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Cancer chemotherapy has been the most common cancer treatment. However, it has side effects that kill both tumor cells and
immune cells, which can ravage the patient’s immune system. Chemotherapy should be administered depending on the patient’s
immunity as well as the level of cancer cells. -us, we need to design an efficient treatment protocol. In this work, we study a
feedback control problem of tumor-immune system to design an optimal chemotherapy strategy. For this, we first propose a
mathematical model of tumor-immune interactions and conduct stability analysis of two equilibria. Next, the feedback control is
found by solving the Hamilton–Jacobi–Bellman (HJB) equation. Here, we use an upwind finite-difference method for a numerical
approximate solution of the HJB equation. Numerical simulations show that the feedback control can help determine the
treatment protocol of chemotherapy for tumor and immune cells depending on the side effects.

1. Introduction

Cancer is known as one of leading causes of death world-
wide. While many studies are under way to understand the
tumor-immune interactions, it is the challenging problem to
find an efficient cancer treatment in modern medicine.
Chemotherapy has been one of the most common cancer
treatment options, but because it kills both tumor cells and
immune cells, it has side effects that destroy the patient’s
immune system. Immunotherapy compensates for the de-
ficiencies of chemotherapy by raising the effectiveness of
immunity against tumor cells, so it is one of the most
prominent cancer treatments, especially in a multifaceted
approach [1]. However, immunotherapy may make immune
cells over-activated, potentially causing autoimmune dis-
eases. Furthermore, it is limited to cancer types and has
expensive costs. -us, chemotherapy is still being used as a
common cancer treatment.

-ere exist many research papers on mathematical
modeling about tumor-immune system interactions [2–13].
De Boer et al. [14] presented a mathematical model based on
ordinary differential equations (ODEs), which is for the
macrophage T lymphocyte interactions generating an im-
mune response against tumors. Furthermore, there are many
studies on analyzing various cancer treatments through
mathematical modeling [15–23]. De Pillis et al. [18] explored
a computationally optimal strategy combining chemother-
apy and immunotherapy treatments to minimize tumors
and toxicity to patients while maximizing the immunity.
Rihan et al. [15] studied an optimal control problem using a
delay differential model (DDE) describing the tumor-im-
mune interactions in presence of immuno-chemotherapy.

Most of the papers mentioned above are related to the
results of open-loop control which is a function of time. By
solving the optimality system from Pontryagin’s maximum
principle (PMP) [24], the control can be obtained. However,
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the principle is only a necessary condition for the control to
be optimal and the change of states is not reflected in the
open-loop control, so there are the difficulties in applying
these results to biological phenomena practically.

On the contrary, in the case of feedback control, since the
perturbation of the state is considered, the shortcomings of
open-loop control can be compensated. Feedback control
can be found by solving a nonlinear partial differential
equation called Hamilton–Jacobi–Bellman (HJB) equation
which arises from the idea of dynamic programming [25].
Because the value function, which is the solution of HJB
equation, was not generally guaranteed to be smooth, the
concept of viscosity solution came up as an alternative [26],
but this also could not be obtained analytically. -us, nu-
merical approximation method is needed to solve the
problem.

In this paper, we study an optimal feedback control
problem of a tumor-immune model. To minimize tumor
cells and cost associated with chemotherapy while reducing
immune cells destroyed by chemotherapy, we find an op-
timal chemotherapy strategy that is dependent on tumor and
immune cells. Furthermore, we investigate the change of
optimal chemotherapy strategy according to the level of side
effects and cost. For this, we derive the HJB equation
through Bellman’s principle. As a numerical approximation
method for the viscosity solution, an approximated solution
for the HJB equation, an upwind finite-difference method
[27], is used.

-e organization of this study is as follows. In Section
2, we propose a mathematical model of the tumor-im-
mune system and explain the parameters used in the
model. In addition, we study the positiveness and
boundedness of solutions of the model. In Section 3, we
conduct the stability analysis for two equilibria. In Section
4, the optimal control problems are discussed. To design
the feedback control problem, we define a value function
and then derive the HJB equation. For solving this
problem numerically, the upwind finite-difference
method is described. Also, an open-loop control problem
is considered for comparison with the feedback control.
Numerical simulation results of the optimal chemother-
apy strategy are presented in Section 5. Finally, we provide
discussion and conclusions in Section 6.

