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A blockchain is a valuable and proficient type of digital ledger technology that involves of expanding list of records, called blocks,
that are strongly connected simultaneously using cryptography. Further, complex Pythagorean fuzzy sets (CPFSs) are the
generalized form of the intuitionistic fuzzy sets (IFSs), Pythagorean fuzzy sets (PyFSs), and complex intuitionistic fuzzy sets
(CIFSs), used for evaluating the awkward and unreliable information in genuine life problems. In this analysis, we aim to diagnose
the innovative idea of complex Pythagorean fuzzy soft relations (CPyFSRs) by using the Cartesian product (CP) of two complex
Pythagorean fuzzy soft sets (CPyFSSs), which are computed with the help of two different ideas, called complex Pythagorean fuzzy
relation and soft sets. Additionally, using the presented approaches, we examined different kinds of relations and also justified
them with the help of some suitable examples. The CPyFSRs has a comprehensive structure because it is discussing both degrees of
membership and non-membership with multidimensional variable. Further, includes the CPyFSR-based modeling techniques
that use the score function to choose the best blockchain technology (BCT) to enhance the worth of the evaluated information.
Using a good BCT, the transaction may be simply transferred record between users. Finally, the benefit of this proposed
framework is demonstrated by comparing it to other frameworks to show the supremacy and feasibility of the
diagnosed approaches.

1. Introduction

The uncertainty involved in any problem-solving situation is
a result of some information inadequacy. Uncertainty is a
natural part of our life. Many everyday decisions are highly
unpredictable. It frequently happens when there is not
enough information available regarding the results, the
future environment is unpredictable, and everything is
unstable. A novel mathematical innovation called fuzzy set
(FS) was presented by Zadeh [1] in 1965 for detecting and
resolving ambiguity. Each element in this collection is given
a membership degree between 0 and 1, which represents the
element’s quality or effectiveness. The FS is more important

in human decision-making. Zimmermann [2] proposed the
FS theory and its applications. Maiers and Sherif [3] use of
FSs theory apply to a wide range of issues and fuzzy control
techniques. Roberts [4] explained ordination based on FS
theory. Kahraman [5] used FS in industrial engineering.
Mendel [6] proposed the concept of fuzzy relationships
(FRs). FRs used the membership degree of every element to
indicate the quality of the relationship. If membership is
closer to 1 then it indicates a good relationship and if the
degree closer to 0 shows poor relationships. The FRs are an
extended structure than classical relations. Nemitz [7] goes
into much detail about FRs and fuzzy functions. Yang and
Shih [8] designated the cluster analysis based on FRs. After
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FS, Ramot et al. [9] nominated the new set called complex
fuzzy set (CFS) that explains membership ranging between
unit circles. It defines membership using two terms: am-
plitude which describes effectiveness, and phase which de-
scribes the duration of effectiveness. It lowers the likelihood
of errors and ambiguity. Hu et al. [10] developed the or-
thogonality relation of CFSs. Li and Tu [11] examined CFSs
and their applications in multi-class prediction. Zhang et al.
[12] explored the various operating features and §-equalities
of CFSs. Moreover, he also defines complex fuzzy relations
(CFRs). Khan et al. [13] established the CFRs in the future
commission market.

After all of these advancements in human decision-
making, people can become confused while deciding on the
best alternative. There are numerous doubts and ambiguities
in this situation. Molodtsov [14] examined the idea of the
soft set (SS) in 1999, which helps people make better de-
cisions in difficult situations. SS chooses the items based on
some parameters. Ali et al. [15] developed some novel SSs
operations. Kostek [16] used an SS approach to analyze
sound quality. Mushrif et al. [17] suggested a new SS theory-
based technique for evaluating natural textures. Maji et al.
[18] employed an SS theory to resolve a decision-making
difficulty. Babitha and Sunil [19] introduced the soft rela-
tions (SRs) between the CP of SSs. Park et al. [20] studied
some features of equivalence SRs. Maji et al. [21] created the
fuzzy soft set (FSS) by merging the FS and the SS. It helps
humans make better decisions by reducing uncertainty in
daily life decisions. Kong et al. [22] employed ESS in de-
cision-making issues. Gogoi et al. [23] looked into how ESS
theory may be used to solve various difficulties. Borah et al.
[24] established the innovative idea of fuzzy soft relations
(FSRs) by examining the CP of FSSs. Mockor and Hurtik
[25] used image processing to approximate FSSs using FSRs.
Thirunavukarasu et al. [26] looked into the novel idea of
complex fuzzy soft sets (CFSSs) in which the degree of
membership is expressed in complex numbers and sorted
out all the problems by using multi-variables. TAmir et al.
[27] analyzed an outline of CFS and complex fuzzy logic
theory and applications.

Atanassov [28] established the idea of an intuitionistic
fuzzy set (IFSs), which is broader than the FSs. An IFSs
examined both degrees of membership and non-member-
ship, whereas FSs only discussed the membership degree.
Both of these values between the unit interval [0, 1] and sum
also lie within this interval. Szmidt and Kacprzyk [29] re-
solved the distances among IFSs; Gerstenkorn and Manko
[30] determined the IFS correlation. Alkouri [31] defined the
notion of the complex intuitionistic fuzzy set (CIFS). The
CIFS uses a complex number to define both membership
and non-membership degrees. It consists of both amplitude
term and phase term. Ngan et al. [32] used quaternion
numbers to represent CIFS and applied them in decision-
making. Xu et al. [33] nominate the intuitionistic fuzzy soft
set (IFSS), which combines the SS and IFS. The IFSS is the
expansion form of the FSS. Agarwal et al. [34] invented the
modified IFSS with applications in decision-making. Dinda
and Samanta [35] used the CP of IFSS to recommend the
intuitionistic fuzzy soft relation (IFSR). Kumar and Bajaj
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[36] evaluated the concept of complex intuitionistic fuzzy
soft sets (CIFSSs), which are parametric. The CIFSSs are used
to apply parametrization tools to explain multicriteria de-
cision-making issues. Yager [37] proposed Pythagorean
fuzzy sets (PyFS), which increased the space by imposing
new constraints. The constraint of PyFS is that the total of
the squares of membership and non-membership degrees
must be in the range [0, 1]. Garg [38] applied PyFS in the
form of new logarithmic operational laws. Ullah et al. [39]
suggested the thought of a complex Pythagorean fuzzy set
(CPyFS) with application in pattern recognition. The CPyFS
provides membership and non-membership values as a
complex number. Dick et al. [40] described the CPyFS
operations. Nasir et al. [41] used economic relationships to
define the concept of a complex Pythagorean fuzzy relation
(CPyFR). Peng et al. [42] presented the Pythagorean fuzzy
soft set (PyFSS), by merging the SS with the PyFS and
interpreted this notion through various possible applica-
tions. Akram et al. [43] introduced the complex Pythagorean
fuzzy soft set (CPyFSS) with the application. Gillpatrick et al.
[44] evaluated the blockchain contribute to developing
country economies.

