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One of the mathematical programming techniques is data envelopment analysis (DEA), which is used for evaluating the efficiency
of a set of similar decision-making units (DMUs). Fixed resource allocation and target setting with the help of DEA is a subject that
has gained much attention from researchers. A new model was proposed by determining a common set of weights (CSW). All
DMUs were involved with the aim of achieving higher efficiency in every DMU after the procedure. ,e minimum resources and
targets allocated to each DMUwere commensurate to the efficiency of that DMU and the share of DMU in the input resources and
the output productions. To examine the proposed method, other methods in the DEA literature were examined as well, and then,
the efficiency of the method was demonstrated through a numerical example.

1. Introduction

,e original concepts related to DEA were first introduced in
1978 by Charnes et al. [1] and rapidly gained popularity
among researchers. By introducing the CCR model, Charnes
was able to present a novel method for efficiency measure-
ment in units. A topic that has been of interest to researchers
is fixed resource allocation and target setting using DEA.

To reduce the costs, the subsidiaries of an organization are
forced to cooperate with each other. ,e costs allocated to the
infrastructure are called fixed costs. Another issue that can be
discussed in an organization is the method used for fixed
resource allocation and target setting. Let us assume that a
given organization has limited resources and wants to allocate
those resources to its subsidiaries and set targets for them
based on their performance. Now, the questions would be
how to allocate the resources to the subsidiaries in an eq-
uitable manner and how to carry out the target setting.

In 1999, Cook and Cross [2] introduced the two axioms of
invariance-efficiency and Pareto-minimality and studied the
input in the fixed resource allocation problem. In the method

proposed by them based on these two axioms, only the equi-
tability of the resource allocation was taken into consideration.

,e method provided by Cook and Kress [2] was gen-
eralized from input-oriented to output-oriented conditions
and from CCR to BCC model by Cook and Zhu [3]. Lin [4]
proved that no optimal solution would be obtained by adding
certain constraints to themethod of Cook and Zhu [3]. Lin [4]
added some specified purposes to their model to improve this
situation and achieve the possible allocation.

In 2003, Beasly [5] presented a nonlinear method that
maximized the average efficiency of all DMUs. Amirteimoori
and Kordrostami [6] indicated that Beasley’s method is not
possible in some cases. Accordingly, they introduced a new
DEA-based method for targeting and also allocating the fixed
resources. In 2017, Jahanshahloo [7] et al. used the concept of
CSW and the efficiency invariance axiom to present another
method for fixed resource allocation. Furthermore, Jahan-
shahloo et al. [7] demonstrated that Beasley’s [5]method, which
was claimed impossible by Amirteimoori and Kordrostami [6],
is always possible. Li et al. [8] extended the work carried out by
Jahanshahloo et al. [7].
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In 2004, using primary and dual problems, Jahanshahloo
et al. [9] presented a formula that determined the fixed cost for
each DMUwithout the need to solve any linear problems. In the
meantime, Li et al. [10] viewed the problem of fixed resource
allocation fromadifferent perspective.,ey assumed that if there
are any other costs as well, the allocated fixed costs shall then be
added to these costs. Furthermore, in 2014, Du [11] carried out
resource allocation using the concept of cross efficiency.

Hosseinzadeh et al. [12] introduced a model using in-
variance-efficiency principle where eachDMUdetermines the
minimum and maximum value that can participate in re-
ceiving fixed resources. ,en, the convex combination of
these values is considered as the fixed allocated resources. ,e
resource allocation was conducted by Asgharinia et al. [13]
using CSW. Amirteimoori et al. [14] and Hosseinzadeh et al.
[15] studied resource allocation and targeting with the CSW.

In the CSW method, the ratio of weighted outputs to
weighted inputs is simultaneously maximized for all DMUs.
,ompson et al. [16,17], Cook et al. [18], Charnes et al. [19],
and Roll et al. [20] have studied some of the CSW concepts.
Jahanshahloo et al. [21, 22] introduced amultiobjective model
for efficiency measurement through the CSW method in one
study. Moreover, in another study, using the infinity norm,
they proposed a nonlinear method for solving the CSW
model. Furthermore, Cook and Zhu [23] utilized goal pro-
gramming to solve the CSW model, and Davoodi and Rezai
[24] suggested a linear method for the same purpose.
Kachouei et al. [25] used CSW to efficiency evaluation in DEA
with undesirable outputs when data is fuzzy.