2. Mathematical Model

2.1. Tumor-ImmuneDynamics. We consider a mathematical
model for tumor-immune dynamics, as represented by the
scheme in Figure 1. -e model is given by the following
differential equations:

dE

dt
� σ + cT − δE,

dT

dt
� αT(1 − βT) − ωET.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

Tumor cells (T) are assumed to grow in a logistic
fashion. α is a growth rate of tumor cells and β is the inverse

of carrying capacity for tumor cells. Effector cells (E) kill
tumor cells at a net rate ω [7]. We assume that the effector
cells are produced at a constant rate σ [28]. δ denotes the rate
of effector cell turnover. Furthermore, it is assumed that, due
to the direct presence of tumor cells, the effector cells grow at
a rate c. -e explanation of the parameters used in model (1)
is in Table 1.

2.2. Positiveness and Boundedness. To validate the mathe-
matical model biologically, we should prove that solutions to
system (1) are positive and bounded. For instance, it is not
biologically feasible that a cell is negative. Furthermore,
because the human body is made up of a finite number of
cells, the cells should remain finite. -ese are summarized in
the following theorems.

Theorem 1. Let (E(t), T(t)) be a solution of model (1). If the
initial conditions satisfy E(0)> 0 and T(0)> 0, then the
solution will remain positive, for all t> 0.

Proof. Assume that there exists t∗ � inf t> 0|{ E(t) · T

(t) � 0}. First, we consider the case of E(t∗) � 0. -en, we
know that E(t)≥ 0 and T(t)> 0, for all t ∈ [0, t∗]. It follows
that, for all t ∈ [0, t∗],

dE

dt
� σ + cT − δE> − δE. (2)

By Gronwall’s inequality, we obtain the inequality as
follows. For all t ∈ [0, t∗],

E(t)>E(0)e
δt

. (3)

-is is a contradiction with the fact that E(t∗) � 0.
Now, suppose that T(t∗) � 0 and note that E(t)> 0, for

all t ∈ [0, t∗]. It is followed from the extreme value theorem
that E has positive maximum value EM. -en, it is obtained
that, for all t ∈ [0, t∗],

dT

dt
� αT(1 − βT) − ωET

≥ − αβT
2

− ωEMT

� −αβT T +
ωEM

αβ
 .

(4)

By the partial fraction decomposition, we obtain the
inequality as follows; for all t ∈ [0, t∗],

T(t)≥
B ωEM/αβ( e

−ωEMt

1 − Be
−ωEMt

> 0, (5)

where B � T0/T0 + ωEM/αβ. -is contradicts the assump-
tion of T(t∗) � 0. -us, E(t), T(t) will remain positive. □

Theorem 2. Let (E(t), T(t)) be a solution of model (1). If
E(0)≥ 0 and T(0)≥ 0, then E(t) and T(t) are bounded.

Proof. Suppose T(t) is unbounded. First, we consider the
case of T(0)> 1/β. Let t1 � inf t> 0|T(t) � 1/β . -en, it
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follows that dT/dt|t�t1
< 0. However, since T(t) is un-

bounded, there exists t2 > t1 such that T(t2) � 1/β, which
also implies that dT/dt|t�t2

< 0. By the recursive procedures,
we obtain that T(t)≤ 1/β for t≥ t1. -is contradicts the
assumption. So, T(t)≤T(0), for all t> 0. Now, consider
T(0)≤ 1/β. Let t∗ � inf t> 0|T(t)> 1/β . -en, there exists
t ∈ (0, t∗) such that T(t) � 1/β. It follows that dT/dt|t�t < 0.
-e remaining proof is similar to the first case. -us,
T(t)≤ 1/β, for all t> 0. -erefore, T(t) is bounded. -en, we
can obtain the following inequality:

dE

dt
� σ + cT − δE< σ + cTM − δE, (6)

where TM � max T(0), 1/β . It is followed that

E(t)<
σ + cTM

δ
+ E(0) −

σ + cTM

δ
 e

− δt
. (7)

Taking the limsup of both sides, we obtain

limsup
t⟶∞

E(t)≤
σ + cTM

δ
. (8)

-erefore, E(t) is also bounded. □

3. Stability Analysis

3.1. Local Stability. From model (1), two equilibria can be
obtained. One of these is the tumor-free equilibrium, that is,

P0 � E0, T0( 

�
σ
δ, 0

 .

