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In this article, we proposed an extended EDAS (Evaluation based on Distance fromAverage Solution) method based on the single-
valued neutrosophic (SVN) Aczel-Alsina aggregation information. +e fundamental concept of a single-valued neutrosophic
(SVN) set is a universal mathematical tool for effectively managing uncertain and imprecise information. To accomplish our goal,
we first extend the Aczel-Alsina t-norm and t-conorm to SVN scenarios and introduce a few new SVN operations on which we
construct novel SVN aggregation operators. Furthermore, a decision support strategy is built in the SVN framework using the
EDAS methodology and the suggested Aczel-Alsina aggregation operators. +is method computes the aggregated outcomes of
each investigated alternative, as well as their score values. Finally, to demonstrate the functionality of the developed SVN- EDAS,
an application has been made related to the role of commercial banks in providing loans to their customers, which has recently
affected our world, and the results are compared with other existing methods. +e results suggest that the proposed method may
overcome the inadequacies of the existing decision method’s lack of decision flexibility by using SVN aggregation operators.

1. Introduction

Multi-attribute group decision making (MAGDM) is the
practice of utilizing expert evaluation information to ana-
lyze, rank and pick the best solutions using a given decision-
making (DM) approach. Making a decision entails providing
relevant information and making a choice amongst several
DM approaches. Enhancing the MADM approach has be-
come a hot topic in today’s DM area since it is difficult to
predict the future and because experts’ expertise is limited.
In the DM procedure, there is vagueness and uncertainty,
and Zadeh’s theory [1] of fuzzy sets gives an extremely

effective technique to cope with these challenges. Atanasov
[2] devised the concept of intuitionistic fuzzy sets to reflect
uncertainty in DM (IFS). IFS comprise membership func-
tions and non-membership functions. Some decision-
makers started using intuitionistic fuzzy numbers to express
their preferences for alternatives in the DM dilemma [3–5].
Because of this, intuitionistic fuzzy information is becoming
more popular among academics.

Following the acquisition of the expert data, we must
integrate it using various aggregating operators (Agop).
Several Agops, such as the IF averaging operator, were
created by Xu [6]. Jana and Pal [7] introduced the decision
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making EDAS method to tackle the uncertainty in decision
support problems. Several Einstein Agops, such as IFE av-
eraging/geometric operators (Aveg/GAOs), were introduced
by Liu and Liu [8]. Xu and Xu [9] created a prioritized list of
Agops and explained how they could be used to solve DM
challenges (Dcmp). Under the linguistic IF strategy, Wang
and Wang [10] produced various unique Agops and pro-
posed an algorithm to address the difficult uncertain Dcmp.
Jana et al. [11] presented the multi-attribute decisionmaking
method using power Dombi operators andMABACmethod
to tackle the uncertain information in decision support
problems. IF Bonferroni means Agop, Xu and Yager [12]
established the DM technique (DMA).+e Group DMAwas
created by Arora and Garg [13] built on the prioritized IF
Agop under the linguistic set of data. Zhao et al. [14] ex-
amined the uses of generalized IF Agops, such as the gen-
eralized IF averaging/geometric operators, to deal with
uncertainty in Dcmp. Yu [15] demonstrated certain IF
Agops depending on levels of confidence and handled
challenging real-world Dcmps. Yu [16] created the IF Agop
and discussed its usefulness in DM using Heronian mean.
Jiang et al. [17] devised a DM strategy depends on the IF
power Agop and the entropy measurement. Senapati et al.
[18] developed various IF Aczel-Alsina (Acz-Als) Agops
depending on the Acz-Als norm and used them in the IF
multi-attribute DM process. Khan et al. [19] created the
unique generalized IF soft evidence Agops and investigated
their use in DM.