To expose the significance and proficiency of the eval-
uated theories by comparing them with other prevailing
theories, for this, we demonstrated it with the help of some
genuine life examples. Assume an enterprise N decided to
purchase some new cars from a carmaker, for this the owner
of the enterprise N provided two types of information re-
garding each car: (a) model of cars; (b) making the date of
cars. Very carmaker produced the same model of car with
some improvements or upgrading based on some param-
eters (like improving the quality of the fuel consumption,
tire quality, comfort zone, etc.) in every new year. Where the
model of the car expressed the amplitude term, and the
production date of the car shows the phase term which
changes time by time continuously. Traditionally PFS or
Pythagorean fuzzy soft sets are not able to deal with it. For
this, the theory of CPyFSR is much better than the prevailing
theories. Because the theory of CPyFSR deals with two-di-
mension information at a time and the because of this
reason, the IFS, PyFS, and CIES are special cases of the
proposed work. The concept of CPyFSS is a convenient tool
in CIFSS theory for dealing with ambiguity and uncertainty.
However, the concept of relations has not yet been defined
for the CPyFSS. Based on our observation, the main analyses
of this analysis are listed below:

(1) To propose the concept of CPFSRs by studying the
CP of two CPyFSS.

(2) To describe different types of CPyFSR as well as the
CPyFS-reflexive relation, CPyFS-symmetric relation,
CPyFS-transitive relation, CPyFS-equivalence rela-
tion, CPyFS-partial order relation, CPyFS-linear
order relation, CPyFS-strict order relation, CPyFS-
converse relation, CPyFS-composite relation and
many more. Each CPyFSR definition has been il-
lustrated with examples.

(3) To illustrate numerous results for the type of
CPyFSRs.
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(4) To derive the innovative idea of CPyFSR is superior
to pre-defined structures of SS, FSS, CFSS, IFSS,
CIFSS, and PyFSS. The CPyFSS discussed both
membership and non-membership degrees with
increased space. They can also solve problems with
multi-variables due to complex-valued mappings.
Additionally, offered an application for selecting the
best BCT by using CPyFSRs. The score function has
been utilized to choose the best BCT. Experts have
recommended a variety of parameters and selected
the finest BCT based on those criteria.

(5) To compare the presented work with some prevailing
work is to show the reliability of the evaluated work.

The rest of this article is arranged as follows: Section 2
contains all pre-existing structures of fuzzy algebra. Section
3 introduced the newly defined notion of CPyFSRs and CP of
two CPyFESSs for example. Section 4 proposed an application
of BCT by using the study of CPyFSRs. Section 5 compares
the proposed structure with pre-existing structure. Section 6
concludes the results.

2. Preliminaries

The theory of CFS, SS, SR, FSS, CFSS, CIFS, IFSS, CIFSS,
CPyFS, and CPyFESS are the part of this section which are
very useful for evaluating the proposed ideas in next section.

Definitioni 1 (see [9]). Let Y be a universal set, then a CFS F
on Y can be defined as:

P={($m,($): $ Y}, (1)

Where, m,(S) = ry, ($)e (G, ()27 represented the mem-
bership grade w1th T G, Y — [0,1]. Further, the
mathematical terms ry, and gy, are represented the am-
plitude and phase terms of the membership degree
individually.

Definition 2 (see [14].) Let Y be a universal set and E be the
set of parameters, (Y) denote the power set of Y. Then, a
pair (F,k) is called SS on Y with mapping F: k — p(Y) is
defined as:

F ={6,F(5),0 € k,F(0) e p(V)}. )

Example 1. Suppose Y is a universal set consisting of the set
of five watches={d,,d,,d5,4,,@;}Y under consideration,
and E is the set of parameters E = {01, 0,65, 04} for uni-
versal set Y, where each parameter stands for beautiful,
expensive, very beautiful, and cheap individually. Suppose a
SS (#, k) shows the attractiveness of the watches, such that

¥(61) ={Q1,@3,Q5}¥(62) ={Q2)@5}¥(63) ={¢1:¢4}¥(64)
:{‘33»@4) as}
(3)

Then, the SS (#,k) is a parameterized family, and
{®(5),i=1,23,4}.

Definition 3 (see [19]). Let (%F, A) and (%,B) be two SSs on
Y and A, BCI;_. Then their CP of (F,A) x (¢,B) = (H, 2)
with a mapping H: & — p(Y) is defined as:

Any subset of the CP of two SSs is called SR.

Definition 4 (see [21]). Let Y be a universal set and E be the
set of parameters, " represents the set of fuzzy subsets of Y.
Then FSS (%, k) with mapping F: k — pYis defined as:

={(é,m(6)): §ekm,(8) e pY}. (5)
Where m, (8) is called the membership degree.

Example 2. Let Y is the set of LED companies and E be the
set of parameters. The FSS (%,k) express the LED charac-
teristics concerning some parameters and each membership
degree assigned by the experts. Y= {Gl, &, 45, Q,} ie,
@, =Orient, @, —Samsung @ =Haier, and @, = Sony.

E-= {01,02,03} i.e,, 0; = no electromagnetic radiation,
&, =Price, and 6, =higher resolution.

¥(01) ={&
={d =0.9,4, = 0.8,8; = 03,8, = 0.6}F(6;)  (6)
={4, =0.1,4, =0.5,Q; = 0.9,¢, = 0.7}.

=0.7,8, = 02,4, = 0.4,4, = 0.1}%(5,)

Then (%, k) is a parameterized family {’¥ (6,~), i=1,2, 3}.

Definition 5 (see [26]). Let Y be a universal set and E be the
set of parameters, C (pY ) express the set of all complex fuzzy
subsets of Y. Then CFSS (%,k) with mapping
F: k — C(p") is defined as,

F-{6m. @) bckm@ec(p )} @

And 1, (8) = ryg, (8)e (o O)21 Since
' Q- Y — [0,1].
Where ry, and gy, are called amplitude terms and phase

terms of the membership degree individually.

Definition 6 (see [31]). Let Y be a universal set. Then CIFS F
on Y with a mapping M., M,: Y — [0,1] is defined as,

F ={(8,m.(6).m(8): 6 e Y] (8)

Since M, (8) = Tm, (6)edm ©27  and m, (6) =

(O)eq“h ®27 on condition that, m, (6) + m, (6) € [0,1]
and qm, () + G, (6) € [0,1].

Where rp,,ry, are known as amplitude terms of
membership and non-membership degree individually.
Gm,» Gm, are known as the phase terms of membership and
non-membership degree, individually.

Definition 7 (see [33]). Let Y be a universal set and E be the
set of parameters, PF" denotes the set of all intuitionistic
fuzzy subsets of Y. Then an IFSS (%,k) with mapping
F: k — pF'is defined as:
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Where m,(6), m,(8) are called membership and non-
membership degrees, individually.
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Example 3. From example 2, Assume an IFSS (%,k) de-
scribe the characteristic of the LED concerning some pa-
rameters and each membership and non-membership
degree given by experts.

F(6,) =14, = (0.2,0.4),&, = (0.5,0.3), 45 = (0.1,0.9), 4, = (0.3,0.5)}
2(‘2) {&, = (0.1,0.3),4, = (0.2,0.6), 8, = (0.5,0.3), &, = (0.3,0.2)} (10)

Oon

(6

Then the IFSS (%#,k) is a parameterized family
[#(5),i=1,2,3}.

Definition 8 (see [36]). Let Y be a universal set and E be the
set of parameters, C(PFY) denotes the set of all complex
intuitionistic fuzzy subsets of Y. Then CIFSS (%,k) with
mapping F: k — C(pEY) is defined as,

F = {(6m (). M (®): 6 ¢ km.(8).m.(8) € O(pE )],
(1)

Sce o
M (8) = 1y (8)emm 627, 1 (8) = 1y, (B)etn O

Definition 9 (see [39]). Let Y be a universal set. Then a CPyFS
F on Y with mapping m,;, m,,: Y — [0, 1] is defined as,

F ={(6,m,(6),m,;(8)): 6 € Y}. (12)
Since | M, (6) = ryy (8)em ©®27 apd  m, (6) =
m, (o)eqm 0)2mi on condition  that, (rm, (8)%+

(ren, (8))” € [0,1] and (g, (8))> + (dm, (6))° € [0,1].

