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Image similarity metric, also known as metric learning (ML) in computer vision, is a significant step in various advanced image
tasks. Nevertheless, existing well-performing approaches for image similarity measurement only focus on the image itself without
utilizing the information of other modalities, while pictures always appear with the described text. Furthermore, those methods
need human supervision, yet most images are unlabeled in the real world. Considering the above problems comprehensively, we
present a novel visual similarity metric model named PTF-SimCM. It adopts a self-supervised contrastive structure like SimSiam
and incorporates a multimodal fusion module to utilize textual modality correlated to the image. We apply a cross-modal model
for text modality rather than a standard unimodal text encoder to improve late fusion productivity. In addition, the proposed
model employs Sentence PIE-Net to solve the issue caused by polysemous sentences. For simplicity and efficiency, our model
learns a specific embedding space where distances directly correspond to the similarity. Experimental results on MSCOCO, Flickr
30k, and Pascal Sentence datasets show that our model overall outperforms all the compared methods in this work, which
illustrates that the model can effectively address the issues faced and enhance the performances on unsupervised visual similarity
measuring relatively.

1. Introduction

During the past decades, metric learning (ML) in computer
vision (CV), also known as image similarity measurement,
has been a fundamental problem in a variety of image ap-
plications, including image retrieval [1–3], face recognition
[4–7], and visual search [8–11].*e goal of metric learning is
to learn an embedding space, where the mapped feature
vectors of similar instances are encouraged to be closer. At
the same time, samples of different categories are pushed
apart from each other [12–14]. In other words, the image
similarity metric aims to estimate whether a given pair of
images are similar or not.

Deep metric learning (DML) is a novel measure tech-
nique that combines deep learning (DL) with metric
learning. With the recent rapid development of deep neural
networks (DNN) in computer vision, DML has drawn

growing attention and has become a mainstream metric
learning method.Most previous deepmetric approaches rely
on supervised learning, meaning labels must be provided to
the model along with input data. However, most data have
not been labeled in the real world, and annotating a large-
scale dataset is time-consuming and expensive. Conse-
quently, learning effective visual-metric representations
without human supervision is a crucial problem. *e re-
search on this problem is also known as Unsupervised
Learning (UL). Self-Supervised Learning (SSL) can be
regarded as a particular type of UL with a supervised form,
where supervision is induced by self-supervised tasks rather
than preset prior knowledge. SSL has delivered promising
results in recent years, and a majority of mainstream ap-
proaches of it fall into one of two classes: generative or
discriminative [15]. Generative techniques learn to recon-
struct the original input [16, 17], and discriminative
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methods learn representations using objective functions.
Discriminative ones are similar to the supervised learning
approaches but require specific pretext tasks [18, 19] in
which both inputs and labels are derived from an unlabeled
dataset. Recently, discriminative approaches based on
contrastive learning have achieved outstanding results in
unsupervised visual representation. *ose approaches
[20–22] show significant potential to close the performance
gap with supervised methods or even achieve the same
results in specific downstream tasks and datasets. *erefore,
it is of great research value to introduce SSL into image
similarity measurement.

In addition, the current image similarity measurement
techniques based on deep metric learning frequently focus
on the image itself merely without further utilizing the
information of other modalities correlated to the image.
Nevertheless, pictures usually do not appear independently
in the real world, yet with other modal information such as
text and sound, especially in social media. For example,
when people browse images in social media applications like
Twitter and Tumblr, the pictures are always accompanied by
text descriptions. Figures 1(a) and 1(b) are images selected
randomly from Tumblr and Twitter, respectively, and both
images have related sentences. *us, when searching for
relevant images in social apps, the results would be better if
we make good use of the text information that appeared with
the pictures. Besides, online shopping malls like Amazon
and eBay often provide a text description of the product
when listing it. Figure 1(c) shows an image of a sweater
jacket randomly picked from Amazon Marketplace, and a
detailed product description can be found below the image.
In this way, we can use relevant description information to
obtain more accurate product candidates when exploring
similar products in online shopping. From the above two
application scenarios, it can be concluded that the textual
information that can make the image more specific will be
lost if we only focus on the image itself in image similarity
measuring.

However, a text sometimes appears ambiguous in real
life. For example, “he left the bank” has two interpretations.
One is that he is now far away from the bank, like “he left the

bank five minutes ago.” Another is that he is no longer
working at the bank, like “he left the bank five years ago.”
Namely, each of those ambiguous sentences can map to
more than one point in the embedding space. Nevertheless,
an injective model [23], a one-to-one mapper, can embed
merely one point from an ambiguous text input sample.*at
is to say, the semantics resulting from the injective model
will likely deviate from the ones we expect.*erefore, if these
ambiguous sentences are used in the image similarity metric
directly, this will not only hardly improve the accuracy of the
algorithm but also have a negative impact on the results.

To address the above issues, we propose a Simple
Contrastive Model with Polysemous Text Fusion (PTF-
SimCM) for visual similarity metric in this work. *e ar-
chitecture of PTF-SimCM consists of two branches and a
middle cross-modal encoder. Of all the current best con-
trastive learning models, SimSiam [24] is the simplest
without negative samples and no need for large batch size.
Hence, the two branches in our model adopt the same
asymmetric contrast structure as SimSiam for solving the
trouble of visual-metric representations without human
supervision. It contains upper and lower subnets with shared
weights. Besides, we use a cross-modal model for encoding
input sentences rather than a unimodal text model to reduce
the computation of late features fusion and improve training
productivity. For the problem in polysemy text fusion, we
employ the pretrained Sentence PIE-Net [23] as our cross-
modal encoder and fuse the output embeddings with image
features. Moreover, to make the image similarity mea-
surement simpler and more efficient, PTF-SimCM straight
learns an embedding space where distances directly corre-
spond to a measure of image similarity.