,e technique proposed in the current manuscript con-
siders certain conditions that force the participation of all
DMUs in the resource allocation and target setting. Imagine
that a company wants to provide some resources to its
subsidiaries in order for them to produce new products, while
the amount of resources allocated to each subsidiary is to be in
accordance with the performance of that subsidiary and its
inputs relative to the inputs of the other subsidiaries [26–28].
Moreover, the company intends to set a target for each
subsidiary based on its efficiency and its outputs relative to the
outputs of the other subsidiaries [29–31]. In this manuscript,
we consider the fixed resources as an additional input and the
target setting as an output, and then using a CSW, we present a
model that, while including all DMUs in the resource allo-
cation and target setting, ensures that, after the procedure, the
efficiency of all DMUs would be the same as before or higher.

Section 2 is devoted to basic models used in this paper.
Section 3 describes the novel method proposed in this paper.
In Section 4, the novel method is applied to a numerical
example. And finally, Section 5 is dedicated to the con-
clusions and recommendations.

2. Background

,is segment describes CCR model. ,en, we present the
CSW model.

2.1. CCR Model. Assume that xij (i � 1, . . . , m) and
yrj (r � 1, . . . , s) are the inputs and outputs consumed
and produced by DMUj (j � 1, . . . , n), respectively. Also,

let v be the weight related to the inputs and u the weight
related to the outputs. CCR model [1] is as follows:

θ∗o � max􏽘
s

r�1
uryro,

s.t: 􏽘
m

i�1
vixio � 1,

􏽘

s

r�1
uryrj − 􏽘

m

i�1
vixij ≤ 0, j � 1, . . . , n

ur, vi ≥ 0, r � 1, . . . , s i � 1, . . . , m.

(1)

Definition 1. (CCR efficiency).
DMUo is CCR-efficient if θ∗o � 1 and there exists at least

one optimal (u∗, v∗) with u∗ > 0 and v∗ > 0. Otherwise,
DMUo is CCR-inefficient.

2.2. Common Set ofWeights (CSW)Model. Model 1 must be
solved n times to assess n DMUs. Model 1 is assessed
through the best weights. To resolve this problem and obtain
just a CSW for all DMUs and evaluate all DMUs based on a
CSW, the CSW model can be used as follows [22]:

Max
􏽐

s
r�1 uryr1

􏽐
m
i�1 vixi1

,
􏽐

s
r�1 uryr2

􏽐
m
i�1 vixi2

, . . . ,
􏽐

s
r�1 uryrn

􏽐
m
i�1 vixin

􏼨 􏼩,

s.t:

􏽐
s
r�1 uryrj

􏽐
m
i�1 vixij

≤ 1, i � 1, . . . , n,

ur, vi ≥ ε, i � 1, . . . , n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

Different methods have been proposed for solving this
multiobjective fractional model (2). Goal programming (GP)
is one of these methods [32–35]. In goal programming, the
decision maker specifies certain levels for achieving the ob-
jectives. Moreover, the decision maker allows deviation from
the goals and, therefore, creates flexibility in the decision-
making process. Also, the objective function seeks tominimize
the undesirable deviations. Based on the GP method, model
(2) can be transformed into the following nonlinear model in
order to identify a set of common weights:

Min 􏽘

n

j�1
s

−
j + s

+
j􏼐 􏼑,

s.t:

􏽐
s
r�1 uryrj

􏽐
m
i�1 vixij

+ s
−
j − s

+
j � Aj, z � 1, . . . , n,

􏽐
s
r�1 uryrj

􏽐
m
i�1 vixij

≤ 1 j � 1, . . . , n,

s
−
j , s

+
j ≥ 0, ur, vi ≥ ε, j � 1, . . . , n, i � 1, . . . , m, r � 1, . . . , s.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)
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where Aj denotes the goal of the j th objective. s−
j and s+

j are
negative and positive deviations from the objective, re-
spectively. Technically, the deviational variables s−

j and s+
j

help the objective function j to achieve the goal Aj � 1.
,ereby, the positive deviation is equal to zero here, i.e.,
s+

j � 0. ,us, the first constraint can be reformulated as
follows:

􏽘

s

r�1
uryrj + s

−
j 􏽘

m

i�1
vixij � 􏽘

m

i�1
vixij, j � 1, . . . , n. (4)

Considering the nonlinear constraint above, model (3)
cannot be transformed into a linear model. In order to
achieve the goal of DMUj (efficiency scores of one), the
numerator should increase in the fraction
􏽐

s
r�1 uryrj/􏽐

m
i�1 vixij while the denominator is decreased.