Where rp,,ry, are known as amplitude terms of
membership and non-membership degree, individually.
G,> G, s called the phase terms of membership and non-
membership degree, individually.

Definition 10 (see [43]). Let Y be a universal set and E be the
set of parameters, C(PypY) denotes the set of all complex

Pythagorean fuzzy subsets of Y. Then CPyFSS (F,k) with
mapping F: k — C(Pyp") is defined as:

(H,2) = AxB =

Where { B ) = min{ (&), 2 (L)} b8 (g =
ax {ry, (6.8, W} ]

; (6,1), P8 (8, et G0 \
A - A :0eAje

5) ={& = (0,0.6), &, = (0.4,0),&; = (0.7,0.1), &, = (0.4,0.5)}.

F- {((6, M, (8), 1,4 (8)): 6 € k. (8), m.(8) € C(Ppr))}.
(13)

Since My (8) =7y (O)eim ©27 and M, (8) = ()
eqm(o)Zm

3. Main Result

In this section, we aim to diagnose the innovative idea of
CPyFSRs by using the CP of two CPyFSSs, which are
computed with the help of two different ideas, called CPF
relation and soft sets. Additionally, using the presented
approaches, we examined different kinds of relations and
also justified them with the help of some suitable examples.
The CPyFSRs has a comprehensive structure because it is
discussing both degrees of membership and non-member-
ship with multidimensional variable.

Definition 11. Suppose (%, A) and (%, B) be two complex
Pythagorean fuzzy soft sets (CPyFSSs) on Y, E be the set of
parameters. Let (%, A) x (€, B) = (H,9) and A, BCE with
a mapping H: @ — C(PyF") then the CP of CPyFSSs

2 A
A={<°’r}n~
A

Tm,

£\ gh ()27

(0] eq‘“ 5 z ~

(©) o :0€A and
(6)eqﬁk(0)2nl

wB (1)@5@2“" -
8 (e J RS

s denoted and defined as,

o B, (14)
Tﬁ:B (6, ]‘L)eqm’ (0,1)2mi
a8 (6,1) = max {qm(o) qm,m} } (15)

[ ane® 6.0 = min {a3, (&4 D)
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Example 4. Let the universal set Y =
three types of shoe brands ie., &,

ie, O1

{a, &% @} consist of
=Bata, Q, =Servis, and
@; =Metro and there are three parameters E= {01,02,03}
=Good condition, &, =attrictive appearance, and

e

( 0_460,17ri’ 0.8e0'4"i )’ ( 0.8e0'8”i, 0'360.6711‘ )
,(0.7¢57,0.2¢™™ ), (0.9¢"7™,0.2¢"1™ )
(03¢, 0.6¢**™ ), ( 0.6¢"7™,0.3¢"™ )

b ( 0'460.67[1” 0.660‘3"i )’ ( 0.5e0'2"i, 0.660'% )

63 =Stable. Then (%, A) and (¥%,B) be two CPyFSSs onY
individually, Their corresponding membership and non-
membership are as follows; for n=2.

Y

(16)

85, (0.8¢%7™,0.4e> ), ( 0.1¢%5, 08> )
|\ (0.7e", 0.5¢""™), ((0.5¢"™, 0.5 )

)

Definition 12. The complex Pythagorean fuzzy soft relations
(CPyFSRs) R is a subset of the CP of two CPyFSSs.

In the above observations, the first three values char-
acterize the membership and non-membership degree of
each brand and the fourth value shows the general be-
longingness of each parameter to the company. Each row
represents the parametric observations. Now the CP of
(F,A) and (%,B) in Table 1 is:

Example 5. From Table 1, take a subset of the CP. Then the
CPyFSR R are as:

0. 660 7m 0. 660 7m 0. 260 3m 0.460.1m"
02605 0,622 0,624 ’ 0,308 ’
0. 8eO 4m 0. 160 3111 0. 5eO 3m 0'560.47!1’
02’ 03 > . >
) 0. 460 .87i 0. 860 6711 0. 560 .97i 0.760‘87”
R= [ (17)
0. 760 Zm) 0. 160 Sm 0. 460 4m 0.460'27”,
0,508 ’ 0,803 0,903 ’ 0,508 ’
L. 0.760'2ﬂi, 0. 160 Sm 0. 460 4m 0.460'27“,
(03’03)’ 08r | 0.3 031 | 0.87i
| 0.5¢°™ 0.8¢*™ 0.9¢"*™ 0.5¢°™ )
Definition 13. Suppose that CPyFSR R on (F, k) is said to be
CPyFS-inverse relation if
V((((J, i) [rm (6, i)]eqm (6',1)711" (6, i) [rm (5, i)]eqm (5,1)711’))
(18)

€ R@V(((]L, 6) [T’m @, 6)]eqm (Lé)ni’ (i, 6) [rm , 6)]6%1, (i,é)ni)) c R— 1.

Example 6. Take a relation from Table 1 as:
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Ordered pair Qs A
(61) 61) 0. 5eO Zm, O‘zeo.lm? 0. 4eO lm'?
0. 660 97 0.880'4m 0. 3eO 8mi
(61, 62) 0.6¢ 0.7mi 0.260'37”, 0.460'17[1?
0. 680 2m 0.660'47-” 0.380'87[1
(61,63) 0. 160 Sm’ 0.260.3711'? 0. 460 lﬂi?
0. 860 3mi 0.560,3711 0. 5@0 8mi
(62, 61) 0. 360 2711’ 0.460,1711'? 0.6604711?
0. 860 i 0.8e049m 0.78046711
(62, 62) 0.3¢ 0.37i 0‘360.3711’? 0‘660.4711'?
0.8¢ 06m 0.68049711 0.780'57”
(62, 63) 0. 160 37!1’ 0‘560.3711’? 0.560.4711'?
0. 880 6711 0'560,9771 0.7@0'87[!
(63, 61) 0.1¢ 0.5mi 0.460.4711'? 0.460,2771'?
0.8¢ 0. 3711 0.96043711 0.560,8711
(63, 62) 0. 360 6m’ 0.360,5711'? 0. 460 7m'?
0. 360 3mi 0.98044711 0. 3eO 5mi
(63, 63) 0. 160 Sm’ 0.460,4711) 0.4602711'?
0. 860 3mi 0.98043711 0.58048711
7 0. 1e0'5”i, 0.2¢%3™ 0. 4eo.lni, ]
6 |’ 0 Se0.3m > 0 5e0‘3m > 0 Seo.sm >
e i 0 3e0A3ni 0 3e0.371ri 0 6e0.471i
i ) 0 8e0.6ni > 0 6eo.9m > 0 760.5m ’
R=1 o . . - (19)
.. 0 , 0.3e0.6m) 0.360'57”, 0.460‘77“,
(03’ 02)’ 0 i) 0.3 > 0,94 > 0.3 >
.2mi 0 le0.57ri 0 460.47ri 0 4e0.27ri
0.87i 0. 8e0 3ni )’ 0 9e0 3ni )’ 0 SeO‘S”i
Then inverse relation R_l
O.Zm’ 0. 160,57!1‘) 0.4¢ i 0'4eOA27ri’
0.87i 0. 860 3ni |’ 0.9¢ i |’ 0. Seosm' >
0.4m’) 0.360'3m, 0.3¢% i 0.660'4m,
L, 0.8m |’ 0. 860.67ri > 0.6¢" i |’ 0'760.57ri >
R = 0. 4m 0.37i i 0.47i - (20)
0.8e 0.1e™, 0.5e™ 0.5¢" ",
0 460.8711 > 0 860 6mi |’ 0.5¢ i |’ 0 76048711' >
02711 0 1eO.5ni 0 460 4mi 0 460.2711'
0 Seo.sm >’ < 0 860.37:;‘ >’ ( 0 9e0 3mi >’ ( 0 Seo.sm >>
s L x (6,6)ri
» - , 0,0)|ry, (0,0)|e™ ,
Definition 14. Suppose that CPyFSR R on (%, k) is known as oV (6.9) [ m ( )] eR (21)