In short, our contributions are summarized as follows:

(i) We propose a novel method based on the con-
trastive learning structure for unsupervised visual
similarity measuring.

(ii) For better model performance, we further pay at-
tention to information on the textual modality
correlated to the image by effectively combining
multimodal fusion with the contrastive structure.

Airbus’ iconic Beluga super
trabsporters ready to serve global

outsized-cargo demand

(a) (b)

Simple Joys by Carter's Unisex
Babies' Hooded Sweater Jacket
with Sherpa Lining, Grey, 6-9

Months

(c)

Figure 1: Image examples. (a) and (b) are randomly selected from Tumblr and Twitter, respectively. (c) is randomly picked from Amazon
Marketplace.
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(iii) To address the problem caused by polysemous
sentences and improve the efficiency of late feature
fusion, we exploit a specific cross-modal net to
process input text modality rather than a standard
unimodal text sequence model.

(iv) We obtain competitive results compared with the
methods which do not consider textual information
in image similarity measuring or cannot process the
unlabeled training data on MSCOCO [25], Flickr
30k [26], and Pascal Sentence datasets [27].

*e rest of this paper is organized as follows. Section 2
reviews and discusses the related works in this area. Section 3
characterizes the proposed PTF-SimCM model in detail,
followed by the implementation details, performance
comparison experimental results, and ablation study in
Section 4. Conclusions are in Section 5.

2. Related Works

*is section will briefly review some of the most relevant
research to our work. *e structure of this section is as
follows. Section 2.1 will review the recent research on deep
metric learning, followed by the recent study on contrastive
learning in Section 2.2. *e SimSiam model [24], as same
asymmetric contrastive structure as our approach, is de-
scribed in Section 2.3. *e recent examinations on cross-
modal representation are in Section 2.4.

2.1. DeepMetric Learning. Deep metric learning (DML) is a
specific type of metric learning that aims to measure the
similarity between input data samples by mapping data to an
embedding space in which similar instances are close to-
gether, and dissimilar data are far apart. One of the fun-
damental ideas where explicit metric learning is performed is
the Siamese networkmodel [28, 29]. Siamese network, with a
contrastive loss [30], is asymmetric neural network archi-
tecture consisting of two identical subnetworks that share
the same parameters. *e contrastive loss, as shown in
equation (1), is a classic loss function and is one of the most
straightforward and intuitive training objectives for metric
learning.

Lcontrast � 1y1�y2
D

2
x1, x2(  + 1y1≠y2

max 0, α − D
2

x1, x2(  , (1)

where x1, x2 are input samples and y1, y2 are their corre-
sponding labels. 1condition denotes the identical function that
is equal to 1 indicating that the data pairs are similar or
positive and y1 ≠y2 shows that the pairs are dissimilar or
negative. *e parameter α is the margin threshold between
positive and negative.

Triplet loss [5] is another popular and widely used loss
function for metric learning. Let xa, xp, xn be samples from
the dataset and ya, yp, yn are their corresponding labels and
ya � yp, ya ≠yn. Usually, xa is called anchor, xp is called
positive sample, and xn is called negative sample. *e loss
function is defined as

Ltriplet � max 0,D
2

xa, xp  − D
2

xa, xn(  + α , (2)

where α represents the margin threshold between
D2(xa, xp) and D2(xa, xn). It needs to be pointed out that
negative samples mining, on which we sample such triplets
xa, xp, xn satisfying D(xa, xn)<D(xa, xp) + α, plays a key
role in the effect of this loss function.

Based on contrastive loss and triplet loss, many im-
proved methods have emerged. N-Pair Loss [31] generalizes
triplet loss by allowing joint comparison among more than
one negative example and reduces the computation by an
efficient batch construction strategy. MS Loss [32] can fully
consider three similarities for pair weighting.

Other commonly used DML methods are non-
contrastive. *e main idea of SphereFace [4] is enforcing the
class centers to be at the same distance from the center by
mapping them to a hypersphere. Furthermore, it employs
angular distance with angular margin to measure distance.
CosFace [7] proposes a more straightforward yet more ef-
fective method to define the margin. ArcFace [6] is very
similar to CosFace. However, instead of defining the margin
in the cosine space, it defines the margin directly in the angle
space. *e SoftTriple Loss [33] takes a different strategy by
expanding the weight matrix to have multiple columns per
class, providing more flexibility for modeling class variances.

2.2. Contrastive Learning. Self-Supervised Learning (SSL) is
a technique to derive information from unlabeled data itself
directly by formulating specific predictive tasks, and con-
trastive learning, based on contrastive constraints, is one of
the most popular methods of self-supervision. Deep Info-
Max [34] was presented to learn representations of images
by leveraging the local structure present in an image.
Structurally, SimCLR [15] is a simple contrastive learning
method that utilizes negative samples and a sizeable mini-
batch up to 4096 to work better. To get around the problem
of an enormous number of negative examples, MoCo [20]
maintained a large queue of them instead of updating the
negative encoder by backpropagation. BYOL [35] assumed
that it is still possible to train an SSL model with outstanding
results without negative samples. It adopted an asymmetric
network structure with momentum updates and a stop-
gradient operation to avoid collapse. SimSiam [24] removed
the target encoder updated by the momentum based on
BYOL. Barlow Twins [36] started from the perspective of
embedding rather than from samples and proposed im-
proving the representation ability of features by allowing
features of various dimensions to represent different in-
formation as much as possible.

