1

, ζℓ− 1􏼐 􏼑􏽮 􏽯 × (n − ℓ + 1)
α+1

− (n − ℓ)α(n − ℓ + 1 + α)􏼐 􏼑􏽮 􏽯,

Rn+1
(ζ) � R(0) +

℘ζ℘− 1
(1 − α)

ABC(α)
F4 Sn,En

,An
,Rn

,Qn
, ζn( 􏼁

+
(Δζ)

α℘
ABC(α)Γ(α + 2)

􏽘

n

ℓ�0
ζα− 1
ℓ F4 Sℓ,Eℓ

,Aℓ
,Rℓ

,Qℓ
, ζℓ􏼐 􏼑􏽮 􏽯 × (n + 1 − ℓ)α(n − ℓ + 2α) − (n − ℓ)α(n − ℓ + 2 + 2α)( 􏼁 − ζ℘− 1ℓ− 1F4 Sℓ− 1

,Eℓ− 1
,Aℓ− 1

,Rℓ− 1
,Qℓ− 1

, ζℓ− 1􏼐 􏼑􏽮 􏽯 × (n − ℓ + 1)
α+1

− (n − ℓ)α(n − ℓ + 1 + α)􏼐 􏼑􏽮 􏽯,

(71)

Qn+1
(ζ) � Q(0) +

℘ζ℘− 1
(1 − α)

ABC(α)
F5 Sn,En

,An
,Rn

,Qn
, ζn( 􏼁 +

(Δζ)
α℘

ABC(α)Γ(α + 2)
􏽘

n

ℓ�0
ζα− 1
ℓ F5 Sℓ,Eℓ

,Aℓ
,Rℓ

,Qℓ
, ζℓ􏼐 􏼑􏽮 􏽯 × (n + 1 − ℓ)α(n − ℓ + 2α) − (n − ℓ)α(n − ℓ + 2 + 2α)( 􏼁􏽮

− ζ℘− 1ℓ− 1F5 Sℓ− 1
,Eℓ− 1

,Aℓ− 1
,Rℓ− 1

,Qℓ− 1
, ζℓ− 1􏼐 􏼑􏽮 􏽯 × (n − ℓ + 1)

α+1
− (n − ℓ)α(n − ℓ + 1 + α)􏼐 􏼑}.

(72)

5. Numerical results and description

In this part, we exhibit simulation results for the FF de-
rivative operator for the SMA model (2) assuming the
numerical methods proposed by [34], as mentioned

previously. Such numeric findings are obtained using non-
negative factors, as indicated in Table 1. We examine a FF
SMA model, including the Atangana-Baleanu approach in
the Caputo context, to demonstrate the reliability and
usefulness of the new efficient and Newton polynomial
approach. We can effortlessly acquire approximate methods
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Figure 10: (a) Displays of susceptible individuals S(ζ) (b) Displays of exposed individuals E(ζ) using an another numerical approach for
decreasing fractional-order α and fixed fractal-dimension ℘ � 1.
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for it using new efficient and Newton polynomial approach.
(e primary goal of this review is to identify individuals who
are vulnerable and exposed to various fractional Brownian
patterns as well as classical motion.(e simulation results of
the scheme (2) for various Brownian motions are
α � 1.0, 0.9, 0.8, 0.7, 0.6, 0.5 are presented in Figure11(a)-
1(b), Figure 2(a)-2(b) and Figure 3(a)-3(b). As seen in
Figure 1(a), the susceptible group diminishes as fractional
orders increase and reach 1 while increasing the fractal-
dimension ℘, and finally remains consistent including all
Brownian motion at S � 8.1212. Furthermore, when E �

0.0450 and A � 0.0104, Figure 1(b) and Figure 2(a) illustrate
that the unprotected and addictive groups rise dramatically
and decline, respectively, exhibiting behaviour of different
fractional orders eventually reaching 1. When R � 0.0236
and Q � 1.7517, Figure 2(b) and Figure 3 indicate that the
community of individuals who are rehabilitated and con-
sistently do not utilize and discontinue using SM signifi-
cantly improves and drops, respectively, using multiple
fractional-orders changes, reaching 1.

In a similar way, we can discuss the behaviour of
Figure 4(a)-4(b), Figure 5(a)-5(b) and Figure 6(a)-6(b), by
incorporating the values of λ � 0.5, the induced mortality
rate of 0.05 and κ � 0.06 via the FF operator in the Atan-
gana-Baleanu sense. In this case, the graphical representa-
tion has a lower fractional-order α while keeping the fractal-
dimension ℘ � 0.7 constant. (e fundamental target of this
article is that subtle improvements in the fractional deriv-
ative order have no impact on the general behaviour of the
consequent structures; simply simulation studies are altered.

Figure 7(a)-7(b), Figure 8(a)-8(b) and Figure 9(a)-9(b)
demonstrates that the percentage of unprotected people
appears to have decreased in the first two years, but affected
people revert to utilizing social platforms owing to the
scheme’s ineffectiveness via FF derivative operator in the
Atangana-Baleanu sense. In this case, the graphical repre-
sentation has a lower fractal-dimension ℘ while retaining a
constant fractional-order α � 0.7. As a result, fighting SMA

in the community is ineffective.
As shown in Figure 10(a)-10(b), Figure 11(a)-11(b) and

Figure 12(a)-12(b), the proportion of affected and intoxi-
cated people was diminished when the method was used
against no approach within the FF derivative operator in the
Atangana-Baleanu sense. (e graphical illustration in this
approach has a lower fractional-order α while maintaining a
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Figure 11: (a) Displays of addicted individuals S(ζ) (b) Displays of recovered individuals E(ζ) using a another numerical approach for
decreasing fractional-order α and fixed fractal-dimension ℘ � 1.
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Figure 12: Displays of individuals who quit or not using Q(ζ)

applying an another numerical approach for decreasing fractional-
order α and fixed fractal-dimension ℘ � 1.
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constant fractal-dimension ℘ � 1. (e proposed technique
appears to be efficacious in diminishing dependency load
during the implementation, and hence can be considered an
ideal contender for managing the stress of SMA.

6. Conclusion

In this investigation, we presented a mathematical
framework for the prevalence and distribution of the SMA

model, including the fractal-fractional derivative operator
in the Atangana-Baleanu sense. According to the analysis,
the system’s disease-free equilibrium is locally asymptoti-
cally stable when the R0 < 1, but generally unstable. (e
stability of equilibria points was explored utilizing R0.
Bifurcation investigation shows that the model demon-
strates forward bifurcation at R0 � 1. Furthermore, this
study proposes two effective mathematical approaches for
numerically solving a fractional SMA model in the fractal-
fractional derivatives perspective. One initial approach
relies on product integration formulation, while the other is
focused on the numeric Newton polynomial approach.
When the obtained simulations from the two methodol-
ogies are compared, it is clear that their respective be-
haviour in fixing the challenges is remarkably analogous.
(e findings demonstrate that our generated results are in
close harmony with the precise outcomes. In a simulation
study, the responses from the two different techniques
exhibit the same behaviour for fractional order and fractal-
dimension. Such mathematical approaches can also be
leveraged to generate analytical results for other complex
scientific systems of any complexity. (e numerical be-
haviours produced by the aforesaid approaches are per-
fectly compatible with the model’s projected rational
behaviour. [30–34].
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