(9)

To check the local stability, we compute the Jacobian at
P0 as follows:

J P0(  �

−δ c

0 α −
σω
δ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (10)

If the trace is negative and the determinant is positive,
then P0 is locally asymptotically stable. -us, the condition
αδ − σω> 0 should be satisfied. We define the criterion K as
follows:

K �
αδ
σω

. (11)

-e local stability of P0 is summarized in the following
theorem.

Theorem 3. If K< 1, model (1) has an tumor-free equilib-
rium P0 which is locally asymptotically stable.

7e other equilibrium is P1 � (E1, T1), where

E1 �
σ + cT1

δ
,

T1 �
αδ − σω
αβδ + cω

.

(12)

If K> 1, the positiveness of P1 is guaranteed. Note that if
K< 1, the equilibrium P1 does not exist and P0 � P1 when
K � 1. -e local stability of the equilibrium P1 is summa-
rized in the next theorem.

Theorem 4. If K> 1, model (1) has an unstable equilibrium
P0 and a locally asymptotically stable positive equilibrium P1.

Table 1: Variables and parameters in model (1).

Symbol Description Unit
σ -e rate of effector cell proliferation cells day−1

c -e antigenicity of tumor cell day−1

δ -e rate of effector cell turnover day−1

α -e growth rate of tumor cell day−1

β -e inverse of tumor cell’s carrying capacity cells−1

ω -e death rate of tumor cell by the interaction with an effector cell cells−1 day−1

Effector cell
(E)

Tumor cell
(T)Killing

Stimulation of proliferation

Cell Death
Cell

population

Figure 1: Schematic diagram of model (1) for interaction of tumor cells and immune cells (commonly called effector cells).
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Proof. Computing the Jacobian at P1 gives

J P1(  �
−δ c

ωT1 α − 2αβT1 − ωE1
 . (13)

To show that P1 is locally asymptotically stable, we
compute the following conditions:

TrJ P1(  � −δ + α − 2αβT1 − ωE1

�
−δ2 + αδ − 2αβδT1 − cωT1 − σω

δ

� −δ −
αβ(K − 1)

αβδ + cω
,

DetJ P1(  � −αδ + 2αβδT1 + ωδE1 + cωT1

� (αδ − σω) + 2αβδT1 + 2cωT1

� αδ − σω.

� σω(K − 1).

(14)

Since K> 1, the trace is negative and the determinant is
positive. -erefore, the equilibrium P1 is locally asymp-
totically stable. In this case, the tumor-free equilibrium P0 is
unstable, which is a saddle. □

3.2. Global Stability. Furthermore, we investigate the global
stability of the equilibria P0 and P1.-ese are summarized in
the following theorems.

Theorem 5. If K≤ 1, the tumor-free equilibrium P0 of model
(1) is globally asymptotically stable.

Proof. Consider the following Lyapunov function on R2
+:

L � E − E0 − E0ln
E

E0
  +

c

α
T. (15)

It is easy to see that L � 0 at the equilibrium P0 and L> 0,
for all (E, T)≠ (σ/δ, 0). -us, L is positively definite and is
also clearly radially unbounded. Taking the derivative of L

with respect to t, we obtain that

dL

dt
� 1 −

E0

E
 E′ +

c

α
T′

� 1 −
E0

E
 (σ + cT − δE) + cT(1 − βT) −

cω
α

ET

� −cβT
2

+ σ + δE0 − δE −
σE0

E
  + 2cT −

cE0T

E
−

cω
α

ET 

� −cβT
2

+ σ 2 −
δE

σ
−

σ
δE

  + cT 2 −
σ
δE

−
δE

σK
 .

(16)

By the arithmetic-geometric mean and the assumption
K≤ 1, we obtain the following inequality:

dL

dt
≤ − cβT

2 < 0. (17)

Hence, we have L′ < 0, for all (E, T)≠ (σ/δ, 0). -erefore,
by Lyapunov’s theorem, the tumor-free equilibrium P0 is
globally asymptotically stable. □

Theorem 6. Assume K> 1; the equilibrium P1 of model (1) is
globally asymptotically stable whenever T(0)> 0.