2.3. SimSiam. SimSiam [24] has been one of the most
popular contrastive learning methods recently, and the ar-
chitecture, as shown in Figure 2, uses two views x1 and x2
randomly augmented from the same image x as input. Two
encoder modules, consisting of a backbone and a projection
[15], extract image features from two views, respectively, and
the encoder shares weights between the two views.*en only
the left branch of the model takes the output and feeds it to a
predictor module h . *e output in the right branch does not
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require any treatment.*en the cosine similarity of results of
two branches is calculated.

“Stop-grad” denotes that the right branch does not
update gradients during training. *e strategy to stop
updating parameters of the right branch and the asymmetric
structure of the model are both for preventing model col-
lapse, and the experiments of the paper [24] show that the
above methods, especially stop-gradient, can effectively
avoid the issue of model collapsing.

2.4. Cross-Modal Representation. Cross-modal representa-
tion has played an indispensable role in representation
learning in recent years, and the goal is to build embeddings
using information from multiple modalities. Fusing infor-
mation from the different domains into unified embeddings
is one of the wide implementations of the cross-modal
representation approaches. In this field, [37] presented that
through unifying local document context and global visual
context to learn better visually grounded word embeddings.
Based on word2vec [38], Kottur et al. [39] proposed adding
images as inputs to the training of it so that the resulting
word vectors have visual semantic information.

Building embeddings for different modalities in a
common semantic space has been another popular way over
the past few years.*is method allows the model to compute
cross-modal similarity, which can be further used for
downstream tasks, such as cross-media retrieval [40–42]. Ba
et al. [43] presented a model that can classify unseen cat-
egories from their textual description by cross-modal sim-
ilarity in Zero-Shot Learning (ZSL). Huang et al. [44]
presented the cross-media model to transfer valuable
knowledge in existing data to new data. On the basis of
cross-modal representation, Song et al. [23] further con-
sidered the ambiguity of instances, thereby improving the
accuracy of visual semantics.

3. Proposed Method

In this section, we propose a Simple Contrastive Model with
Polysemous Text Fusion (PTF-SimCM) for visual similarity
metric. *e structure of this section is organized as follows.
In Section 3.1, we describe the problems. We provide an
overall description of the model in Section 3.2. Section 3.3
characterizes the cross-modal encoder, followed by the
multimodal fusion and projector in Section 3.4. Predictor

and inference are in Section 3.5 and Section 3.6, respectively.
Section 3.7 presents the algorithm details.

3.1. Problem Formulation. *e image similarity metric aims
to estimate whether a given pair of images are similar or not,
and the problem to be addressed in this study is how to
measure image similarity and improve the performance of
the algorithm in scenarios where there are only a large
number of unlabeled images. Firstly, learning effective vi-
sual-metric representations without human supervision is a
crucial problem as plenty of images that are not human-
labeled in our daily lives exist. Moreover, images in our daily
social media always appear with correlated text descriptions.
*erefore, it is a meaningful study to further consider and
utilize textual modalities among image similarity metrics.
Unfortunately, the textual description is sometimes am-
biguous, so solving this polysemy is another critical problem.

*e proposed model combines self-supervised con-
trastive learning, cross-modal representation, and modali-
ties fusion to address the above issues and advance the
performance. Furthermore, our model learns the metric
embeddings directly, the distance of which corresponds to
image similarity. *e notation list of the proposed method is
shown in Table 1.

3.2. Overview of PTF-SimCM. PTF-SimCM employs the
same contrastive learning structure as SimSiam. It aims to
learn an embedding space where the cosine similarity of
embeddings directly corresponds to image similarity: images
with similar content have small distances, and images with
distinct content have large distances. In contrast, the pre-
vious approach [15, 24, 35] of contrast learning was to learn a
representation that can then be used for downstream tasks.
*e architecture of PTF-SimCM, composed of two branches
of neural networks and a middle cross-modal encoder
(CME), is presented in Figure 3.*e upper branch is defined
by a set of weights θ and is composed of three stages: an
encoder fθ, a multimodal projector gθ, and a predictor qθ.
*e lower branch is the same as the upper branch, except
that there is no final predictor. *e CME P is a pretrained
cross-modal network with frozen parameters for reducing
the computation. Alternatively, as if computing resources

similarity

predictor h

encoder f encoder f

image x

x1 x2

X Stop-grad

Figure 2: *e architecture of SimSiam [24].

Table 1: Notation list of the proposed method.

Symbol Description
x Input image
c Textual description of image
t, t′ Image augmentation
fθ Image encoder
P Cross-modal encoder
K *e number of cross-modal embeddings
gθ Multimodal projector module
qθ Predictor module
u Fused feature
z Metric embedding
p Vector output from predictor
sg Stop-gradient operation
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are not a concern, fine-tuning the parameters in training
may be a better option.