Even though all of these approaches are beneficial for
representing incomplete data, they are unable to deal with
indeterminate (neutral) data and inconsistent data in actual
practice. Cuong [20] consider the three type of uncertain
situation at a time to developed the picture fuzzy set (PFS). It
is clear that PFS interpretations of ambiguous data are more
rational and accurate than those provided by the FS and IFS
models. Many researchers began researching on PFS after its
development. +e synthesis of the achievement degree of
criterion necessitates the collection of information. To un-
derstand the various uncertain data in Dcmp, Ashraf et al.
[21] proposed the list of novel picture fuzzy (PF) algebraic
Agop and decision support (D-S) strategy. Riaz et al. [22]
introduced the decision making method under bipolar
picture fuzzy operators and distance measures. Some Agops,
such as PF geometic operators, were created by Garg [23].
Wei [24] compiled a list of PF Agops and discussed their use
in DM challenges. Ashraf et al. [25] presented decision based
application for Internet finance soft power evaluation under
fuzzy information. Khan et al. [26] proposed and investi-
gated the use of generalized PF soft details Agops in DM.
Some Einstein Agops, such as PF Einstein (Aveg/GAOs),
were introduced by Khan et al. [27]. Under algebraic norm
and linguistic deta set, Qiyas et al. [28] created some PF
averaging/geometric Agop. Jana et al. [29] investigated
certain Dombi Agops in PF situations, such as PF Dombi
averaging/geometric operators. Jana and Pal [30] presented
the dynamical hybrid method using GRA technique to tackle
decision support problems. PF Hamacher averaging/geo-
metric operators employing Hamacher t-norm and s-norm
were presented by Wei [31]. In a cubic PF setting, Ashraf

et al. [32] devised a novel distance measure dependent on
algebraic Agops. Khan et al. [33] created some logarithmic
PF Agops and discussed how to use them in DM. Qiyas et al.
[34] introduced the linguistic approach to tackle the decision
problems using picture fuzzy Dombi information.

+e portrayal of fuzzy sets and their extensions allow
greater flexibility for DM, although there are still certain
limitations. Data discontinuity and inconsistency cannot be
solved such that the NS emerges as required by time. In this
study, the degree of truth, uncertainty, and falsity are all
taken into account.+is theory can assist decision-makers in
expressing their ideas more accurately and in detail and
addresses issues that the fuzzy sets are unable to address.+e
concept of neutrosophic sets was first introduced by
Smarandache [35]. +is epistemology is a mathematical
model that describes not only the origins, nature, and scope
of impartiality, but also the interactions between their many
conceptualization ranges. In order to overcome DM diffi-
culties in unclear contexts, such enhancements have been
developed. Smarandache [36] presented the plithogeny,
plithogenic set, logic as a novel neutrosophic information.
Ye [37] developed an AgOs-depends strategy for DM, while
Peng et al. [38] highlighted the power of AgOs in dealing
with uncertainty in NS data and examined their usefulness in
the context of uncertainty in data management. In order to
deal with uncertain data in the form of neutrosophic
numbers, Chen and Ye [39] defined the SVN information
depends Dombi AgOs, while Liu et al. [40] established the
generalized Hamacher AgOs. Al-Hamido [41] described the
novel algebraic structure of neutrosophic set. Garg and
Nancy [42] presented the novel methodology depends on
SVNSs with linguistic terms. Ashraf et al. [43] proposed
novel decision model for hydrogen power plant selection
using SVN sine trigonometric AgOs. +e flexible DM
correlating to favoured rankings of alternatives was not
studied thoroughly in the MADM process, despite the fact
that these operators provide some motivation for solving
MADM difficulties.

+e EDAS approach was initially defined by Keshavarz
Ghorabaee et al. [44] and used it to multi-criteria inventory
categorization issues. Kahraman et al. [45] developed a novel
EDAS model for solid waste disposal site selection. Batool
et al. [46] proposed the EDAS method with Pythagorean
probabilistic hesitant information and discussed their ap-
plicability in decision making. Peng and Liu [47] proposed
approaches for neutrosophic soft decision making depends
on the EDAS algorithm using similarity measure. Karasan
and Kahraman [48] developed the novel interval-valued
neutrosophic EDAS approach. +e EDAS method was used
to develop the dynamic fuzzy approach for multi-criteria
evaluation of subcontractors by Keshavarz-Ghorabaee et al.
[49]. For more study, we refer to.