,erefore, model (3) can be reformulated as follows:

Min 􏽘
n

j�1
s

−
j + s

+
j􏼐 􏼑, s.t:

􏽐
s
r�1 uryrj + s

+
j

􏽐
m
i�1 vixij − s

−
j

� 1, j � 1, . . . , n,

􏽐
s
r�1 uryrj

􏽐
m
i�1 vixij

≤ 1, j � 1, . . . , n,

s
−
j , s

+
j ≥ 0, ur, vi ≥ ε, j � 1, . . . , n, i � 1, . . . , m, r � 1, . . . , s.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

Obviously, based on the first constraint of model (4), the
second constraint is redundant and can be removed from the
model. ,erefore, the model can be formulated in the fol-
lowing linear form:

Min 􏽘
n

j�1
s

−
j + s

+
j􏼐 􏼑,

s.t:
􏽘

s

r�1
uryrj − 􏽘

m

i�1
vixij + s

+
j + s

−
j􏼐 􏼑 � 0, j � 1, . . . , n,

s
−
j , s

+
j ≥ 0, ur, vi ≥ ε j � 1, . . . , n, i � 1, . . . , m, r � 1, . . . , s.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)
By setting s−

j + s+
j � sj, the model is transformed as

follows:

Min 􏽘

n

j�1
Sj,

s.t:
􏽘

s

r�1
uryrj − 􏽘

m

i�1
vixij + Sj􏼐 􏼑 � 0, j � 1, . . . , n,

Sj ≥ 0, ur, vi ≥ ε j � 1, . . . , n, i � 1, . . . , m, r � 1, . . . , s.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

If we let (u∗r , v∗i , s∗j ) be the optimal solution of
model (6), the CSW-efficiency of DMUj is calculated as
follows:

θcsw
∗

j �
􏽐

s
r�1 u
∗
r yrj

􏽐
m
i�1 v
∗
r yij

� 1 −
s
∗
j

􏽐
m
i�1 v
∗
i yij

, j � 1, . . . , n.

(8)

Definition 2. If θcsw∗O � 1, then DMUO is efficient with the
CSW resulting from model 2 and otherwise DMUO is in-
efficient of common weights.

3. Proposed Model

Assume that xij (i � 1, . . . , m) and yrj (r � 1, . . . , s) are
the inputs and outputs consumed and produced by
DMUj (j � 1, . . . , n), respectively. Now, consider a fixed
resource F and a general target G that we want to equitably
allocate to the DMUs. We consider fj (j � 1, . . . , n) as the
variable related to fixed resources andgj (j � 1, . . . , n) as the
variable related to target setting in DM Uj. It is obvious that

􏽘

n

j�1
fj � F,

􏽘

n

j�1
gj � G.

(9)

,e efficiency score of DMUj when the resources are not
allocated and the target is not set is represented by θ∗j , which
is calculated using the multiplier CCR model. We consider
the fixed resource as an additional input with the weight
vm+1, and the target corresponding to DMUj as a new output
with the weight us+1. In our approach, we carry out the fixed
resource allocation and target setting in a way that the ef-
ficiency of each DMU after the procedure would be higher
than or the same as the previous efficiency. ,at is:

θ∗j ≤
􏽐

s
r�1 uryrj + us+1gj

􏽐
m
i�1 vixij + vm+1f, j � 1, . . . , n

. (10)
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We also intend to achieve maximum efficiency through a
CSW. ,erefore, our objective is

max
􏽐

s
r�1 uryr1 + us+1g1

􏽐
m
i�1 vixi1 + vm+1f1

, . . . ,
􏽐

s
r�1 uryrm + us+1gn

􏽐
m
i�1 vixin + vm+1fn

􏼨 􏼩. (11)

We believe that all DMUs must be involved in the re-
source allocation and target setting.,erefore, for each DMU,
we consider the least share in the allocated resources and the
set targets. If the share that each DMU has in the inputs is
multiplied by the efficiency of that DMU and the amount of
fixed resources, the resulting value can be considered as a
lower bound for the amount of fixed resources that DMU
should receive. Also, if the share that each DMU has in the
produced outputs is multiplied by the efficiency of that DMU
and the overall target, the obtained value can be considered as
a lower bound for target setting. To achieve our goals, we
proceed as follows:

If λj � 1/m 􏽐
m
i�1 xij/􏽐

n
t�1 xit and μj � 1/s 􏽐

m
r�1 yrj/

􏽐
n
t�1 yrt are the shares of DMUj in the input resources and

the produced outputs, respectively, and θ∗j stands for the
efficiency of DMUj prior to the allocation of fixed resources
and target setting, which is obtained using the multiplier
CCR model, then the minimum resources for DMUj would
be equal to θ∗j λjF, and the minimum target set for DMUj

would equal θ∗j μjG. ,is means that the minimum fixed
resources that each DMU would receive equals the amount
of inputs it has consumed multiplied by its efficiency in
achieving those inputs. Furthermore, the minimum target
set for each DMU is equal to its outputs and the efficiency
that it has had before fixed resource allocation. ,erefore,
any DMU that has a larger share in the inputs and can
achieve higher efficiency with those inputs needs to receive
more resources. And similarly, a higher target is set for any
DMU that has higher efficiency and a larger contribution in
the output generation. ,erefore, the general model is
formulated as follows:

max
􏽐

s
r�1 uryr1 + us+1g1

􏽐
m
i�1 vixi1 + vm+1f1

, . . . ,
􏽐

s
r�1 uryrm + us+1gn

􏽐
m
i�1 vixin + vm+1fn

􏼨 􏼩,

s.t: θ∗j ≤
􏽐

s
r�1 uryrj + us+1gj

􏽐
m
i�1 vixij + vm+1fj

≤ 1, j � 1, . . . , n,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(12a)

fj ≥ θ
∗
j λjF≤ j � 1, . . . , n, (12b)

gj ≥ θ
∗
j μjG, j � 1, . . . , n, (12c)

􏽘

n

j�1
fj � F, j � 1, . . . , n, (12d)

􏽘

n

j�1
gj � G, j � 1, . . . , n,

fj, gj, ur, vi, us+1, vm+1 ≥ ε,

j � 1, . . . , n, r � 1, . . . , s, i � 1, . . . , m.

(12e)

,e constraint (12a) assures that the efficiency of each
DMU after allocating the resources and targeting is more
than its efficiency before allocating the resources and tar-
geting. ,e constraint (12b) represents the minimum
amount allocated to the DMU. ,e constraint (12c) ensures
the participation of all DMUs in targeting. ,e constraints
(12d) and (12e) indicate that the total resources received and
the total objective designated are equal to the amount of
resources and the intended purpose of the decision maker,
respectively.

Theorem 1. Model (10) is bounded.

Proof. Suppose that (fj, gj, ur, vi, us+1, vm+1) is a feasible
solution for model (10). ,erefore, this answer applies to all
constraints of the matter. Hence, per j, we have

􏽐
s
r�1 uryrj + us+1gj

􏽐
m
i�1 vixij + vm+1fj

≤ 1. (13)

,is constraint represents that all objective functions of
the fractional multiobjective model (10) are less than or
equal to 1. On the other hand, since the objective function is
in the form of maximizing, the maximum possible value of
the objective function is less than or equal to 1. ,en, the
model is bounded.

Model 10 is a nonlinear multiobjective model. We
convert this model into a single-objective linear model. By
setting vm+1fj � fj

′ and us+1gj � gj
′ , model (10) would

change as follows:

max
􏽐

s
r�1 uryr1 + g1′

􏽐
m
i�1 vixi1 + f1′

, . . . ,
􏽐

s
r�1 uryrn + gn

′

􏽐
m
i�1 vixin + fn

′􏼨 􏼩,

s.t:

θ∗j ≤
􏽐

s
r�1 uryrj + g1′

􏽐
m
i�1 vixij + fj

′
≤ 1, j � 1, . . . , n,

fj
′ ≥ vm+1θ

∗
j λjF, j � 1, . . . , n,

gj
′ ≥ us+1θ

∗
j μjG, j � 1, . . . , n,

􏽘

n

j�1
fj
′ � vm+1F, j � 1, . . . , n,

􏽘

n

j�1
gj
′ � us+1G, j � 1, . . . , n,

fj
′, gj
′, ur, vi, us+1, vm+1 ≥ ε,

j � 1, . . . , n, r � 1, . . . , s, i � 1, . . . , m.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)
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Now, we change the multiobjective model into a linear
single-objective model that can help us achieve our goals. To
maximize the objective function, all we need to do is to

maximize the numerator and minimize the denominator. As
such, the proposed model can be rewritten as

max 􏽘
s

r�1
uryr1 + g1′ − 􏽘

m

i�1
vixi1 − f1′, . . . , 􏽘

s

r�1
uryrn + gn

′ − 􏽘
m

i�1
vixin − fn

′
⎧⎨

⎩

⎫⎬

⎭

s.t

􏽘

s

r�1
uryrj + gj

′ − 􏽘
m

i�1
vixij − fj

′ ≤ 0, j � 1, . . . , n,

s.t: 􏽘
s

r�1
uryrj + gj

′ − θ∗j 􏽘

m

i�1
vixij − θ∗j fj

′ ≥ 0, j � 1, . . . , n,

fj
′ ≥ vm+1θ

∗
j λjF, j � 1, . . . , n,

gj
′ ≥ us+1θ

∗
j μjG, j � 1, . . . , n,

􏽘

n

j�1
fj
′ � vm+1F, j � 1, . . . , n,

􏽘

n

j�1
gj
′ � us+1G, j � 1, . . . , n,

fj
′, gj
′, ur, vi, us+1, vm+1 ≥ ε, i � 1, . . . , m, r � 1, . . . , s, j � 1, . . . , n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