Given a set of image-text pairs D, a pair (x, c) ∼ D

sampled uniformly fromD, and two image augmentations t

and t′, image augmentation is a technique that generates
similar but distinct views after a series of random changes to
the input images.*emodel generates two augmented views
x1 ≜ t(x) and x2 ≜ t′(x) to image x as the upper branch and
lower branch input, respectively, and takes description c of
the image as input of CME. *e encoder network f is ac-
tually a backbone (e.g., ResNet [45]) used to extract image
features. CME is used to process text description c. To make
the text learn the semantic information of the image before
fusing with it so that the subsequent fusion and projection
get more uncomplicated, and to improve the efficiency of
model training, we directly use a pretrained cross-modal
representation model instead of a unimodal text sequence
net as our CME module, which can embed the sentence to
shared visual-textual space. In addition, considering the
ambiguity of the sentence, CME further transforms the input
into K embeddings with different semantics. *e embed-
ding, output from the middle tube, is a visually grounded
word representation, and we call it a cross-modal embed-
ding. *e image feature output from the encoder fθ and
each of the K embeddings are fused through simple con-
catenating, as seen in the following equation:

u
i

� fθ(x)⊕(P(c))i, (3)

where ui denotes the ith fusion feature and (P(c))i is the ith
cross-modal embedding. *e multimodal projector gθ is a
four-layer multilayer perceptron (MLP) and it maps fused
representations to the specific metric space. *en, gθ is
followed by an MLP predictor in the upper side path. *e
predictor transforms the output of the upper side multi-
modal projector and matches it to the lower branch output.
Stop-gradient as same as [24] is adopted in the lower branch;

that is, parameters of network on lower side path will not be
updated by backpropagation. Various experiments in [35]
have shown that predictor and stop-gradient are the keys to
preventing the model from falling into a collapsed solution.
Negative cosine similarity, shown in (4), is used as the loss
between output embeddings of the upper and lower branch
networks.

S p
i
1, z

i
2  � −

p
i
1

p
i
1

����
����2

·
z

i
2

z
i
2

����
����2

, i ∈ [1, 2, . . . , K], (4)

where ‖ · ‖2 is ℓ2-norm, pi
1 ≜ q(g(ui

1)) and zi
2 ≜g(ui

2), and ui

is one of the mixed features. Following [24], we define a
symmetrized loss as

L �
1
2K



K

i�1
S p

i
1, sg z

i
2  

+
1
2K



K

j�1
S p

i
2, sg z

j
1   i, j ∈ [1, 2, . . . , K],

(5)

where sg denotes stop-gradient operation and then the final
output z of the lower branch network is denoted as sg(z).
Loss functionL is used to measure the similarities between
x1 and x2, which are two augmentation views with textual
content description. *e function is defined for each view-
text pair, and total loss is averaged value over all pairs.

3.3. Cross-Model EncoderModule. For the model to perform
feature fusion and projection more efficiently, we use a cross
model to handle the sentence input rather than a unimodal
text model. Moreover, a sentence sometimes appears am-
biguous in real life. *at is to say, each of those captions can
map to more than one point in the embedding space.
Unfortunately, a one-to-one mapper can merely find one

Encoder

Encoder

Repeat

Repeat

K

K

K
K

K

Multimodal
Projector

Multimodal
Projector

Predictor

SimilarityShared Weights

Shared Weights

P (.)

gθ (.)

gθ (.) qθ (.)

fθ (.)t' (.)

fθ (.)t (.)

Cross-Modal
Encoder

a close up of a dog
jumping in the air with
a frisbec in its mouth

x c

Stop-grad
X

Figure 3: *e architecture of PTF-SimCM.
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single point, and there is no doubt that it has a negative
impact on subsequent applications.

PVSE (Polysemous Visual-Semantic Embedding) [23] is
a visual-semantic embedding model which could more ef-
fectively address the partial cross-domain association issue
and ambiguous instances issue compared with other ap-
proaches. *e architecture of PVSE is composed of two
submodels called PIE-Net (Polysemous Instance Embedding
Network), which can extract K embeddings of each sentence
instance based on the different meanings. To address the
issue of ambiguity in input sentences, we adopt Sentence
PIE-Net pretrained through PVSE architecture as the cross-
modal encoder.

*e sentence encoder is composed by GloVe [46] and a
bidirectional GRU (Bi-GRU) [47]. A sentence with L words
is converted by the pretrained GloVe into L 300-dim vectors
as local features Ψ(x) ∈ RL×300. *en they are taken into a
Bi-GRU with H hidden units. *e output of the final hidden
layer as global features ϕ(x) ∈ RH. *e local feature
transformer transforms Ψ(x) into K locally guided repre-
sentations. More specifically, Ψ(x) is first fed into a mul-
tihead self-attention [48, 49] module implemented by a two-
layer perceptron and K attention maps are obtained. Given
local features Ψ(x) ∈ RB×D, K attention maps α ∈ RD×B are
computed as follows:

α � softmax w2tanh w1Ψ(x)
T

  , (6)

where w2 ∈ RK×A, w1 ∈ RA×D, and A � D/2. *en, local
features are multiplied by the attention map and the result is
taken into a nonlinear module to obtain K locally guided
features Γ ∈ RK×H:

Γ(x) � σ (αΨ(x))w3 + b3( , (7)

where w3 ∈ RD×H, b3 ∈ RH, and σ denotes sigmoid function.
Finally, the fusion block obtains the final K embeddings

by combining global features and locally guided features.
*e K embedding vectors z ∈ RK×H are computed as

z � LN(Φ(x) + Γ(x)), (8)

where Φ(X) ⊂ RK×H represents K repetitions of ϕ(x) and
LN denotes layer normalization [50].