In fuzzy sets and their extended fuzzy architectures, the
t-norms and t-conorms are commonly acknowledged as
important operations. +e Acz-Als t-norm and t-conorm
procedures, created by Aczel and Alsina, have the advantage
of changeability by modifying a parameter [50]. Under the
single valued neutrosophic framework, the Acz-Als t-norm
and t-conorm procedures, [51–57] as well as a number of
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additional aggregation operators [58–60] (AOs), are pro-
posed. In addition, to deal with uncertain data in complex
real-life decision scenarios, an expanded EDAS (Evaluation
based on Distance from Average Solution) method depends
on the SVN Acz-Als aggregation operations is described.

Our technique’s objectives are represented as follows:

(1) We devised certain Acz-Als operations for SVNNs in
order to overcome the lack of algebraic, Einstein, and
Hamacher processes and represent the relationship
between the various SVNNs.

(2) In support of SVN data, we extended Acz-Als op-
erators to SVNAcz-Als operators: SVN Aczel-Alsina
weighted geometric (SV-NAWG) operator and SVN
Aczel-Alsina order weighted geometric (SV-
NAOWG) operator, which overcome the present
operator’s drawbacks.

(3) Based on the suggested SVN Aczel-Alsina aggrega-
tion technique, we developed an expanded EDAS
approach.

(4) Using SVN data, we developed an approach to deal
with MAGDM difficulties.

(5) +e suggested Aczel-Alsina aggregate operators and
the EDAS technique are applied to the MAGDM issue
in order to demonstrate their usability and reliability.

(6) +e results suggest that the proposed process is more
powerful and generates more authentic results when
compared to existing methodologies.

+e remaining sections of the document are formatted in
the following order: Under SVN information, Section 2
provides some basic information on t-norms, SVNSs, and a
few functional rules. Section 3 discusses the Aczel-Alsina
working guidelines as well as the characteristics of SVNNs.
In Section 4, we look at the various desirable qualities of
several SVN Aczel-Alsina AOs.+e next section develops an
expanded EDAS method depends decision making algo-
rithm using SVN Aczel-Alsina aggregation operations. In
Section 6, we use an example to demonstrate the applica-
bility of the suggested hybrid method. In Section 7, we
examine at how a factor effects DM results. +e comparison
study for new and existing aggregating operators was de-
veloped in Section 8. Section 8 concludes the research work
and elaborates future directions.

2. Preliminaries

We will look at some key topics in this section that will be
significant in the creation of this article.

Definition 1 (see [50]). A mapping ( 􏽢W
℘
a )℘∈[0,∞] is a Acz-Als

t-norm if

􏽢W
℘
a (Δ, Z) �

􏽢WD(Δ, Z) if ℘ � 0

min(Δ, ) if ℘ �∞

e
− (− ℓn’Δ)℘+(− ℓn’)℘( )

1/℘

otherwise

,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where Δ, ∈ [0, 1], ℘ is +ve fixed and 􏽢WD is extreme t-norm
defined as

􏽢WD(Δ, ) �

Δ if Δ � 1

if Δ � 1

0 otherwise.

.

⎧⎪⎪⎨

⎪⎪⎩
(2)

Definition 2 (see [50]). A mapping (β℘a )℘∈[0,∞] is a Acz-Als
s-norm if

β℘a (Δ, ) �

βD(Δ, ) if ℘ � 0

max(Δ, ) if ℘ �∞

1 − e
− (− ℓn′(1− Δ))℘+(− ℓn′(1− ))℘􏼒 􏼓

1/℘

otherwise

,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

where Δ, ∈ [0, 1], ℘ is positive constant and βD is drastic
s-norm defined as

βD(Δ, ) �

Δ if Δ � 0

if Δ � 0

0 otherwise.

.

⎧⎪⎪⎨

⎪⎪⎩
(4)

For every ℘ ∈ [0,∞], the t-norm 􏽢W
℘
a and s-norm β℘a are

dual to each other.