By converting the first constraint into an equation and
changing the Max to Min, model (15) would change as
follows:

min S1, . . . , Sn􏼈 􏼉,

s.t

􏽘

s

r�1
uryrj + gj

′ − 􏽘
m

i�1
vixij − fj

′ + Sj � 0, j � 1, . . . , n,

s.t: 􏽘
s

r�1
uryrj + gj

′ − θ∗j 􏽘

m

i�1
vixij − θ∗j fj

′ ≥ 0, j � 1, . . . , n,

fj
′ ≥ vm+1θ

∗
j λjF, j � 1, . . . , n,

gj
′ ≥ us+1θ

∗
j μjG j � 1, . . . , n,

􏽘

n

j�1
fj
′ � vm+1F, j � 1, . . . , n,

􏽘

n

j�1
gj
′ � us+1G, j � 1, . . . , n,

fj
′, gj
′, Sj ≥ 0, ur, vi, us+1, vm+1 ≥ ε, j � 1, . . . , n, r � 1, . . . , s, i � 1, . . . , m.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

Model (16) is a multiobjective model whose goal is to
minimize the covariates Sj. We convert the multiobjective

model to the single-objective model (17) using the goal
programming technique.
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min 􏽘
n

j�1
Sj,

s.t:

􏽘

s

r�1
uryrj + gj

′ − 􏽘
m

i�1
vixij − fj

′ + Sj � 0, j � 1, . . . , n

s.t: 􏽘
s

r�1
uryrj + gj

′ − θ∗j 􏽘

m

i�1
vixij − θ∗j fj

′ ≥ 0, j � 1, . . . , n

fj
′ ≥ vm+1θ

∗
j λjF, j � 1, . . . , n,

gj
′ ≥ us+1θ

∗
j μjG, j � 1, . . . , n,

􏽘

n

j�1
fj
′ � vm+1F, j � 1, . . . , n,

􏽘

n

j�1
gj
′ � us+1G, j � 1, . . . , n,

fj
′, gj
′, Sj ≥ 0ur, vi, us+1, vm+1 ≥ ε, j � 1, . . . , n, r � 1, . . . , s≤ i � 1, . . . , m.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

Model (17) is a single-objective linear model that we
employ to perform the resource allocation and
targeting. □

Theorem 2. A feasible solution to the model (17) is always
available.

Proof. By setting vm+1 � us+1 � ε, fj
′ � ελjF, and gj

′ � εμjG,
the constraints 4, 5, 6, and 7 are satisfied:

􏽘

n

j�1
fj
′ � 􏽘

n

j�1
ελjF � εF � vm+1F,

􏽘

n

j�1
gj
′ � 􏽘

n

j�1
εμjG � εG � us+1G,

vm+1θ
∗
j λjF≤ ε × 1 × λj × F � fj

′,

us+1θ
∗
j μjG≤ ε × 1 × μj × G � gj

′.

(18)

By setting ur � ε/β(α + F) and vi � ε, where

α � max
1≤j≤n

􏽘

m

i�1
xij,

β � min
1≤j≤n

􏽘

s

r�1
yrj,

(19)

the second constraint is also satisfied.

θ∗j 􏽘

m

i�1
vixij + θ∗j fj

′ � θ∗j 􏽘

m

i�1
vixij + fj

′⎛⎝ ⎞⎠≤ 1 × 􏽘
m

i�1
vixij + fj

′⎛⎝ ⎞⎠≤ εα + ελjF � ε α + λjF􏼐 􏼑

�
ε
β

α + λjF􏼐 􏼑β≤
ε
β

(α + F)􏽘
s

r�1
yrj � 􏽘

s

r�1
uryrj ≤􏽘

s

r�1
uryrj + gj

′.

(20)

Now, by setting

Sj � −
ε
β

(α + F)􏽘
s

r�1
yrj − μjG + ε􏽘

m

i�1
xij + λjF, j � 1, . . . , n,

(21)
the first constraint is also satisfied. □

Theorem 3. Using model (17) for allocation or resource and
setting target improve the efficiency.