CPyFS-reflexive relation if

[rm (6, O)]eqm 8,8y
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Example 7. Take a relation from Table 1 as:
( o 0.4
(6,,6,), )
0.660‘47”
0.7¢>4™
<(62’62)) ( )’ <
<(63,63>) ( >’ (

is a CPyFS-reflexive relation R.
Definition 15. Suppose that CPyFSR R on (F, k) is known as

CPyFS-irreflexive relation if
))¢R. (23)

@v<<

Definition 16. Suppose that CPyFSR R on (%, k) is known as

CPyFS-symmetric relation if
)) eR. (24)

(( (1, 6) [rm, (4, 6)]e™ (O
oV

(1,8) [rm (1, 6) ]t 19"
o( @0
Definition 18. Suppose that CPyFSR R on (F, k) is known as
CPyFS-transitive relation if
))ER, (27)

[t (6,1) ]e™™ @i
and ((1,4), ([ry, (1, §)]edm W7 [r (4, §)]edm GO7)) ¢ R

V((é,m, (
[
5,4 ]edm (é,t)ni,
:Q&u(hmw)k ))eR (28)

[rm (6, t)]eqm (89)mi

0.27i
0.5¢™,

0 660.9711’

0.37i
0.3¢™,

o

0 48048711' 0 86046711'

0.57i
>

0.7¢%*™, 0.1e

0.87i 0.37i

0.5e 0.8¢e

(6,6)[rim, (6,8)]e™ O,

[T’m (6> 6)]eqm (8,8)mi

[, (6,1)] e G

[rm (6a D ] em. (6)mi

I, (6, 1) et V"

0.4 1™

0.260.1711' ]
0.860'4ﬂi >’ ( 0.360'8ﬂi >>)
) ( 0.3¢*>", > ( 0.6¢"*™, ))
0.4¢*™
>’<a%““>’< >>
Definition 17. Suppose that CPyFSR R on (F, k) is known as
[ (8,1)efm OV,

CPyFS-antisymmetric relation if
V((é, i), ( | )) eR, (25)

and ((1,8), ([rp, (i, 6)]en 007, [ (1,8)] ein 1O7) € R

)

(22)

0.97i 0.5mi

0.6e 0.7e

0.27i
0.4¢”,

0.87i

0.5e

rm (6,1) e V™

[rm.. (i, 6)]eqm(i"6)”i, o6

()

Definition 19. Suppose that CPyFSR R on (F, k) is known as
CPyFS-equivalence relation if,

(i) Reflexive

(ii) Symmetric

[, (4, 6)] ™™ &)

(iii) Transitive

Example 8. Take a relation from Table 1 as:
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)
)
()
()T
()
)
)

0.4e%4m 0.4¢%2m
0,903 >’ < 0,508
is a CPyFS-equivalence relation R. (ii) Antisymmetric

(iii) Transitive

Definition 20. Suppose that CPyFSR R on (F, k) is known as
CPyFS-partial order relation if;

(i) Reflexive Example 9. Take a relation from Table 1 as:
s .. 0'4e0.671i, 0.560.2711) O.Zeo.lni) 0.460.17'&’ p
(01’ 01)’ 04mi | 09mi | 04ni | 0.87i ’
0.6e™ 0.6e™ 0.8¢™ 0.3e™
.. 0 6e0.7m’ 0 660.7711, 0 2e0.37ri’ 0 4e0.171i’
(01’02)’ 05 | 02mi | 04m | 0.871i ’
0.2¢ ™ 0.6e ™ 0.6e™"™ 0.3¢™°™
.. 0 760'4711, 0 360‘37“, 0 3e0.3rri’ 0 660'4m,
(02’ 02)’ 08r | 0.6m | oom | 0.57i ’
_ 0.4e°™ 0.8¢ ™ 0.6e"™ 0.7¢>™
R =3 A A 4 . g (30)
.. 0 860.4m, 0.1e0.3m’ 0 5603711) 0.5e0.4m’
(02’03)’ 0sri | 06mi | 09 | 0.87i ’
0.4¢™°" 0.8¢™°" 0.5¢"" 0.7¢"°"
. 0 6e0.7711’ 0 leO.Sm) 0.2e0.37ri) 0 4eO.Iﬂi’
(01’03)’ 06m | 0.3 ’ 03ni | 0.87i ’
0.4e°™ 0.8e ™ 0.5¢ ™ 0.5¢ ™
o 0,760 0.1e"5 0.46%4 0.46%2.
(03’03)’ 087 | 03m | 03m ) 0.87i
| 0.5¢ ™ 0.8¢™°™ 0.9¢>°™ 0.5¢°™

is a CPyFS-partial order relation R.



Complexity

Definition 21. Suppose that CPyFSR R on (%, k) is known as
CPyFS-pre order relation if;

(i) Reflexive

(ii) Transitive

Definition 22. Suppose that CPyFSR R on (F, k) is known as
CPyFS-complete relation if;

y (~) [rm (6)]eqm(5)ni’ 0 [rm(i)]eqm(i)ni) .
0), > (L), SIS
[t (8)] et ©" [, (0] O
(31)
(@D [ GO
= .0, ¢ Ror| (1,6), €R.
[fm (6, ll)] o (B [fm i, 5)]6% (1,8)mi

Definition 23. Suppose that CPyFSR R on (F, k) is known as
CPyFS-linear order relation if;
(i) Reflexive
(ii) Antisymmetric
(iii) Transitive

(iv) Complete

Definition 24. Suppose that CPyFSR R on (F, k) is known as
CPyFS-strict order relation if;

(i) Irreflexive

(ii) Transitive

Example 10. Take a relation from Table 1 as:

i

.m|

A

0.7mi
0.6e"™,

0 2e0.5ni

0.7mi
0.6e""™,

0 460.6ni

)
I

0.77i
0.6e "™,

0 6eO.2r[i

0.57i
0.1e"™,

0 86043711

)
I

0.371
0.2¢"7,

0 6eO.47ri

0.377i
0.2,

0 SeO.Sni

0 860.47!1

0 460‘8ﬂi >’<

0.1e

0.37i

0 860‘67& >, <

0.5e

0.37i

)
|

0 SeO.9ﬂi >’ (

0.17i
0.4,

0 360.8711

0.17i
0.4,

0 5e0,87ri

0.5e

0.47i

)
)

0 7e0,87ri ))

(32)

Y

is a CPyFS-strict order relation R.