Proof. Let X � R2
+ and set the functions:

F1(E, T) � σ + cT − δE,

F2(E, T) � αT(1 − βT) − ωET.
(18)

Define the function D(E, T) � 1/T on X. -en, D is
continuously differentiable on X. Furthermore, we obtain
that

z DF1( 

zE
+

z DF2( 

zT
� −

δ
T

− αβ< 0. (19)

Applying Dulac–Bendixson criterion, system (1) has no
periodic orbits or graphics on X. Since -eorem 2 guar-
anteed the boundedness of solutions of system (1), X is
positively invariant and contains an omega limit set of every
initial conditions. -us, Poincaré–Bendixson theorem can
be applied. When K> 1, if T(0) � 0, then the solutions will
remain on the E-axis in (E, T)-plane and converge to P0. If
T(0)> 0, that is, (E(0), T(0)) ∈ X, then we want to show
that the equilibrium P0 does not belong to the omega limit
set of the point (E(0), T(0)). Suppose the omega limit set
contains P0. By -eorem 4, P0 is unstable saddle, and so it
has stable manifold which is given by the E-axis. Because
each solution starting from T(0) � 0 remains on the E-axis
and converges to P0, thus, the stable manifold of P0 is not in
X. Hence, the omega limit set should contain another
equilibrium P1. But, since P1 is locally asymptotically stable,
the solutions starting close to P1, approach to it. So, the
equilibrium P0 is not in the omega limit set. -erefore, the
omega limit set of (E(0), T(0)) contains only P1. □ □

4. Optimal Control Problems

In this section, we consider optimal control problems of
model (1) to investigate the optimal chemotherapy strategy
depending on the level of effector cells and tumor cells. To
begin with, we design a feedback control problem. Addi-
tionally, an open-loop control problem of chemotherapy is
considered for comparison with the feedback control.

First, we simplify model (1) into the nondimensional
form through the following process:

x � x1, x2( 

�
E

E
∗,

T

T
∗ ,

(20)

where E∗ � σ + c/β/δ and T∗ � 1/β. -en, the new depen-
dent variables x1(t) and x2(t) are dimensionless quantities.
Hence, the system for them becomes
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dx1

dt
� f1(t, x) � σ + cx2 − δx1,

dx2

dt
� f2(t, x) � αx2 1 − x2(  − ωx1x2,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(21)

where σ � σ/E∗, c � cT∗/E∗, and ω � ωE∗.

4.1. Feedback Control Problem

4.1.1. Hamilton–Jacobi–Bellman Equation. Let τ and tf be
an initial time and a final time, respectively, and let u be a
measurable function from [τ, tf] to [0, 1]. -e control u(t)

means the treatment effort in time t, which represents the
intensity of chemotherapy. -e class of all admissible
controls is denoted by

Uf � L
∞ τ, tf ; [0, 1] . (22)

-en, the system with the control is as follows:

dx1

dt
� f1(t, x, u) � σ + cx2 − δx1 − qEux1,

dx2

dt
� f2(t, x, u) � αx2 1 − x2(  − ωx1x2 − qTux2,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(23)

where qE and qT are the chemotherapy-induced death co-
efficients of effector cell and tumor cell, respectively. Es-
pecially, the coefficient qE is related to the side effect of
chemotherapy. -us, to reduce tumor cells and death of
effector cells via chemotherapy while minimizing the cost to
chemotherapy, we consider the following objective
functional:

J(τ, a, b, u) � 
tf

τ
L(t, x(t), u(t))dt, (24)

where the Lagrangian L(t, x(t), u(t)) � qEu(t)x1(t) + (1 −

qTu(t))x2(t) + B/2u(t)2 and x(τ) � (x1(τ), x2(τ)) � (a, b)

is an initial condition. In the Lagrangian L, first and
second terms mean the death of effector cells due to side
effects and the tumor cells remaining after chemotherapy,
respectively. -e last term represents the cost of
chemotherapy.

Define the value function:

v(τ, x(τ)) � min
u∈Uf

J(τ, x(τ), u). (25)

-e optimal control problem can be formulated as the
HJB equation via Bellman’s principle of the dynamic pro-
gramming. -us, we can obtain the HJB equation as follows:

vt + min
u∈Uf

∇xv · f(t, x, u) + L(t, x, u)  � 0, ∀(t, x) ∈ 0, tf  × R
2
,

(26)

where f � (f1, f2) and the initial condition v(tf, x) � 0.
-e value function in characterizing the optimal feedback
law is described in the following two propositions [29].