Proof. Assume that (u∗r , v∗i , f′ ∗j , g′ ∗j , v∗m+1, u∗s+1) is the best
solution for the abovementioned model. ,erefore:
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θnewj �
􏽐

s
r�1 u
∗
r yrj + gj

′ ∗
􏽐

m
i�1 v
∗
r xij + fj

′ ∗
≥
θ∗j 􏽐

s
r�1 v
∗
i xij + θ∗j fj

′ ∗
􏽐

m
i�1 v
∗
i xij + fj

′ ∗
� θ∗j .

(22)
□

4. Examples

In this section, we will implement a numerical example and a
practical example for the proposed method.

4.1. Numerical Example. Here, for an in-depth comparison,
the fixed cost allocation problem of Cook and Kress [2] is
used as a numerical example in order to display the ap-
plication of the resource allocation and target setting ap-
proach. ,is information is given in Table 1. ,ere are 12
DMUs using 3 inputs to generate 2 outputs. Several studies
have used the same example, so it is considered as a key case
of resource allocation and target setting without any targets
to adjust. ,erefore, in this example, G � 0. ,e objective is
to allocate a common resource F � 100 (meaning a common
cost in this context).

,e column 4 of Table 2 provides the efficiency scores of
the DMUs calculated using the multiplier CCR model. ,e
efficiency calculations have been carried out using the
GAMS software. ,ese calculations merely took a few sec-
onds to finish.,e share of each DMU in the input resources
(λj) was calculated using EXCEL, which can be observed in
column three of the table. By implementing the proposed
model, the cost allocated to each DMU was determined, the
results of which are reported in column two of Table 2. And
finally, column 5 presents the performance of any DMU
following the fixed costs allocation.

,e largest contribution in paying the fixed costs is
related to DMU 12, which is an efficient DMU and the
second DMU with the highest share in the input resources.
,e lowest contribution is related to DMU 11, which is the
least efficient DMU and has a lower share in the inputs
compared with other DMUs. Among the efficient DMUs,
the lowest contribution in paying the fixed costs is related to
DMU5, because it has the lowest share in the input re-
sources. Among the inefficient DMUs, the largest contri-
bution belongs to DMU6, as it has the largest share in the
input resources [36–39]. DMUs 1 and 7 have the same share
in the inputs resources; however, DMU 7 is more efficient
than DMU 1, and as seen in column one of Table 2, DMU 7
has a larger contribution in paying the fixed costs. DMUs 10
and 12 also have the same share in the inputs, but the fixed
cost allocated to DMU 12 is greater than that of DMU 10.
,e reason is that DMU 12 is efficient, while DMU 10 is
inefficient. DMUs 9 and 11 also have the same share in the
input resources, but there is a large difference in the con-
tribution they make to the fixed costs. ,e reason is that
DMU 9 is an efficient DMU, while DMU 11 has the lowest
efficiency score among DMUs.Moreover, the efficiency of all
DMUs were improved after allocating the fixed costs, except
for DMU 7 whose efficiency did not change at all.

To illustrate some of the important specifications of the
proposed approach, the obtained results are compared with

a few other methods as well. ,e idea of resource allocation
based on common weights has been investigated by Beasley
[5], Hosseinzadeh et al. [15], Si et al. [40], and Li et al. [10].
All these methods take an approach to resource allocation in
which a CSW is determined aiming to achieve maximum
efficiency. ,e results of these comparisons are shown in
Table 3.

In the method proposed by Beasley [5], the largest
contribution in paying the fixed costs is related to DMU 9.
Although DMU 9 is an efficient DMU, it has a small share in
the use of input resources as compared with other DMUs.
Meanwhile, in our proposed method, the highest payout is
related to DMU 12, which is an efficient DMU and is the
second DMU with the highest share in the input resources.
In all methods, except Li et al. [10], the lowest contribution
to fixed costs is related to DMU 11, which has the lowest
efficiency score and the lowest share in the input resources.
In Li et al. [10], DMU 11 does have the lowest efficiency and
the lowest share in the inputs, but the contribution it makes
to the fixed costs is greater than that of DMU 9, which is an
efficient DMUwith a higher share thanDMU 11 in the use of
input resources. Meanwhile, according to our proposed
method, DMU 9 has higher contribution to the fixed costs
than DMU 11. In the method presented by Hosseinzadeh

Table 1: A simple example.

DMU x1 x2 x3 y1 y2

1 350 39 9 67 751
2 298 26 8 73 611
3 422 31 7 75 584
4 281 16 9 70 665
5 301 16 6 75 445
6 360 29 17 83 1070
7 540 18 10 72 457
8 276 33 5 78 590
9 323 25 5 75 1074
10 444 64 6 74 1072
11 323 25 5 25 350
12 444 64 6 10 1199

Table 2: Results.