Definition 25. Let R be a CPyFSR on (%,k) is known as

CPyFS equivalence class of 6 mod R is defined as:

([ O, 6]

R[6] = L o0 (33)
((L 8), [rm(ju é)]eqm(l.»o)ﬂl’ [fm, i, 5)]eqm<x,o>m>> eR

Example 11. Take an equivalence relation from example 8
as:
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(o
(o (:
(o0
(o0
(o

(

. 0 7eO.2m
(03’ 03)’ 0 560.8714
Now, the equivalence class of.
0.4%67
<01’ < 0.6e%4m
R[él] - 0.4
. 0.7¢™
<02’ < 0. 4087
(ii) 6, mod R
f ) 0. 4267
Op < 0.6%4
_ 0 7e0.47ri
R[o2] = <02’ < 04087
) 0,702
0,,
0.5e
(iii) 6, mod R
i 0 7e0.47‘[i
0y 0.4¢%8m
R[6:] =

o

0 7eO.2ni

0.5e

'4e0.6ni) > < 0.
64 )7\ o
6e°‘7’”,> <0.
2> '\ o
4 0.47[1) > < 0.
6 0.8 |’ 0.
7eoA4m, ) < 0.
4% '\ o
8e0.47ri, > < 0.
460.87{i > 0.
760 27ri, ) < 0.
57 )7\ o

i 0.1e
’O.e

)
i

)
)

b
0.8 |’

)

b
0.87 |’

0.57i
bl

0.37i

oo =

0 46044ni
0 9e0.37ri i

SeO.Zﬂi) 0.260.17&’ 0.
62 I\ 0.8e%4 )7\ o
6eOA7ni’ 0'2e0.3ni, 0.
6eo.2m > 0. 6eo.4m > 0.
3e0'2”i, 0. 4e0'1”i, 0.
8e0.9m > 0.8e0‘9m > 0.
3% 0.3e™™, 0.
Seo.sm > 0 6eo.9m > 0.
1e0'3m, 0. 5e0.3rri’ 0.
Seo.sm > 0. SeO.9ni > 0.
36 0.3e™™, 0.
360.3;11 > 0'960.47:1 > 0.

(i) 6, mod R

O'SeO.ZTIi’ > <
0.6e>" )
0.3¢%*™, > <
0. 8e0.67ri >

0.27i
0.5¢ ™,

0 6e049rri

0.37i

0.3e S
0 8e046ni >
0 1eo.sm
0.880'3m ’

0 3e0.37'[i
0 860‘67& >
0 1eO.57ri > <

0 8e0.37‘ri

0.17i
0.2¢ ™,

0 860‘4m

0 3e0.3rri

0 6eO.9ni

0.17i
0.2e ™,

0 860.47ri

0.377i
0.3¢°™,

0 660.971i

0 4e0.47'ri

0.9¢e

0.37i
0.3¢°™,

0 660‘97&

0 4e0.4rri

0.9¢

)
i

)
)

bl
031 |’

)

bl
037 |’

0.17i
0.4e ™,

0 360‘87&

0 6eO.471i

0 7eO.5ﬂi

0.17i
0.4,

0 360.8ni

0.47i
0.6e”“™,

0 7e0.57‘ri

0 4e04271i

0.5e

0.47i
0.6e ™,

0 7eO.57‘ri

0 460.271i

0.5e

bl
0.87i
J

))
)

)}
))

))

)

Complexity

(34)

(36)

(37)
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Definition 26. Let R be a CPyESR on (%,k) is said to be
CPyFS composite relation R, R, is defined as:

] 1 (6,1) eqm(é»i)ni) i
(6.1, [“‘*, ] ] ]eRy G8)
[, (6 1) et OV
and (1, 8), ([ (i, H]eIm GO, 1 (i, B]en 071 € R,
‘,t qm(é,t)ni’
=( 3.9, [ (2.0 : RioR,  (39)
[t (B, 8)]edm O

Theorem 1. A CPyFSR R is CPyFS symmetric relation on a
CPyFSS F iff R = R".

Proof 1. Suppose thatR = R, then
((6,1), (M. (6,1)), (M. (6,1))) € R

=((1.6), (M. (,9)). (. (1,9))) € R°

=((,6), (M. (1,9)), (. (1,9))) € R,

Thus, R is CPyFS symmetric relation on a CPyFSSF.
Conversely, assume that R is CPyFS symmetric relation
on CPyFSSE then

(6,1, (M. (6,1)), (m..(6,1))) €R

) . , _ (41)
=((1,6), (M. (1,9)), (M. (1,8))) € R.
However, ((i,8), (.. (i,8)), (m.. (i, 8))) € R®
—R=R". (42)
O

Theorem 2. A CPyFSR R is CPyFS transitive relation on
CPyFSS F iff RoRcR".

Proof 2. Suppose that R is CPyFS transitive relation on
CPyFSSF.. ) ) o

Let (8,9, (m, (6,9, (. (6,1)) € ReR,

Then by the definition of CPyFS transitive relation,
((6,1), (M, (0,1)), (M. (G,1)) R And  ((,), (M. (1,)),
(m..(1,9)) €R

=ReRcR (43)

Conversely suppose that Ro RQR, then.
For ((0,1), (M. (0,1), (M. (6,1))) € R and ({1, ¥),
(m, (i, 9), (M. (L,H)) € R

(6.9, (M. (6,9), (M. (6,1)) e R (44)

Thus R is a CPyFS transitive relation on CPyFSSF. O

Theorem 3. A CPyFSR R is CPyFS equivalence relation on a
CPyFSS F if R-R=R.

Pr00f3. Suppose that ((6, ]L)) (mc (6> ]\.)) (mf-'c (6) ]\.))) € R)
Then by the definition of CPyFS symmetric relation,
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(4.6), (M. (1,9)), (M. (1,9))) € R. (45)
Now by the definition of CPyFS transitive relation,
(6.8)1m.(B.8)]e 497, 1, (6,8)]e 0 ) € R
(46)
However, by the definition of CPyFS composite relation,
(6.8)1m, (B.8)]e 49, 1, (6,8)]e™ 9™ ) € RoR
(47)
Hence,
ReR-R. (48)
Conversely, assume that
(6.0, (M (6,0, (M (B D)) e ReR (49)

Then there exist t € F3 (69, ([ry (6,9)]
edn OO [ (8, 1)]edn O97)) € R and

(60, ([rm G D], [, (D] ™)) e R (50)

However, [ is a CPyFS equivalence relation on CPyFSS
F, so R is also CPyFS transitive relation. Therefore,

=R-RcR (51)

Henceforth, (48) and (51),
R.R=R. (52)
O

4. Applications

Here, is an application of the proposed concepts to select the
best blockchain technology (BCT) by applying the idea of
complex Pythagorean fuzzy soft relation (CPyFSR) and their

types.

4.1. Blockchain Technology (BCT). Blockchain is one of the
most talked-about technologies in business right now. BCT
has the potential to drive major changes and create new
opportunities across industries from banking and cyberse-
curity to intellectual property and healthcare. BCT is a
database system that preserves and stores data in a way that
enables various organizations and people to reliably share
access to the same data in real time while alleviating con-
cerns about security, privacy, and control. The technology
provides a reliable technique for individuals to contract
directly with each other, without an intermediary like a
government, bank, or other third parties. Figure 1 shows the
algorithm of the application.

Firstly, express the universal set that consists of three
types of BCT. The universal set consists of three types of BCT
i.e., & = Public blockchains, Q, = Private blockchain and
@, = Consortium blockchains. Figure 2 discusses the types of
BCT.
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o Universal set

« Set of parameters
o Assign degrees

« Cartesian product
« Score function

Algorithm of

application

FiGure 1: Algorithm of application.