Proposition 1. Let v ∈ C1([0, tf] × Rn) be the value func-
tion. 7en, if there exists a control u∗(·) ∈ Uf such that

∇xv t, x
∗
(t)(  · f t, x

∗
(t), u
∗
(t)(  + L t, x

∗
(t), u
∗
(t)( 

� min
u∈Uf

∇xv t, x
∗
(t)(  · f t, x

∗
(t), u(  + L t, x

∗
(t), u(  .

(27)

then u∗(·) is an optimal control, where x∗ � (x∗1 , x∗2 ) is the
state corresponding to u∗.

-e optimal control is denoted as

u
∗
(t) ∈ argminu∈Uf

∇xv t, x
∗
(t)(  · f t, x

∗
(t), u(  + L t, x

∗
(t), u(  ,

(28)

for almost all t ∈ [0, T].

Proposition 2. Let v ∈ C1([0, tf] × R2) be the value func-
tion. 7en, (u∗(t), x∗(t)) is an optimal control-trajectory
pair in feedback form if and only if

vt t, x
∗
(t)(  + ∇xv t, x

∗
(t)(  · f t, x

∗
(t), u
∗
(t)( 

+L t, x
∗
(t), u
∗
(t)(  � 0,

(29)

for almost all t ∈ [0, T].
By Propositions 1 and 2, the feedback law via the value

function can be constructed. -is is summarized in the
following theorem.

Theorem 7. Let v ∈ C1([0, tf] × R2) be the value function.
Suppose u(t, x) satisfies

∇xv(t, x) · f(t, x, u(t, x)) + L(t, x, u(t, x))

� min
u∈Uf

∇xv(t, x) · f(t, x, u(t, x)) + L(t, x, u(t, x)) .
(30)

7en, u∗z (t) � u(t, xz(t)) is the feedback law of the op-
timal control problem, where xz(t) is the solution of the
following control system:

xz
′(t) � f t, xz(t), u t, xz(t)( ( , ∀xz(0) � z, t ∈ 0, tf .

(31)

4.1.2. Upwind Finite-Difference Method. Solutions of HJB
equation are continuous, but nonsmooth in Rn. In order to
complement the nonsmooth, the idea of viscosity solutions is
used by Lions [26]. -e idea is to consider the convection-
diffusion equation by adding the diffusion term ϵ∇2v, where
ϵ> 0 is the viscosity. -en, the solution of this equation be-
comes smooth and converges to the viscosity solution of
original HJB equation as ϵ⟶ 0 [30]. It can be shown that the
existence and uniqueness of viscosity solution to HJB equation
are guaranteed [30, 31]. However, this equation generally is not
analytically solvable and so we use the upwind finite-difference
method as a numerical approximation method.

Before addressing this method, we settle for computa-
tional problems that arise from using the finite-difference
method. Since the variables of model (1) have wide ranges of
numbers, solving a feedback control problem requires a high
amount of numerical computations. So, by scaling the
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variables to the appropriate level, we transformed model (1)
to dimensionless model (21). Assuming that E(0)≤E∗ and
T(0)≤T∗, it is followed from -eorem 2 that
x(t) � (x1(t), x2(t)) ∈ [0, 1] × [0, 1], for all t> 0. -erefore,

we restrict the feedback control problem to the domain
[0, tf) ×Ω, where Ω � [0, 1] × [0, 1]. -en, we can refor-
mulate equation (26) as follows:

ε∇2v + vt + min
u∈Uf

∇xv(t, x) · f(t, x, u) + L(t, x, u)  � 0, ∀(t, x) ∈ 0, tf  ×Ω,

v(t, x) � g(t, x), ∀(t, x) ∈ 0, tf  × zΩ ,

v tf, x  � 0, ∀x ∈ Ω.

(32)

We need to be determine a suitable boundary condition,
for (t, x) ∈ [0, tf) × zΩ. Since the only possible information
is the value function at the final time tf, we pose the Dirichlet
boundary condition, that is, g(t, x) � v(tf, x) [32].