3.4. Multimodal Fusion and Projector. As the cross-modal
module is used to process text modality in the previous step,
the obtained embeddings have learned a certain amount of
image semantic information. Consequently, the fusion
method “⊕” adopts a simple concatenate operation. Given
feature y ∈ RM of view augmented from input image,
embedding m ∈ RN output from cross-modal block, it
computes fused vector u:

u � y⊕m � [y, m] ∈ RM+N
. (9)

*is simple concatenation operation does not establish a
special semantic connection between different features, so it
relies on subsequent network layers to adapt it.*at is to say,
the multimodal projector is not only a mapper but also a
fusion adaptor.

*emultimodal projector is a four-layer perceptron with
batch normalization [51] applied to each fully connected
layer, including the final output layer. *e previous three-
layer perceptron has no biases and takes the ReLU as the
activation function. One of the multimodal metric em-
beddings z is computed as

h
(l)

� ReLU BN W
(l)

h
(l− 1)

  

z � BN W
(l+1)

h
(l)

+ b
(l)

 ,
(10)

where h(l), W(l), and b(l) represent the hidden state victor,
weight matrix, and bias, respectively, of l-layer and BN

denotes batch normalization.

3.5. Predictor. *e predictor module is only applied to the
upper branch to make the architecture asymmetric, as in
[24, 35], and this structure can prevent collapse to a certain
extent. Like the multimodal projector, the predictor block is
also a multilayer perception yet with two layers. *e batch
normalization is applied to hidden layer which has no bias.
*e output fully connected layer does not have BN and
activation function. One of the final outputs p is given:

p � W2 ReLU BN W1z( ( (  + b2. (11)

In the above formula, W1 is weight matrix of hidden
layer, and W2 and b2 are parameters of output layer.

3.6. Inference. At test time, we use the inference model
obtained by removing the upper branch and the loss
function from the PTF-SimCM to measure similarity. Two
image-text pairs A′ and B′ are given to measure the simi-
larity. *ey are fed into the inference model and two K

embedding vectors Ai � [ai
1, ai

2, . . . , ai
n], i ∈ [1, . . . , K] and

Bj � [b
j
1, b

j
2, . . . , b

j
n], j ∈ [1, . . . , K], respectively, are got.

*en we find the best matching pair by comparing the cosine
distances between all K2 combinations of embeddings. At
this point, the distance is as the similarity between A′ and B′.
*e architecture and processing process in inference is
shown in Figure 4.

3.7.OptimizationAlgorithm. *emodel adoptedmini-batch
gradient descent to update parameters, and the specific steps
and details of model training and optimization are shown in
Algorithm 1.

4. Experiment

4.1. Datasets. We first introduce the three image-text re-
trieval datasets, that is, MSCOCO [25], Flickr 30k [26], and
Pascal Sentence [27]. Figure 5 shows part data samples from
the three datasets.

MSCOCO is one of the most prevalent cross-modal
retrieval datasets in recent years. It contains 123,287 images
and 616,767 descriptions. Every image contains roughly 5
text descriptions on average. *is dataset is officially split
into 113,287 images as training data, 5,000 images as vali-
dation data, and 5,000 images as testing data. As our
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sim (A' , B') = max (-cos<Ai, Bj>) = max (- Ai . Bj/|| Ai || . || Bj ||), i, j є [1,2, ... , k ]

Ai = [ai
1, ai

2, ... , ai
n],

i є [1, ... , K]

Bj = [bj
1, bj

2, ... , bj
n],

j є [1, ... , K]

K K

Metric embeddings

Multimodal project

Inference model

Input pairs

Multimodal
Projector

Encoder
Cross-Modal

Encoder

Multimodal
Projector

Encoder Cross-Modal
Encoder

Image-Text Pair A' Image-Text Pair B'

→ →

Figure 4: *e architecture and processing process in inference.

Input:
D,T,T′ set of images with description and distributions of transformations;
θ, fθ, gθ and qθ initial parameters, encoder, multimodal projector, predictor;
P cross-modal encoder;
K the number of cross-modal embeddings;
opt optimizer, updates parameter using the loss gradient;
M andN total number of optimization steps and batch size;
ηm 

M

m�1 learning rate schedule;
(1) for m � 1 to M do
(2) B← D{ }N

i�1; //sample a batch of N image-text pairs
(3) for xi, ci ∈B do
(4) t ∼ T and t′ ∼ T′; //sample image transformations
(5) y1←fθ(t(xi)) andy2←fθ(t′(xi));

(6) for k � 1 to K do
(7) zk

1←(gθ(y
1
)⊕P(ci)

k) and zk
2←(gθ(y

2
)⊕P(ci)

k);

(8) pk
1←qθ(zk

1) andpk
2←qθ(zk

2);

(9) lk← − 1/2(pk
1/‖pk

1‖2 · zk
2/‖zk

2‖2 + pk
2/‖pk

2‖2 · zk
1/‖zk

1‖2);

(10) end
(11) li←1/K 

K
k�1 lk; //compute the total loss

(12) end
(13) δθ←1/N 

N
i�1 zθli; //compute the total loss gradient

(14) θ←opt(θ, δθ, ηm); //update parameters
(15) end
(16) returnf(·), g(·)

ALGORITHM 1: PTF-SimCM’s main learning algorithm.
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proposed model requires input that includes both images
and sentences, we disuse the testing set. In order to be able to
test usually, we divided the validation set into 100 classes by
the K-means algorithm [52].