DMU Fixed cost λj

CCR efficiency
Before After

1 7.529 0.093 0.757 1.000
2 7.985 0.074 0.923 1.000
3 7.436 0.084 0.747 1.000
4 8.363 0.068 1.000 1.000
5 7.647 0.058 1.000 1.000
6 10.908 0.113 0.961 1.000
7 7.972 0.093 0.860 0.860
8 8.203 0.068 1.000 1.000
9 10.487 0.064 1.000 1.000
10 9.208 0.111 0.832 0.959
11 2.140 0.064 0.333 1.000
12 12.122 0.111 1.000 1.000
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et al. [15], DMUs 7 and 11 make no contribution to the fixed
costs. DMUs 1 and 7 have the same share of input resources,
and DMU 7 has a higher efficiency score than DMU 1.
\However, in Hosseinzadeh et al. [15], DMU 7 has no con-
tribution in paying the fixed costs at all, while DMU 1 pays a
fixed cost equaling 8.199. In our proposed method, the fixed
costs paid by these two DMUs are extremely close to each
other, with DMU7 paying a slightly greater cost. Moreover, in
the method provided by Li et al. [10], DMU 3 has the second
highest contribution in paying the fixed costs, while it is in the
sixth place in terms of the input resources it receives;
therefore, it is an inefficient DMU. Furthermore, DMUs 4 and
5 are both efficient, but DMU4 has a larger share thanDMU5
in the use of input resources, although DMU 4 makes a

smaller contribution than DMU 5 in paying the fixed costs.
On the other hand, DMU 9, which is an efficient DMU, has a
lower contribution in paying the fixed costs.

4.2. AnEmpirical Example. Kao and Hwang [41] studied the
effect of information technology (IT) on the efficiency of
banks. We used the same data used in that study, which was
related to 27 banks, in order to demonstrate the capability of
our proposed method. ,e inputs included the IT budget
(X1), fixed assets (X2), and number of employees (X3), and
the outputs were the value of deposits (Y1) and profits
earned (Y2). Columns two to six of Table 4 present a list of
data sets.

Table 3: Allocations using common weights.

DMU Suggested method Beasly (2003) Si (2003) Hosseinzadeh (2013) Li (2017)
1 7.529 6.78 7.6475 8.199 8.7611
2 7.985 7.21 8.4118 7.462 7.8689
3 7.436 6.83 8.6216 4.284 9.9663
4 8.363 8.47 8.1091 9.301 6.9661
5 7.647 7.08 8.6938 4.807 7.4589
6 10.908 10.06 9.5669 15.370 8.6296
7 7.972 5.09 8.3333 0 8.3224
8 8.203 7.74 9.9628 7.339 7.7280
9 10.487 15.11 8.6505 16.330 7.5359
10 9.208 10.08 8.3457 11.598 8.8650
11 2.140 1.58 2.8032 0 7.5656
12 12.122 13.97 11.854 15.310 10.3291

Table 4: An empirical example.