Here, we apply the upwind finite-difference method to
(32) with ϵ≪ 1 [33, 34]. Let i � (i1, i2), i+1 � (i1 + 1, i2),

i−1 � (i1 − 1, i2), i+2 � (i1, i2 + 1), and i−2 � (i1, i2 − 1). To dis-
cretize (32), we assume that, for k � 1, 2, xk,ik

� ikΔxk,
ik � 0, 1, . . . , Mk, with Δxk � 1/Mk, and tj � (j − 1)Δt,
j � 1, 2, . . . , Mt + 1, with Δt � tf/Mt, are the partitions

along the xk and t axes, respectively. Here, we assume the
meshes for state variables are uniform, that is,
M1 � M2 � M. -en, two stencils can be considered. One
consists of the six vertices (x1,i1−1, tj), (x1,i1

, tj), (x1,i1+1, tj),
(x1,i1−1, tj+1), (x1,i1

, tj+1), and (x1,i1+1, tj+1). -e other con-
sists of the six vertices (x2,i2−1, tj), (x2,i2

, tj), (x2,i2+1, tj),
(x2,i2−1, tj+1), (x2,i2

, tj+1), and (x2,i2+1, tj+1). On the cuboid
consisting these stencils, (32) can be approximated by the
difference equations as follows; for i1, i2 � j, . . . , M − j and
j � 1, 2, . . . , Mt,

v
j+1
i − v

j
i

Δt
� 

2

k�1

1 + sgn f
j

k,i u
j
i  

2
f

j

k,i u
j

i 
v

j

i+
k

− v
j
i

Δxk

+
1 − sgn f

j

k,i u
j
i  

2
f

j

k,i u
j

i 
v

j
i − v

j
i−
k

Δxk

⎛⎝ ⎞⎠ + L
j

i u
j

i ,

u
j
i � arg supu∈Uf

− 
2

k�1

1 + sgn f
j

k,i(u) 

2
f

j

k,i(u)
v

j

i+
k

− v
j

i

Δxk

+
1 − sgn f

j

k,i(u) 

2
f

j

k,i(u)
v

j

i − v
j

i−
k

Δxk

⎛⎝ ⎞⎠ − L
j
i (u)⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

(33)

where

f
j
1,i u

j
i  � f1 tj, x1,i1

, x2,i2
, u

j
i ,

f
j

2,i u
j

i  � f2 tj, x1,i1
, x2,i2

, u
j

i ,

L
j
i u

j
i  � L tj, x1,i1

, x2,i2
, u

j
i .

(34)

Based on the upwind finite-difference method, the al-
gorithm for solving HJB equation is summarized in
Algorithm 1.

4.2. Open-Loop Control Problem. In open-loop control
problem, tf and u are the same as meanings in the feedback
control problem. -en, an objective functional for open-
loop control problem is given by

G(u) � 
tf

0
L(t, x(t), u(t))dt, (35)

where x(0) � (x1(0), x2(0)) is an appropriate initial con-
dition. Similarly, the open-loop control problem is to find an
optimal control u∗ such that

G u
∗

(  � min G(u), u ∈ Uo . (36)

subject to system (23), where the control set is defined as

Uo � u|u(t) is Lebesguemeasurable, 0≤ u(t)≤ 1∀t ∈ 0, tf  .

(37)

First, an existence of optimal control for problem (36)
and the optimality system is derived.

Theorem 8. Given the objective functional G(u) and the
control set Uo, there exist an optimal control u∗ such that
G(u∗) � min G(u), u ∈ Uo .

Proof. From [35], we prove the existence of an optimal
control. By -eorem 1, the state variables are nonnegative.
Note that the control is also nonnegative. -e set of all
controls u inUo is convex and closed. For the minimizing
problem, the convexity of G in u is satisfied and the opti-
mality system is bounded. So, the compactness necessary for
the existence of optimal control is guaranteed. Furthermore,
the Lagrangian L is convex on the control set Uo. Since the
state variables are bounded, we can easily confirm that there
exist a constant κ> 1 and numbers ρ1, ρ2 such that

G(u)≥ ρ1 u
2

 
κ/2

− ρ2 � ρ1u
κ

− ρ2. (38)
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If follows the existence of an optimal control.
In order to find a minimal value of the Lagrangian, we

define a Hamiltonian:

H � x2 + qEux1 − qTux2 +
B

2
u
2

+ λ1 σ + cx2 − δx1 − qEux1 

+ λ2 αx2 1 − x2(  − ωx1x2 − qTux2 ,

(39)

where λ1 and λ2 are the adjoint variables. To derive a
necessary conditions for the optimal solution of optimal
control problem (23) and (35), we use Pontryagin’s Maxi-
mum Principle [24]. -e adjoint system and control char-
acterization are described in the following theorem. □