Definition 3 (see [35]). A neutrosophic set Ξ in a fixed set k
is defined as

Ξ � OΞ(♭),ΔΞ(♭),GΞ(♭) ∈ 0−
, 1+

􏼃 􏼂|♭ ∈ k􏼈 􏼉, (5)

where OΞ positive grade, ΔΞ neutral grade and GΞ negative
grade of the value ♭ to neutrosophic set Ξ, satisfying
0− ≤OΞ + ΔΞ + GΞ ≤ 3+, for each ♭ ∈ k.

Definition 4 (see [35]). A single valued neutrosophic set
(SV-NS) Ξ in k is defined as

Ξ � OΞ(♭),ΔΞ(♭),GΞ(♭) ∈ [0, 1]|♭ ∈ k􏼈 􏼉, (6)

where OΞ positive grade, ΔΞ neutral grade and GΞ negative
grade of the element ♭ to SV-NS Ξ, satisfying 0≤OΞ + ΔΞ +

GΞ ≤ 3, for each ♭ ∈ k.

Definition 5 (see [35]). Let ΞI � OΞI,ΔΞI,GΞI􏽮 􏽯 be two
single valued neutrosophic numbers (SVNNs), where (I �

1, 2). +en:

(1) Ξ1⊆Ξ2 iff OΞ1 ≤OΞ2,ΔΞ1 ≤ΔΞ2 and GΞ1 ≥GΞ2 for all
♭ ∈ k;

(2) Ξ1 � Ξ2 if Ξ1⊆Ξ2 and Ξ2⊆Ξ1;
(3) Ξ1� Ξ2 � min(OΞ1, OΞ2),max(ΔΞ1,ΔΞ2),max(GΞ1,􏽮

GΞ2)};

(4) Ξ1� Ξ2 � max(OΞ1, OΞ2),min(ΔΞ1,ΔΞ2),min(GΞ1,􏽮

GΞ2)};

(5) (Ξ1)
c � GΞ1,ΔΞ1, OΞ1􏽮 􏽯.
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Definition 6 (see [35]). Let ΞI � OΞI,ΔΞI,GΞI􏽮 􏽯 be two
SVNNs, where (I � 1, 2). +en the operations about any
two SVNNs are defined as follows:

(1) Ξ1⊕Ξ2 � OΞ1 + OΞ2 − OΞ1OΞ2,ΔΞ1ΔΞ2,GΞ1GΞ2􏽮 􏽯;

(2) Ξ1 ⊗Ξ2 � OΞ1OΞ2,ΔΞ1 + ΔΞ2 − ΔΞ1.ΔΞ2,GΞ1+􏽮

GΞ2 − GΞ1.GΞ2};

(3) η · Ξ1 � 1 − (1 − OΞ1)
η, (ΔΞ1)

η, (GΞ1)
η

􏽮 􏽯,, η> 0;

(4) (Ξ1)
η � (OΞ1)

η,1 − (1 − ΔΞ1)
η,1 − (1 − GΞ1)

η
􏽮 􏽯,η>0.

On the basis of Definition 6, Ashraf [6] derived several
operations in the following ways:

Definition 7 (see [51]). Let ΞI � OΞI,ΔΞI,GΞI􏽮 􏽯 be a col-
lection of SVNNs, where (I � 1, 2, ..., n) and η1, η1 > 0. +en

(1) Ξ1⊕Ξ2 � Ξ2⊕Ξ1;
(2) Ξ1 ⊗Ξ2 � Ξ2 ⊗Ξ1;
(3) η1(Ξ1⊕Ξ2) � η1Ξ1⊕η1Ξ2;
(4) (Ξ1 ⊗Ξ2)

η1 � Ξη11 ⊗Ξ
η1
2 ;

(5) η1Ξ1⊕η2Ξ1 � (η1 + η2)Ξ1;
(6) Ξη11 ⊗Ξ

η2
1 � Ξ(η1+η2)

1 ;

(7) (Ξη11 )η2 � Ξη1η21 .

Definition 8 (see [43]). Let Ξ � OΞ,ΔΞ,GΞ􏼈 􏼉 be SV-NN.
+en the score Q(Ξ) and accuracy a(Ξ) are given as follows:

(1) Q(Ξ) � (OΞ − ΔΞ − GΞ);

(2) a(Ξ) � (OΞ + ΔΞ + GΞ).