Flickr 30k is another prevalent and large-scale image
captioning dataset. It contains 31,783 images that are col-
lected from Flickr. Every image is annotated with five textual
descriptions.*e average sentence length reaches 10.5 words
after removing rare words. We adopt the protocol in [53] to
split the dataset into 1,000 test images, 1,000 validation
images, and 29,783 training images. In order to have more
training data, we merged the validation set into the training
set and got the 30783 images final training set. Again, we
split the test set into 20 classes using the K-means algorithm.

Pascal Sentence dataset also is a widely used dataset for
cross-media retrieval. It is a subset of Pascal Voc and
contains 1,000 image-text pairs from 20 categories. So each
category includes 50 pairs, and each pair has an image and
several sentences. *e number of samples in this dataset is
not large enough to be used as training data for our model.
Consequently, we only use this dataset as our test set.

4.2. Evaluation Metrics. We use three metrics, Recall at k
(Recall@k), R-Precision, and Mean Average Precision at R
(MAP@R), to evaluate the performance of models.
According to [54], R-Precision and MAP@R are the most
suitable metrics to measure model performance in metric
learning. As Recall has been the most widely usedmeasure in
the past few years in metric learning, we also used it to
evaluate metrics for comprehensive comparisons to other
methods.

Recall@k inmetric learning is defined as follows: first, for
each sample in the dataset, get k-nearest neighbors. If at least
1 of those nearest neighbors is a match, then the sample gets
a score of 1. Otherwise, it scores 0. Recall@k is the average of
score of all query sample:

Recall@k �
1
n



n

i�1
(score). (12)

Given a query, let R be the total number of references that
are the same class as the query. R-Precision is computed as

R − Precision �
r

R
, (13)

where r is the number of R-nearest references that are the
same class as the query.

MAP@R is Mean Average Precision with the number of
nearest neighbors for each sample set to R. For a single
query,

MAP@R �
1
R



R

i�1
P(i)

P(i) �
precision at i if the ith retrieval is correct

0 otherwise

⎧⎨

⎩ .

(14)

4.3. Implementation Details. *e model proposed in this
study employs the same contrastive learning structure as
SimSiam [24]. We used momentum SGD as the optimizer
and used initial learning rate is lr � 0.05. Learning rate is
computed as lr × BatchSize/256, which followed a cosine
decay schedule [55], and the specific parameter settings are
shown in Table 2. In addition, to acquire significant com-
putational speedup and less GPU memory consumption, we
utilize mixed-precision training [56] in the model training.

4.4. Baseline Methods. To verify the performance and val-
idity of the model proposed in this study, we select four
models that are quite popular in the relevant fields and show
good performance in past studies as the baselines. In terms
of supervised metric learning, we compare the following
models: Siamese Network [29], Triplet Network [5], Soft-
Triple [33], MemVir [57], and Label Relaxation [58]. *e
name of the selected Siamese Network is SimNet [29], and it
is trained on pairs of positive and negative images like the
conventional Siamese model. *e improvement of this
model is that it uses a novel online pair mining strategy

a dog runs through snow as a person
bicycles in the background. 

a happu black dog running in the snow

a large black dog standing on top of
snow

a black dog running on a field of snow.

this is a black dog running in the snow

three African children wave as they float by on their man made
 boat.
three men are enjoying a ride down the river in a canoe.
3 people on plain boats smiling towards the camera.
three boys sat hello as they navigate the waters.
three men in a fishing boat on a river in Africa.

a bottle of Conti Zecca Cantalupi.

a close up of the label of an empty wine bottle.

a distorted image of a foreign bottle of wine.

a green bottle of Cantalupi with a black and white
label

red liquid in a green bottle.

(a) MSCOCO (c) Pascal Sentence(b) Flickr 30k

Figure 5: Sample images in the three datasets.
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based on curriculum learning and adopts a multiscale
convolutional neural network (CNN) as the feature ex-
tractor. FaceNet [5] was initially used to distinguish face
images and directly learn a mapping from input face images
to a metric space where distances directly correspond to a
measure of face similarity. It used a triplet architecture with
triplet loss and also has a good performance in the similarity
detection of other nonface images. SimNet and FaceNet are
contrastive-based DML approaches that use the specific loss
function that directly pulls together the embeddings of
samples with the same label and pushes away the embed-
dings of dissimilar samples. SoftTriple is representative of
noncontrastive approaches and can learn the embeddings
without the sampling stage by lightly increasing the size of
the last fully connected layer. MemVir and Label Relaxation
are two state-of-the-art methods in metric learning. MemVir
exploits the virtual classes by maintainingmemory queues to
utilize augmented information for training and alleviates a
strong focus on seen classes for better generalization. To
improve metric learning performance, Label Relaxation
employs a relaxed contrastive loss based on embedding
transfer to enable more crucial pairs to contribute more to
training. All of those five methods have intensely out-
standing performance in the presence of a large number of
labeled datasets. With regard to unsupervised visual-metric
representation, we compare our method to SimSiam [24],
the simplest SSL model without negative samples and no
need for a large batch size. It is one of the best SSL models,
and the contrastive structure of our model refers to it.