DMU x1 x2 x3 y1 y2 fj gj θ θnew

1 0.150 0.713 13.3 14.478 0.232 1.709 0.567 0.602 0.845
2 0.170 1.071 16.9 19.502 0.340 2.347 0.805 0.607 0.886
3 0.235 1.224 24 20.952 0.363 2.243 0.696 0.490 0.783
4 0.211 0.363 24 13.902 0.211 1.129 0.356 0.404 0.652
5 0.133 0.409 15.6 15.206 0.237 1.736 0.618 0.633 0.857
6 0.497 5.846 18.485 81.186 1.103 12.116 4.869 1.000 1.000
7 0.060 0.918 56.42 81.186 1.103 10.599 4.869 1.000 1.000
8 0.071 1.235 12 11.441 0.199 1.253 0.325 0.418 0.712
9 1.500 18.12 89.51 124.072 1.858 15.209 3.308 0.424 0.668
10 0.120 1.821 19.8 17.425 0.274 1.838 0.454 0.404 0.663
11 0.120 1.915 19.8 17.425 0.274 1.833 18.790 0.440 1.000
12 0.050 0.874 13.1 14.342 0.177 1.691 0.465 0.396 0.725
13 0.370 6.918 12.5 32.491 0.648 4.400 0.929 0.565 0.731
14 0.440 4.432 41.9 47.653 0.636 5.611 1.389 0.390 0.691
15 0.431 4.504 41.1 52.63 0.741 6.461 1.744 0.543 0.744
16 0.110 1.241 14.4 17.493 0.243 2.126 0.605 0.571 0.768
17 0.053 0.450 7.6 9.512 0.067 1.175 0.294 0.667 0.668
18 0.345 5.892 15.5 42.469 1.002 5.950 1.897 0.552 0.990
19 0.128 0.973 12.6 18.987 0.243 2.465 0.816 0.737 0.847
20 0.055 0.444 5.6 7.546 0.153 0.952 0.367 0.658 1.000
21 0.057 0.508 5.7 7.595 0.123 0.951 0.308 0.619 0.862
22 0.098 0.370 14.1 16.906 0.233 2.085 0.794 0.778 0.898
23 0.104 0.395 14.6 17.264 0.263 2.120 0.837 0.746 0.933
24 0.206 2.680 19.6 36.43 0.601 4.913 1.709 0.710 0.935
25 0.067 0.781 10.5 11.581 0.120 1.363 0.337 0.547 0.663
26 0.100 0.872 12.1 22.207 0.248 3.019 1.122 0.920 0.887
27 0.0106 1.757 12.7 20.67 0.253 2.704 0.730 0.618 0.759
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First, we calculate the efficiency of the DMUs, as presented
in the ninth column of table. As can be observed in this
column, two DMUs are efficient. Now, assume that the board
of directors in a bank intend to allocate one hundred million
dollars of the resources available to them to different branches
for equipment updates, and expect that, as a result of this
allocation, a total of fifty million dollars be earned by the
different branches. Column seven shows the budget allocated
to each branch. In the tenth column, the target set for each
branch can be observed. As can be seen in these columns, all
DMUs are involved in the resource allocation and target
setting. In the last column, efficiency scores are calculated after
resource allocation and target setting. As can be observed in
the table, DMUs 6 and 7 were efficient before resource al-
location and target setting, and they are still efficient after the
allocation. Moreover, DMUs 11 and 20, which were inefficient
before allocation, have become efficient after the allocation.
According to the last two columns in the table, the efficiency of
all DMUs has either increased after resource allocation or
remained the same as before allocation. ,e number of effi-
cient DMUs has increased from 2 to 4. ,e lowest efficiency
score belongs to DMU 14. ,e highest amount of allocated
resources belongs to DMU 9, and as can be seen, it has the
highest amount of inputs and outputs among all DMUs. After
DMU 9, most of the allocated resources are related to DMUs 6
and 7, respectively, both of which are efficient. And they
remain efficient after allocating resources and setting targets.

,e lowest amount of allocated resources pertains to
DMU 21, which has a lower amount of inputs compared
with other DMUs. And then the lowest allocation belongs to
DMUs 20 and 4, respectively, both of which are inefficient.
DMU 11 has had the highest amount of changes in effi-
ciency, the reason for which can be related to the target set
for the DMU. DMUs 4 and 10 had the same efficiency before
allocation, but their efficiency scores changed after the re-
source allocation and target setting.,e reason for this could
be related to their inputs, as DMU 10 has a lower ratio of
inputs to overall inputs than DMU 4.

Based on the efficiency scores after resource allocation
and target setting, the lowest amount of changes in efficiency
is related to DMU 17, which is an inefficient DMU and the
least targeting has been done for it. Moreover, its received
resources are less than other DMUs. ,e reason for this is
that the lowest target was set for this DMU, and it also has
received a lower amount of resources than other DMUs,
which was itself due to the DMU having a lower amount of
inputs and outputs compared with other DMUs.,e highest
amount of changes is observed in DMU 11, as the highest
target was set for this DMU.

5. Conclusion

In today’s competitive world, companies and organizations
employ scientific methods to make better use of resources
and achieve the intended goals. Many researchers have
considered fixed resource allocation and targeting in data
envelopment analysis science [42–45]. Resource allocation is
done for different purposes. Some organizations prefer to
allocate resources to prevent changes in the efficiency of

DMUs [46–49]. However, the objective of other organiza-
tions is to increase efficiency. In this paper, resource allo-
cation and targeting are performed to increase efficiency
using a CSW.

In all models previously presented for allocating re-
sources and setting targets, the involvement of all DMUs in
the resource allocation and target setting was neglected
[50–53]. We proposed a model that involves all DMUs in the
procedure.

,e efficiency of the DMUs is improved following the
resource allocation and target setting. Here, a lower bound is
considered for the allocation of resources and target setting
based on the efficiency of each DMU, the share it has in the
use of input resources relative to other DMUs, and the
outputs it produces relative to other DMUs. ,is method
was compared with other methods provided by common
weights by presenting a numerical example. An applied
example was also employed with this method.

For future research, an upper bound can also be de-
termined. In future research, resource allocation can be
performed using common weights with undesired inputs
and outputs [54–57]. ,e resource allocation using goal
programming along with fuzzy data can be one of the in-
teresting topics for future researches [58–61].
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