Theorem 9. Given an optimal control u∗ and a solution
x∗ � (x∗1 , x∗2 ), there exist adjoint variables λ1 and λ2
satisfying

λ1′(t) � −
zH

zx1
� qEu(t) + λ1(t) δ + qEu(t)  + λ2(t) ωx2(t) ,

λ2′(t) � −
zH

zx2
� −1 + qTu(t) − cλ1(t) − λ2(t) α − 2αx2(t) − ωx1(t) − qTu(t) .

(40)

under transversality conditions,

λi tf  � 0, i � 1, 2. (41)

Moreover, the control function u∗ is given by

u
∗

� min 1, max 0, R{ }{ }, (42)

where R � (λ1 − 1)qEx1 + (λ2 + 1)qTx2/B.

Proof. From Pontryagin’s Maximum Principle [24], the
adjoint system can be obtained:

λ1′(t) � −
zH

zx1
,

λ2′(t) � −
zH

zx2
.

(43)

with λi(tf) � 0 for i � 1, 2. By solving the equation

zH

zu
� 0 (44)

and using properties of the control set Uo, we can char-
acterize the optimal control (42). □

5. Numerical Results

In numerical simulations of feedback control and open-loop
control problems, we set the case where the criterion K is
greater than 1, i.e., tumor survive persistently.-e parameter
values are summarized in Table 2. Because chemotherapy
usually proceeds only for the initial about 5 days due to
toxicity, we assume that model (23) is defined over a time
interval [0, 5]. Also, we set weight constant B � 1. In par-
ticular, for the feedback control problem, we solve the
HJB equation numerically by using mesh size for state
variables and time with Δx1 � Δx2 � 0.02 and Δt � 0.01,
respectively.

We consider two scenarios for qE. One is qE � 0.2, which
is a case of lower side effects. Upper panels in Figure 2
represent values of feedback control u(t, x1, x2) on the
domain Ω at t � 0 and 2 with qE � 0.2. At t � 0, there are
higher control values if effector cells are low and tumor cells
are high. -e controls are not required in the opposite case
where tumor cells are high and effector cells are low. When
the level of effector cells is fixed, the controls have higher
values which decrease as the number of tumor cells in-
creases. On the contrary, the control values become lower as
tumor cells go higher. At t � 2, the controls are needed

Set the initial condition v1i 
Mk

ik�0 and the feedback control u1
i 

Mk

ik�0 for k � 1, 2
for j � 1, 2, . . . , Mt do

for i1 � j, j + 1, . . . , M1 − j do

for i2 � j, j + 1, . . . , M2 − j do

W
j
i (u) � − 

2

k�1
(1 + sgn(f

j

k,i(u))/2)f
j

k,i(u)(v
j

i+
k

− v
j
i /Δxk) + (1 − sgn(f

j

k,i(u))/2)f
j

k,i(u)(v
j
i − v

j
i−
k
/Δxk) − L

j
i (u)

u
j

i � arg supu∈Uf
W

j

i (u)

v
j+1
i � v

j
i − ΔtWj

i (u
j
i )

end
end

end

ALGORITHM 1: Algorithm for solving HJB equation
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Figure 2: Feedback controls for initial time values τ � 0 and 2 with qE � 0.2 (upper panels) and with qE � 0.6 (lower panels).

Table 2: Parameter values for model (1).

Symbol Value References
σ 1.3 × 104 [7]
c 0.103 [12]
δ 0.0412 [7]
α 0.18 [7]
β 2.0 × 10− 9 [7]
ω 1.101 × 10− 7 [7]
qE —
qT 0.9 [19]

8 Complexity



0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4
qE

0.5 0.6 0.7 0.8 0.9 1

U
til

ity
 o

f c
he

m
ot

he
ra

py
 ( 

U
O

C 
)