Definition 9 (see [43]). Let ΞI � OΞI,ΔΞI,GΞI􏽮 􏽯 be two
SVNNs, where (I � 1, 2). +en the comparison technique
of SVNNs can be defined as:

(1) Q(Ξ1)>Q(Ξ2) implies that Ξ1 >Ξ2;
(2) Q(Ξ1) � Q(Ξ2) and a(Ξ1)> a(Ξ2) implies that
Ξ1 >Ξ2;

(3) Q(Ξ1) � Q(Ξ2) and a(Ξ1) � a(Ξ2) implies that
Ξ1 � Ξ2.

Ashraf et al. [6] developed the algebraic AO under
SVNNs illustrate in the superseding definition.

Definition 10 (see [52]). Let ΞI � OΞI,ΔΞI,GΞI􏽮 􏽯 be a
collection of SVNNs, where (I � 1, 2, ..., ℓ). A single valued
neutrosophic weighted geometric (SV-NWG) AO of
dimention ℓ is a mapping Iℓ⟶ I with weight vector ϖ �

(ϖ1,ϖ1, ...,ϖℓ)
T such that ϖI > 0 and as

SV − NWG Ξ1,Ξ2, . . . ,Ξℓ( 􏼁

� 􏽙

ℓ

I�1
ΞI( 􏼁
ϖI

�

􏽙

ℓ

I�1
OΞI􏼐 􏼑
ϖI

, 1 − 􏽙
ℓ

I�1
1 − ΔΞI􏼐 􏼑

ϖI
,

1 − 􏽙
ℓ

I�1
1 − GΞI􏼐 􏼑

ϖI

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

(7)

3. Aczel–Alsina Operation for SVNNs

We discussed Acz-Als operations in relation to SVNNs,
taking into account the Acz-Als t-norm and Acz-Als
t-conorm.

Definition 11. Let ΞI � OΞI,ΔΞI,GΞI􏽮 􏽯 be two SVNNs,
where (I � 1, 2) and ℘ is +ve fixed. +en Acz-Als norms
depends operations for SVNNs are defined as follows:

(1) Ξ1⊕Ξ2 � 􏼈 1 − e
− ((− ℓn′(1− OΞ1))℘+(− ℓn′(1− OΞ2))℘)1/℘

,

e
− ((− ℓn’ΔΞ1)℘+(− ℓn’ΔΞ2)℘)1/℘

, e
− ((− ℓn′GΞ1)℘+(− ℓn′GΞ2)℘)1/℘

􏼉;

(2) Ξ1 ⊗Ξ2 � 􏼈 e
− ((− ℓn′OΞ1)℘+(− ℓn′OΞ2)℘)1/℘

,

1 − e
− ((− ℓn′(1− ΔΞ1))℘+(− ℓn′(1− ΔΞ2))℘)1/℘

, 1−

e
− ((− ℓn′(1− GΞ1))℘+(− ℓn′(1− GΞ2))℘)1/℘

􏼉;

(3) η · Ξ1 � 􏼨1 − e− (η(− ℓn′(1− OΞ1))℘)1/℘ ,

e− (η(− ℓn’ΔΞ1)℘)1/℘ , e− (η(− ℓn′GΞ1)℘)1/℘􏼩,, η> 0;

(4) (Ξ1)
η � 􏼨e− (η(− ℓn′OΞ1)℘)1/℘ , 1 − e− (η(−

ℓn′(1 − ΔΞ1))
℘)1/℘, 1 − e− (η(− ℓn′(1− GΞ1))℘)1/℘􏼩, η> 0.