Private
Blockchain
: Blockchain Consortium
\ Ulsebwelloggy Blockchains
Public
Blockchain

FIGURE 2: Summary of BCT.

4.1.1. Public Blockchains. Public blockchains are non-re-
strictive, permissionless distributed ledger systems. They are
open networks that allow anyone to participate in the
network. Public blockchains are generally secure if the users
rigidly follow security guidelines and procedures.

4.1.2. Private (or Managed) Blockchains. Private blockchains
are frequently used within an association or enterprise where
only nominated members are applicants of a blockchain
network. The level of security, authorizations, permissions, and
availability is in the hands of the monitoring organizations.

< 0.6e>, > ( 0.5e>,
0.560.6711 0.460.8ni
< 0.7e0 7ni’ > ( 0 360.4m’

0.2603”1 0'6e04771i

() - ( 0.8¢° 4”1‘, > ( 0.6e"°™
0.3e>*™ 0.1e™2™

< 0.9e0‘6"i, > < 0'760.6711’

0.4602”1 0.46044711

< O.Seo 5711, > ( 0.8eo'6m,

0.260.7711 0 3e0.47'[1

Complexity

4.1.3. Consortium Blockchains. Consortium blockchains are
a semi-decentralized form where more than one association
accomplishes a blockchain network. More than one asso-
ciation can act as a node in this nature of blockchains and
exchange information. Consortium blockchains are classi-
cally used by banks, government organizations, etc.

Secondly, describe the parameter of the BCT. Figure 3
shows the summary of BCT parameters.

(1) Increased Capacity. The most amazing thing about this
BCT is that it increases the capacity of the entire network.
The average number of transactions successfully recorded
per second in the BCT.

(2) Better Security. BCT produces a structure of data with
inherent security qualities. BCT is considered more secure than
its contemporaries because of the lack of a single point of failure.

(3) Faster Settlement. It can explain this problem by
employing blockchains as they can allow money transfer at
certainly fast speeds. This eventually saves a lot of time and
money from these establishments and provides accessibility
to the consumer also.

(4) Decentralized System. Decentralized technology gives the
power to store resources in a network without the oversight
and control of a single person organization or entity. BCT
shows to be an operative tool for decentralizing the web so it
is a small revolt in the Internet’s world.

(5) Distributed Ledger. The distributed ledger allows anyone
with the required access to view the ledger and makes the
process transparent and reliable. This distributed computa-
tional power across the computer to ensure a better outcome.

The expert examines the BCT in which characteristic of
all parameters. Let observations (&, &) by experts indi-
vidually. They give the value of membership and non-
membership on the base of parameters.

Assume that their corresponding membership and non-
membership matrices are as follows.

> < 0.4¢>"™, > < 0.7>7™, >
02057 0.2e037
> < O.Seo.%i) > ( 0.9e0‘4"i, >
0.3¢"'" 0.3¢"*"
0.8e%0™ 0.5e"8m
) (e (25
> < 0.660'47”, > ( 0.9e0‘6"i, >
0.3 0147
> < 0.760.8711’ > < 0.7e0.4m’ >
e 27 0.6e7™
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Blockchain technology

Better Security

Decentralized System

Increased Capacity

Distributed Ledger

FIGURE 3: Summary of Blockchain technology parameters.

The first value of each parameter indicates the degrees of
membership and non-membership assigned by experts to
theq,, the second value of each parameter indicates the
degree of membership and non-membership assigned by
experts to the Q,, the third value of each parameter shows the
degree of membership and non-membership assigned by
experts to the @,and the last value of each parameter shows
the general belongingness of each parameter to the BCT and
is denoted by A.
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Then, the CP of (¥, /) shown in Table 2.

Now to calculate the score function, convert the complex
values into real values to calculate the score values. Firstly,
given values in  complex polar form, ie,
e™ = cos 79 + isin 719. To convert the all-exponential values
to the form of a + ib. i.e., a + ib = re™®, as r = Va2 + b and
e = cos(0) +1 sinm(8). Then
a=rcosm(0),b =sinm (). Here, 7 is just a notion and
shows the cycle of the circle. Make polar form into standard
form and then take modulus. After all, this process, apply to
membership and non-membership score formula to
1/2(m.? + qp, —m? —qp, ), as shown in Table 3.

Now, to determine the best BCT, take the largest value
from each row and ignore the last column. The last column is
the general belongingness of each BCT parameter. Now
every BCT score is calculated by adding the product of these
numerical degrees with the corresponding value of A. The
best BCT preferred by any user is the one that gets a greater
numerical value than others. We do not study the numerical
degree of the same parametric ordered pair’s BCT because it
is not a unique work to compare with itself. Now, estimate
the score function in Table 4.

S(d;) = (0.155 % 0.235) + (0.09 x 0.145) + (0.18 x —=0.1) + (0.155 x 0.235) + (0.38 x —0.1) + (0.09 x 0.145)
+(0.255 x —0.22) + (0.18 x —0.1) + (0.38 x —0.1) + (0.255 x —0.22) = —0.125.

Thus, public blockchains are the best BCT as compared
to other blockchain technology.

5. Comparative Analysis

In this section, the innovative framework of CPyFSRs is
compared to the numerous pre-existing structures in FSS
theory, such as FSRs, CFSRs, IFSRs, CIFSRs, and PyFSRs.

5.1. Comparison of FSRs, CFSRs with CPyFSRs. The structure
of FSS and CFSSs is explained by a membership degree
which is a fuzzy number, and the associated relations are
known as FSRs and CFSRs. FSRs and CFSRs are defined only

(0' 605 ) (0' 5037 )
(F,d) = (0.7e0'7m) (0‘36044;11)
(0.8e°'4m ) (0' 6o )

The first three values of each parameter indicate the
degrees of membership assigned by experts, and the last
value of each parameter shows the general belongingness of
each parameter to the BCT and is denoted by A. Then, its self
CP is shown in Table 5:

(54)

by the membership degree. The FSRs in an ordered pair
show only the effectiveness of the first parameter over the
second. The FSRs have only one dimension and provide
limited information. The CFSRs analyzed only the mem-
bership degree with the complex number. The CFSRs are
basic two components, ie., amplitude terms and phase
terms. An amplitude term describes the strength of the
different BCT, and the phase term is used to define the
period over specified situations. Therefore, the CPyFSRs
defined both the membership and non-membership degrees
with complex numbers.

Assume that their corresponding membership of CFSRs
matrices is as follows.

(0.460.7711 ) (0.760.77Ti )
(0.5¢*™) (0.9¢*™) |- (55)
(0.860.6711 ) (OISeO.Sﬂi )

5.2. IFSR and Cifsr with CPyFSRS. The IFSSs and CIFSSs are
defined as membership and non-membership degrees. The
related relations are known as IFSRs and CIFSRs. The IFSRs
indicate the effectiveness and ineffectiveness of the first
parameter over the second in an ordered pair. An IFSRs
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TaBLE 2: Cartesian product.

Ordered pair o Q, Qs A

(51, 51) 0.6e0'5"i? 0.5eo,3m? 0.4e0,7ﬂi? 0.760,7;11?