4.5. Performance Comparison. In this section, we conduct a
series of performance comparison experiments. In order to
simulate the unsupervised scene where we cannot obtain
relevant labeled datasets, we use an additional dataset Mini
ImageNet (a subset of ImageNet [59]) to train the above
models. For unsupervised metric learning, as the contrastive
structure of our model is based on SimSiam, we employ it as
the baseline. SimSiam generally uses the feature extraction
module without the projector block for downstream tasks.
As our model has an additional mapping module in
structure, in order to make the comparison fairer, we add a
model “SimSiam+proj” that retains the projector for
comparison. *e performances of the proposed model and
baselines on MSCOCO dataset are illustrated in Table 3.

From Table 3, we can observe that our model achieves
positive results in experiments. *e proposed model with
setting of K � 2 and d � 64 (dimensions of metric em-
bedding � 64) achieves significant improvement in terms of
MAP@R with at least 0.2, and PTF-SimCM with d � 128
obtains the best overall performance in recall rate. SoftTriple
has the best R-Precision of 0.307 and the highest value of
Recall@1. MemVir gets the second-highest MAP@R value. It
is noteworthy that the performance of Label Relaxation is
inferior to that of SoftTriple. In our judgment, the primary
cause is that Label Relaxation is an embedding transfer
model which relies on a well-knowledged source embedding
model. However, it can hardly obtain a well-trained source
model in the unsupervised scenario. We can only train on a
labeled dataset from another domain and then test on data
from the target domain. Consequently, the Label Relaxation
lost its advantage in this particular scenario and achieved a
nonremarkably good performance in the above experiments.
In the same way, it is also tricky for MemVir to exert its
advantages when the training and test data are not in the
same domain. Compared to SimSiam and “SimSiam+proj,”
our model achieves better performance in all three metrics.
Furthermore, it is worth noting that the overall results of the
experiments are not very superior. One of the key factors is
that MSCOCO is not a dataset for classification or image
retrieval. Consequently, there is a relatively large intraclass
variation between the positive samples of this dataset. Be-
sides, it also depends on the effect of the cluster method.

With the purpose of making the experimental com-
parison results more comprehensive, we conducted exper-
iments on the Flickr 30k dataset. *e results are summarized
in Table 4.We can see that our proposedmethod with setting
of K � 2 and d � 64 got the best MAP@R scores, and it is 0.3
percentage points higher than the second place. *e pro-
posed model with k � 2 and d � 128 achieved the best
Recall@8 value. SoftTriple obtained the best R-Precision of
0.296, the highest value of Recall@1, the highest value of
Recall@4, and the second-highest MAP@R value. MemVir
got 69.1% on Recall@2, the highest value. In general, the
performance of our method on Flickr 30k is close to those of
supervised methods SoftTriple and MemVir without ex-
ceeding them by much. *e main reason is that the training
data is not enough.Moreover, the classes of test sets were still
divided by K-means, and this played an important role in the
accuracy of the experiment.

Table 2: Hyperparameters set in experiments.

Parameters Description Performance comparison Ablation study
lr Initial learning rate 0.05 0.05
wd Weight decay 1e − 4 1e-4
η Momentum 0.9 0.9
dview Dimension of image view features 2048 2048
dcross Dimension of cross-modal embedding 1024 {512, 1024, 2048}
dmetric Dimension of metric embedding {64, 128} {64, 128, 256, 512}
K Number of cross-model embedding 2 {1, 2, 3, 4}
lproj Layers of multimodal projector 4 4
lpred Layers of predictor 2 2
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In order to evaluate the universality of the proposed
model, we also conducted experiments on the Pascal Sen-
tence dataset. In this set of experiments, MSCOCO is still
used as training data, and Pascal Sentence is merely used as
the test data for models. *e results are shown in Table 5.

*e above results, in which the proposed model has
better overall performance, are similar to those shown in
Table 3 and 4. *e validation values from Table 5 have
improved, yet they are still not excellent. We believe the
reason behind that is that there is not enough training data
for a generic image metric model. Accordingly, it did not
learn the distribution closer to the ground truth. Overall, our
model performs favorably in the experimental results,
outperforming recent popular supervised learning methods
under certain conditions, and, especially compared to
SimSiam with the same contrast structure, our model im-
proves significantly.

4.6. Ablation Study. To demonstrate the effectiveness of
some settings in the proposed model, we execute a series of
ablation experiments on the Pascal Sentence dataset. In
those experiments, we denote the number and the dimen-
sions of cross-modal embeddings as K, dcross, respectively,
and the dimensions of metric embeddings as dmetric.

<e Number of EmbeddingsK. Figure 6 shows the effect
of the PTF-SimCM model with different K, which is the
number of the cross-modal embeddings, on the Pascal
Sentence dataset. According to the “Proposed Method”
section, K represents k different sentence semantics. We set
dcross � 1024 and dmetric � 128. To better comprehend the
effect of the number K, we vary it from 1 to 4 and compare
the experimental results of metric Recall@1 (also known as
“Precision@1”) under different epochs. When K � 1, it
means that the cross-modal encoder is a typical one-to-one
model. From Figure 6, we can see a significant improvement

Table 4: Accuracy on Flickr 30k. K and d denote the number of embeddings and dimensions of metric embedding, respectively.