Theorem 1. Let ΞI � OΞI,ΔΞI,GΞI􏽮 􏽯 be a collection of
SVNNs, where (I � 1, 2, ..., n) and η1, η1 > 0. @en:

(1) Γ1⊕Γ2 � Γ2⊕Γ1;
(2) Γ1 ⊗ Γ2 � Γ2 ⊗ Γ1;
(3) η1(Γ1⊕Γ2) � η1Γ1⊕η1Γ2;
(4) (Γ1 ⊗ Γ2)

η1 � Γη11 ⊗ Γ
η1
2 ;

(5) η1Γ1⊕η2Γ1 � (η1 + η2)Γ1;
(6) Γη11 ⊗ Γ

η2
1 � Γ(η1+η2)

1 ;

(7) (Γη11 )η2 � Γη1η21 .

Proof.
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(1) Let ΞI � OΞI,ΔΞI,GΞI􏽮 􏽯 be collection of SVNNs,
where (I � 1, 2, ..., n) and η1, η1 > 0. +en by the
Definition 11, it follows that

Ξ1⊕Ξ2 �
1 − e

− − ℓn′ 1− OΞ1􏼐 􏼐 􏼑􏼑
℘

+ − ℓn′ 1− OΞ2􏼐 􏼐 􏼑􏼑
℘

􏼐 􏼑
1/℘

, e
− − ℓn’ΔΞ1􏼐 􏼑

℘
+ − ℓn’ΔΞ2􏼐 􏼑

℘
􏼐 􏼑

1/℘

,

e
− − ℓn′GΞ1􏼐 􏼑

℘
+ − ℓn′GΞ2􏼐 􏼑

℘
􏼐 􏼑

1/℘

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

�
1 − e

− − ℓn′ 1− OΞ2􏼐 􏼐 􏼑􏼑
℘

+ − ℓn′ 1− OΞ1􏼐 􏼐 􏼑􏼑
℘

􏼐 􏼑
1/℘

, e
− − ℓn’ΔΞ2􏼐 􏼑

℘
+ − ℓn’ΔΞ1􏼐 􏼑

℘
􏼐 􏼑

1/℘

,

e
− − ℓn′GΞ2􏼐 􏼑

℘
+ − ℓn′GΞ1􏼐 􏼑

℘
􏼐 􏼑

1/℘

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

� Ξ2⊕Ξ1.

(8)

(2) Utilizing the Definition 11, it follows that

Ξ1 ⊗Ξ2 �
e

− − ℓn′OΞ1􏼐 􏼑
℘

+ − ℓn′OΞ2􏼐 􏼑
℘

􏼐 􏼑
1/℘

, 1 − e
− − ℓn′ 1− ΔΞ1􏼐 􏼐 􏼑􏼑

℘
+ − ℓn′ 1− ΔΞ2􏼐 􏼐 􏼑􏼑

℘
􏼐 􏼑

1/℘

,

1 − e
− − ℓn′ 1− GΞ1􏼐 􏼐 􏼑􏼑

℘
+ − ℓn′ 1− GΞ2􏼐 􏼐 􏼑􏼑

℘
􏼐 􏼑

1/℘

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

�
e

− − ℓn′OΞ2􏼐 􏼑
℘

+ − ℓn′OΞ1􏼐 􏼑
℘

􏼐 􏼑
1/℘

, 1 − e
− − ℓn′ 1− ΔΞ2􏼐 􏼐 􏼑􏼑

℘
+ − ℓn′ 1− ΔΞ1􏼐 􏼐 􏼑􏼑

℘
􏼐 􏼑

1/℘

,

1 − e
− − ℓn′ 1− GΞ2􏼐 􏼐 􏼑􏼑

℘
+ − ℓn′ 1− GΞ1􏼐 􏼐 􏼑􏼑

℘
􏼐 􏼑

1/℘

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

� Ξ2 ⊗Ξ1.