0.5e046m 0.460'87” 0.2e045m 0.2e043m

Lz 0.6e0A5m, 0.3eOA37ri) 0.4eOA7ni, 0.7eOA47ri,

(6,,6,) < 0.5¢%6m 0.6e%8™ 0.3¢%5 0,323

iz 0.6e%4™ 0.5¢%3 0.4¢%%™ 0.5¢%7™

(6,,65) 0.5¢%6m 0.8 0.5 0.3
.5e 0.4e 0.3e 0.6e

" 0.660'57“, 0'560.3711’ 0.480'4ﬂi, 0'760.6711’

(6,,6,) < 0.5¢%6m 0.4e%8™ 0.3¢%5 0,204

L 0.5¢%57 0.5¢%37. 0.4¢%7. 0.7¢%47

(6,,65) < 0.5¢%7m 0.4e%8™ 0,205 0.6¢%7m

Lz 0.6605711) 0.3603711’ 0.4€0A771i) 0.7604711’

(62,6,) 0.6 0.8 0.5 0.3
0.5e 0.6e 0.3e 0.3e

Lz 0‘7e0.7ﬂi, 0'3e0.4ni, 0‘5e0.9ﬂi, 0'9e0.4ni,

(6,,6,) 0.3 0.7 0.1 0.2
0.2e 0.6e 0.3e 0.3e

Lz 0.760'4711, 0.360.4ni’ O.SCO'Gﬂi, 0.5e0.4ni)

(6,,65) 0.37i 0.77i 0.57i 0.37i
0.3e 0.6e 0.3e 0.6e

Lz O.7eOA6m) 0.3e0A4m’ O.SeoAni) 0.96047[1)

(6,,6,) 0.3 0.7mi 0.3 0.47i
0.4e 0.6e 0.3e 0.3e

Lz O.SeOASHi, 0.3eOA47ri) O.SeOASHi, 0.7eOA47ri,

(6,,65) 0.7 0.7 0.2 0.7
0.2e 0.6e 0.3e 0.6e

Lz 0.660'47“, O'SeO.SHi’ 0.460'6ﬂi, 0'5e0.7ni)

(65,6,) 0.67i 0.87 0.57i 0.37i
0.5e 0.4e 0.3e 0.6e

L oz 0.7¢%47 0.3¢%47 0.5¢%67 0.5¢%47

(65,6,) 0.37i 0.77i 0.57i 0.37i
0.3e 0.6e 0.3e 0.6e

P 0.8¢%47 0.6e%%7 0.8¢%67 0.5¢%87

(65,65) 0.3 0.2 0.5 0.3
0.3e 0.1e 0.3e 0.6e

Lz 0.8e0A4m, 0.6e0A67ri, 0.6eOA4ni, 0.5e0A67ri,

(65,6,) 0.3 0.47i 0.5 0.47i
0.4e 0.4e 0.3e 0.6e

Lz 0.560'47“, 0.660'6m, 0‘7e0.6ni, 0'5e0.4ni,

(65, 05) < 0.3¢%7m 0.3e%4™ 0.3¢%5 0.6¢%7m

Lz 0.660'57[1, 0.560.3711) 0.460'4ﬂi, 0.760.67&’

(65,6,) 0.67i 0.8 0.5 0.47i
0.5e 0.4e 0.3e 0.2e

P 0.7¢%67 0.3¢%47 0.5¢%47 0.9¢%47

(64,6,) 0.3 0.7mi 0.3 0.47i
0.4e 0.6e 0.3e 0.3e

iz 0.8e%4m 0.6e%5™ 0.6e%4m 0.5¢%6™

(64,65) 0.3 0.47i 0.5 0.47i
0.4e 0.4e 0.3e 0.6e

Lz 0.960'6ﬂi, 0'7e0.6ni’ 0.660'4ﬂi, 0'9e0.6ni’

(64,6,) < 0.4¢%27 0,447 0.3¢%3 0.1e%4m

L 0.5¢%57 0.7¢%67 0.6e%47 0.7¢%47

(64,65) 0.7 0.47i 0.3 0.7
0.4e 0.4e 0.3e 0.6e

Lz 0.5605711) 0.5603711’ 0.4€0A771i) 0.7604711’

(65,61) 0.7 0.8 0.5 0.7
0.5e 0.4e 0.2e 0.6e

Lz 0.560'5ﬂi, 0'3e0.4ni, 0.560'8ﬂi, 0'7e0.4ni,

(65,6,) < 0,207 0.6e%7™ 0.3¢%2m 0.6¢%7™

Lz 0.560'47“, 0.660'67”, 0.7e0.6ni) 0.5e0.4ni)

(G5,065) < 0.3¢%7m 0,347 0.3¢%5™ 0.6e%7™

Lz O.SeOASHi) 0.7eOA6ﬂi’ O.6eOA4ﬂi) 0.7604711)

(65,6,) 0.7 0.47i 0.3 0.7
0.4e 0.4e 0.3e 0.6e

(65, 65) O.SeO'SHi, O.SeO'G”i, 0.760'8ﬂi, 0'760.4ni)

0'260,7771 0.360'47” OeO.Zni 0. 6e0.7711
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TABLE 3: Modulus of each complex number.
Ordered pair Qo a, Q5 A
6,,8)) 0 -0.23 0.18 0.425
6,,5,) 0 -0.41 0.155 0.235
(6,,55) -0.045 -0.23 0.09 0.145
(6,,6,) 0 -0.23 -0.01 0.325
(6,,85) -0.12 -0.23 0.18 -0.1
(6,,8)) 0 -0.41 0.155 0.235
6,,8,) 0.425 -0.3 0.48 0.42
(6,,85) 0.235 -0.3 0.135 -0.02
6,,8,) 0.3 -0.3 0.115 0.36
(6,,85) -0.015 -0.3 0.38 -0.1
(65,8)) —0.045 -0.23 0.09 0.145
(65,8,) 0.235 -0.3 0.135 -0.02
(65,85) 0.31 0.56 0.33 0.22
(85,6,) 0.275 0.2 0.09 0.045
(65,85) -0.085 0.235 0.255 -0.22
(8,,6,) 0 -0.23 -0.01 0.325
(6,,6,) 0.3 -0.3 0.115 0.36
(8,,65) 0.275 0.2 0.09 0.045
(6,,8,) 0.485 0.265 0.17 0.5
(8,,85) ~0.075 0.265 0.17 -0.1
(65,8)) -0.12 -0.23 0.18 -0.1
(65,5,) -0.015 -0.3 0.38 -0.1
(65, 85) —0.085 0.235 0.255 -0.22
(65,8,) -0.075 0.265 0.17 -0.1
(85, 85) -0.015 0.375 0.545 -0.1
TaBLE 4: Score function.
R (61,6y) (61,6,) (6,,0;5) (6,04) (6,,05) (6,,6y) (6,,0,) (6,,0;5) (6,,04)
o s Qs o8 & Qs o8 Qs o} &
Highest degree X 0.155 0.09 0 0.18 0.155 X 0.235 0.3
A X 0.235 0.145 0.325 -0.1 0.235 % -0.02 0.36
R (65,65) (65,6,) (65,06,) (65,65) (65,04) (65,65) (64,01) (64,6,) (64,65)
% 3 5] 1 ) & 3 & & 1
Highest degree 0.38 0.09 0.235 X 0.275 0.255 0 0.3 0.275
A -0.1 0.145 ~0.02 X 0.045 -0.22 0.325 0.36 0.045
B (64,, 0,) (64,) G5) (553 0y) (65’) 0,) (65,: 6;) (05’>64) (G5, 05)
Q; 0] Q Q3 Q3 Q3 Q °5)
Highest degree X 0.265 0.18 0.38 0.255 0.265 X
A X -0.1 -0.1 -0.1 -0.22 -0.1 X

cannot characterize such problems that include time, so they
are provided incomplete information. The CIFSRs are ex-
amined the degrees of membership and non-membership
with complex numbers. They explain both the amplitude
term and phase term. The innovative structure of CPyFSRs

0 3e0.5ni 0 5eO.17ri

0.560'4m 0.460487&

~ 0.760'7711, 0.360.47&’

(F.d) = 0.2 0.6e%%™
0 5e0.4ﬂi 0 660.67ri

0. 360.37ri 0. le0427'[i

discusses the degree of membership and non-membership
with complex numbers and increases the space of CIFSRs.
So, it provides comprehensive information on any problem.
Assume that their corresponding membership and non-
membership of CIFSRs matrices are as follows.