Figure 3: Utility of chemotherapy (UOC) for the chemotherapy-induced death coefficient of effector cell (qE).
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Figure 4: Numerical simulations of tumor-immune model (1) with chemotherapy. -e blue line means the feedback control and the green
line represents the open-loop control. -e upper panels indicate the number of effector cells for qE � 0.2 (a) and qE � 0.6 (b), respectively.
-e lower panels indicate the number of tumor cells for qE � 0.2 (c) and qE � 0.6 (d), respectively. -e initial values are assumed to be
(E(0), T(0)) � (5.0 × 106, 5.0 × 108).
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highest when the level of tumor cells is more than about 0.4,
which suggests that, in this case, the chemotherapy should
depend on the level of tumor cells rather than the effector
cells. -e other is the case where qE � 0.6, which is repre-
sented in the lower panels in Figure 2. Similar to the case of
qE � 0.2, the higher degree of chemotherapy is required
when the effector cells are low and the tumor cells are

high. Compared to the case of lower side effects, the che-
motherapy should be conducted when the immunity is
much higher.

Furthermore, in order to investigate the utility of che-
motherapy (UOC), we consider a measure, UOC, as the
function of qE which is defined by

UOC qE(  �
JΩuqE

0, x1, x2( dx1dx2 − JΩu1 0, x1, x2( dx1dx2

JΩu0 0, x1, x2( dx1dx2 − JΩu1 0, x1, x2( dx1dx2
, (45)

where u0 and u1 represent feedback controls in the case of
qE � 0 and qE � 1, respectively. -e numerator describes the
difference between the level of chemotherapy adaptedwhen the
degree of side effects is qE and in the case of 100% side effects.
-e denominator indicates the difference between the level of
chemotherapy adapted in the absence of side effects and the
level of chemotherapy adapted when there are fully side effects.
-at is, UOC represents the ratio of efficacy of chemotherapy
according to the degree of side effects. Figure 3 shows UOC as
the chemotherapy-induced death coefficient of effector cell, qE,
varies. UOC decreases from 1 to 0 as qE increases and falls
below 50% if qE is higher than 0.4. A case with qE � 0.2 has
UOC as 70%, but it is about 30% when qE is 0.6.

In addition, we examine the efficacy of feedback control
for chemotherapy as compared to the open-loop control.
-is is shown in Figure 4. In the case of qE � 0.2, the open-
loop control initially reduces tumor cells slightly more than
the feedback control, but, at the same time, the effector cells
decrease more. -rough the feedback control, it can be
confirmed that effector cells survived more and the tumor
cells were reduced more at the final time. However, in this
case, there was no big difference between feedback control
and open-loop control. Especially, considering the higher
side effects, the difference became higher.

6. Discussion and Conclusion

Chemotherapy is known as the common cancer treatment,
which can directly kill tumor cells. Since there are side effects
of killing effector cells and alternative treatment such as
immunotherapy have been introduced, the use of chemo-
therapy has decreased. However, due to the advantages of
time and cost, it is still the most widely used. For the effective
chemotherapy, we should take into account for not only the
size of tumor cells but also the level of effector cells. -us, in
this study, we set up the mathematical model for tumor-
immune system and considered feedback control problem
using HJB equation to show the effective chemotherapy with
simulation.-e upwind finite-differencemethod was used to
solve the problem numerically. As a result, the optimal
chemotherapy was designed depending on the level of ef-
fector cells as well as the size of tumor cells. Also, we cal-
culated the degree of chemotherapy according to the extent
of side effects and then suggested the utility of chemotherapy
(UOC).

Furthermore, considering the open-loop control for
chemotherapy through PMP, we compared the results of
feedback control with that. In the case of feedback control,
the effector cells were reduced less and the tumor cells were
decreased more at the same extent of side effects. Conse-
quently, the feedback control could suggest the effective
chemotherapy compared to the open-loop control. PMP is
widely used as a conventional optimization method, but it is
only a necessary condition for an optimum, which is just a
local solution for optimal control problems. On the contrary,
the dynamic programming can guarantee necessary and
sufficient conditions for an optimum. However, it has also
drawbacks of complicated process and a lot of computation
times. We were able to reduce the complexity and com-
putation times by using the simple model for tumor-im-
mune system, but this is one of the limitations in our study.
-erefore, in this regard, we plan two points as future works.
First is to investigate more sophisticated biological mech-
anisms for the tumor-immune system and then establish a
mathematical model for those. Secondly, we will improve the
existing numerical method to effectively reduce the com-
putation time of dynamic programming, which is expected
to make it easier to apply mathematical models to feedback
control problems.
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