Methods
Recall@k

R-Precision MAP@R
k� 1 k� 2 k� 4 k� 8

Siamese 0.551 0.689 0.780 0.847 0.290 0.186
Triplet 0.530 0.664 0.753 0.823 0.281 0.164
SoftTriple 0.559 0.683 0.781 0.842 0.296 0.190
Label Relaxation 0.514 0.663 0.748 0.831 0.257 0.162
MemVir 0.543 0.691 0.769 0.849 0.287 0.189
SimSiam 0.403 0.502 0.692 0.819 0.203 0.113
SimSiam+proj 0.433 0.549 0.714 0.791 0.164 0.108
Ours (K � 2, d � 64) 0.532 0.667 0.758 0.833 0.290 0.193
Ours (K � 2, d � 128) 0.546 0.669 0.772 0.854 0.263 0.181

Table 3: Accuracy on MSCOCO. K and d in PTF-SimCM denote the number of embeddings and dimensions of metric embedding,
respectively.

Methods
Recall@k

R-Precision MAP@R
k� 1 k� 2 k� 4 k� 8

Siamese 0.571 0.679 0.776 0.834 0.296 0.187
Triplet 0.557 0.656 0.762 0.823 0.286 0.172
SoftTriple 0.583 0.686 0.789 0.843 0.307 0.190
Label Relaxation 0.532 0.657 0.745 0.829 0.265 0.164
MemVir 0.579 0.693 0.794 0.840 0.296 0.192
SimSiam 0.416 0.564 0.692 0.791 0.216 0.117
SimSiam+proj 0.461 0.585 0.681 0.775 0.175 0.112
Ours (K � 2, d � 64) 0.573 0.689 0.793 0.832 0.298 0.202
Ours (K � 2, d � 128) 0.583 0.702 0.801 0.846 0.261 0.182

Table 5: Accuracy on Pascal Sentence. K and d denote the number of embeddings and dimensions of metric embedding, respectively.

Methods
Recall@k

R-Precision MAP@R
k� 1 k� 2 k� 4 k� 8

Siamese 0.581 0.709 0.784 0.860 0.326 0.218
Triplet 0.560 0.671 0.773 0.842 0.318 0.202
SoftTriple 0.598 0.712 0.802 0.864 0.343 0.228
Label Relaxation 0.579 0.687 0.785 0.849 0.308 0.198
MemVir 0.593 0.709 0.796 0.876 0.337 0.232
SimSiam 0.443 0.585 0.716 0.821 0.259 0.147
SimSiam+proj 0.491 0.606 0.702 0.789 0.217 0.138
Ours (K � 2, d � 64) 0.592 0.714 0.806 0.864 0.336 0.240
Ours (K � 2, d � 128) 0.616 0.719 0.801 0.870 0.299 0.206
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from K � 1 to K � 2; this shows the necessity to consider
ambiguity. When K � 3, the performance of almost all
epochs reaches its peak.

<e Dimensions of Cross-Modal Embeddings. We employ
experiments on dcross ∈ 512, 1024, 2048{ } on the Pascal
Sentence dataset with K � 2 and dmetric � 128. Figure 7
shows the result on different dim based on the Recall@k
metric. From the result, we can find that as the parameter K

increases gradually, the Recall will increase, and when
dcross � 1024 and dcross � 2048, the performances are

significantly better than those when dcross � 512. Consid-
ering all Recall values, dcross � 1024 is the best. *is con-
clusion shows that the dimensions of the cross-modal
embedding cannot be too small, which may lose important
information and not be too large, which may cause
redundancy.

<e Dimensions of Metric Embedding. Figure 8 shows the
Recall values on the Pascal Sentence dataset when we vary
dmetric while K � 2 and dcross � 1024 and dmetric ∈
64, 128, 256, 512{ }. *e results show that there is noticeable
difference between the performances of dmetric � 64, 128 and
dmetric � 256, 512. When dmetric � 128, the experiment can
get the best Recall, and when dmetric � 256, it obtains the
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worst. It shows that the dimensions of metric embedding
play an important role in our model.

5. Conclusions

In this paper, we present a Simple Contrastive Model with
Polysemous Text Fusion (PTF-SimCM) for visual similarity
metric. PTF-SimCM is composed of two branches of neural
networks and a middle cross-modal encoder. Two branches
adopt an asymmetric contrastive structure and shared
weights to address the unsupervised visual representation
issue. *e pretrained cross-modal encoder is used for po-
lysemous expression embedding, and a multimodal fusion
operation is designed for feature fusion. To become a simpler
and more efficient image similarity measurement, PTF-
SimCM straight learns an embedding space where distances
directly correspond to a measure of image similarity.

Experimental results on MSCOCO, Flickr 30k, and
Pascal Sentence datasets show that PTF-SimCM utilized the
information of text modalities more comprehensively, fully
considered sentence polysemous, and had better results
compared to the baselines. Following the observational
evidence, despite the fact that the Recall@k is not the best in
general, the MAP@R value reaches the highest value, sur-
passing the supervised learning model. Moreover, we con-
ducted ablation studies on the numbers and dimensions of
cross-modal embeddings, and the results advise us that when
K � 3, dcross � 1024, the performances of the proposed
model on the overall Recall@k reach the best. For the effect
of metric embedding dimensions, even though Recall@k is
better when dmetric � 128, MAP@R touches the peak at
dmetric � 64.

Nevertheless, a limitation of our study is that the pro-
posed method only works if there exists a correlation be-
tween the two modalities of image and text. When the two
modalities are uncorrelated or less correlated, our approach
will be ineffective and even negatively affect the similarity
metric of images. Accordingly, in future work, we will ex-
plore a new strategy of multicomplicated modalities fusion,
such as considering both temporal information and spatial
information [60], thereby further improving the robustness
and performance of the model. Furthermore, we can also
explore the use of semisupervised approaches [61, 62] to
address the problem of model training without labeled data.
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