0.4603”1, 0'760.7ni’
O'ZeO.Sni 0.260'3711
0‘5e0.9ni) 0.660447'&,
0.360.17& 0'360.2711 (56)
0.560.37ri) 0'560.5ni’
0‘360.5711 0.460'3711
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TaBLE 5: Cartesian product.
Ordered pair o Qs A
(51) 61) ( 0.6e%5™ ) ( 0,503 ) ( 0.4e%7m ) ( 0,707 )
(6,,6,) (0.6e"™) (0.3¢™) (0.4e™™) (0.7¢™)
(61, 63) ( 0.660'47“ ) ( 0.5e043m ) ( 0.480'67[1 ) ( 0.58047711 )
(02) 61) ( 0.66045711 ) ( 0.3e0437ti ) ( 0.460'7m ) ( 0.7e0447ti )
(62, 02) ( 0.760 7mi ) ( 0.3e04471i ) ( 0 5e0,9ﬂi ) ( 0.9e04471i )
(62, 63) ( 0.760'47“ ) ( 0.360'47“ ) ( 0.560'67[[ ) ( 0.560'47“ )
(63, 6 ) ( 0.660'47“ ) ( 0.5e043m ) ( 0.480'67“ ) ( 0.5807”1 )
(63) 62) ( 0.7e044m ) ( 0.3e044m ) ( 0.5e046m ) ( 0.5e044m )
(53) 63) ( 0,804 ) ( 0.6e%9™ ) ( 0,826 ) ( 0,528 )
TABLE 6: Cartesian product.
Ordered pair Qo Q5 A
Lz 0.3e0A5ni, 0 1mi 0.4e0A3ni, 0. 7e0 7mi
(01,6,) < 0,504 0 4 0 8t 0,205 026" 3t
(61, 62) 0‘3e0.57li? 0. 360 1mi 0‘4e0.37li? 0'6e0.4m?
0.5¢"*™ 0,604 0.3¢"™ 03"
(61, 63) 0.3e0,4ni? 0.5¢ 0.17i 0.460'3ﬂi? O.SeO.Sni?
0'56044711 0.4¢ 0. 8711 0'36045711 O‘4e043m
(62, 61) 0.3605711.’ 0. 3e0 1mi O.4eOA3ﬂi.’ 0.660,4771?
0.56044711 0. 6e0 87r1 0.36045711 0. 3e0437'[1
(62) 62) 0'7e0.771i? 0. 3e0 .47 0'5e0.971i? 0.6e0.471i.,
0.26043711 0. 6e0 Sm O.Seoim 0.380'2m
(62, 63) 0.560'4ﬂi, 0. 3eO .47 0.5e0.3ﬂi, 0. 5eO .47
0.360'37“ 0.6 OSm 0.360'57“ 0.4e 03711
(63, 61) 0.3eOA4ﬂi? 0. 5e0 17 0.4eOA3ﬂi? O.SeO,Sm?
0,56044”‘ 0. 460 Sm 0,36045”‘ 0,460‘37“
(é 6 ) O.SeoAni) 0.3¢ 0.47i 0.560A3ni) 0. 5e0 4711’
32 0.3m 051 0.5mi 0.3mi
0.3e 0.6e 0.3e 0.4e
(63, 63) 0.560.4711? 0.660'67“_, 0.560'3ﬂi_, 0.560.57&?
0.36043711 0.160.2711 0.36045711 0.4e043m

The first three value of each parameter indicates
the degrees of membership and non-membership
assigned by experts, and the last value of each
parameter shows the general belongingness of each pa-
rameter to the BCT and is denoted by A. Then, its CP is
shown in Table 6:

5.3. PyFSRs with CPyFSRS. The structure of PyFSS is
explained by membership and non-membership degrees and
the associated relations are known as PyFSRs. The structure
of PyFSRs is improved by the limitation of FSRs and IFSRs,
but they do not provide the time duration. The innovative
structure of CPyFSRs discusses the degree of membership
and non-membership with complex numbers and increases

TaBLE 7: Summary of comparative analysis based on the structure.

Non- Multi-

Structure Membership membership dimension Space
SR No No No No

FSR Yes No No n=1
CFSR Yes No Yes n=1
IFSR Yes Yes No n=1
CIFSR Yes Yes Yes n=1
PyFSR Yes Yes No n=1
CPyESR Yes Yes Yes n=2

the space of CIFSRs. So, it provides comprehensive infor-
mation on any problem. Table 7 summarizes the compar-
ative study of CPyFSRs with a pre-defined structure.
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6. Conclusion

This paper defined the novel concept of CPyFSRs by using
the CP of two CPyFSS. Furthermore, various types of
CPyFSRs are also discussed, such as CPyFS-converse rela-
tion, CPyFS-reflexive relation, CPyFS-irreflexive relation,
CPyFS symmetric relation, CPyFS anti-symmetric relation,
CPyFS asymmetric relation, CPyFS-complete relation,
CPyES transitive relation, CPyFS equivalence relation,
CPyFS-partial order relation, CPyFS-strict order relation,
CPyES preorder relation, and CPyFS equivalence classes.
Some outcomes were proved with appropriate examples.
Moreover, this novel concept of CPyFSRs has used the
application of BCT. The goal of this application is to find the
most effective BCT. The BCT represents the different pa-
rameters. The expert gives the membership and non-
membership values of each BCT parameter. Then, using the
score function, they choose the best BCT based on a set of
parameters. The score function is used in this article to
choose the best object, or anything based on some pa-
rameters. Finally, the innovative framework of the CPyFSRs
is the more generalization form of all the pre-determined
structures. Because it discusses both the degrees of mem-
bership and non-membership with complex numbers. The
CPyFSRs can solve periodicity.The proposed work is more
generalized then the bundle of exiting ideas, for instance,
fuzzy relations, soft relations, complex fuzzy relations, fuzzy
soft relations, complex fuzzy soft relations, intuitionistic
fuzzy relations, intuitionistic fuzzy soft relations, complex
intuitionistic fuzzy relations, complex intuitionistic fuzzy
soft relations, Pythagorean fuzzy soft relations, and complex
Pythagorean fuzzy soft relations, they all are the special cases
of the pioneered relations.For better approach in the future,
we aim to utilize different types of aggregation operators,
hybrid aggregation operators, similarity measures, distance
measures, TOPSIS technique, VIKOR technique, AHP
technique, and MARCOS technique in the environment of
CPyFSR and justified their application with the help of
medical diagnosis, pattern recognition, network signals,
artificial intelligence, risk analysis, and game theory are to
enhance the quality of the presented information.
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