(9)

(3) Utilizing the Definition 11, it follows that

η1 Ξ1⊕Ξ2( 􏼁 � η1
1 − e

− − ℓn′ 1− OΞ1􏼐 􏼐 􏼑􏼑
℘

+ − ℓn′ 1− OΞ2􏼐 􏼐 􏼑􏼑
℘

􏼐 􏼑
1/℘

, e
− − ℓn’ΔΞ1􏼐 􏼑

℘
+ − ℓn’ΔΞ2􏼐 􏼑

℘
􏼐 􏼑

1/℘

,

e
− − ℓn′GΞ1􏼐 􏼑

℘
+ − ℓn′GΞ2􏼐 􏼑

℘
􏼐 􏼑

1/℘

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

�
1 − e

− η1 − ℓn′ 1− OΞ1􏼐 􏼐 􏼑􏼑
℘

+η1 − ℓn′ 1− OΞ2􏼐 􏼐 􏼑􏼑
℘

􏼐 􏼑
1/℘

, e
− η1 − ℓn’ΔΞ1􏼐 􏼑

℘
+η1 − ℓn’ΔΞ2􏼐 􏼑

℘
􏼐 􏼑

1/℘

,

e
− η1 − ℓn′GΞ1􏼐 􏼑

℘
+η1 − ℓn′GΞ2􏼐 􏼑

℘
􏼐 􏼑

1/℘

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

�

1 − e
− η1 − ℓn′ 1− OΞ1􏼐 􏼐 􏼑􏼑

℘
􏼐 􏼑

1/℘

,

e
− η1 − ℓn’ΔΞ1􏼐 􏼑

℘
􏼐 􏼑

1/℘

,

e
− η1 − ℓn′GΞ1􏼐 􏼑

℘
􏼐 􏼑

1/℘

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⊕

1 − e
− η1 − ℓn′ 1− OΞ1􏼐 􏼐 􏼑􏼑

℘
􏼐 􏼑

1/℘

,

e
− η1 − ℓn’ΔΞ1􏼐 􏼑

℘
􏼐 􏼑

1/℘

,

e
− η1 − ℓn′GΞ1􏼐 􏼑

℘
􏼐 􏼑

1/℘

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

� η1Ξ1⊕η1Ξ2.

(10)
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(4) It is similar of the proof of (3). (5) Utilizing the Definition 11, it follows that

η1Ξ1⊕η2Ξ1 �

1 − e
− η1 − ℓn′ 1− OΞ1􏼐 􏼐 􏼑􏼑

℘
􏼐 􏼑

1/℘

,

e
− η1 − ℓn’ΔΞ1􏼐 􏼑

℘
􏼐 􏼑

1/℘

,

e
− η1 − ℓn′GΞ1􏼐 􏼑

℘
􏼐 􏼑

1/℘

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

⊕

1 − e
− η2 − ℓn′ 1− OΞ1􏼐 􏼐 􏼑􏼑

℘
􏼐 􏼑

1/℘

,

e
− η2 − ℓn’ΔΞ1􏼐 􏼑

℘
􏼐 􏼑

1/℘

,

e
− η2 − ℓn′GΞ1􏼐 􏼑

℘
􏼐 􏼑

1/℘

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

�
1 − e

− η1 − ℓn′ 1− OΞ1􏼐 􏼐 􏼑􏼑
℘

+η2 − ℓn′ 1− OΞ1􏼐 􏼐 􏼑􏼑
℘

􏼐 􏼑
1/℘

, e
− η1 − ℓn’ΔΞ1􏼐 􏼑

℘
+η2 − ℓn’ΔΞ1􏼐 􏼑

℘
􏼐 􏼑

1/℘

,

e
− η1 − ℓn′GΞ1􏼐 􏼑

℘
+η2 − ℓn′GΞ1􏼐 􏼑

℘
􏼐 􏼑

1/℘

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

�
1 − e

− η1+η2 − ℓn′ 1− OΞ1􏼐 􏼐 􏼑􏼑
℘

􏼐 􏼑
1/℘

, e
− η1+η2 − ℓn’ΔΞ1􏼐 􏼑

℘
􏼐 􏼑

1/℘

,

e
− η1+η2 − ℓn′GΞ1􏼐 􏼑

℘
􏼐 􏼑

1/℘

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

� η1 + η2( 􏼁Ξ1.

(11)

(6) and (7) are similar to the proof of (5). □

4. Aczel–Alsina Geometric Aggregation
Operators for SVNNs

Acz-Als norms depends list of novel AOs under single
valued neutrosophic settings are construct in this section.

Definition 12. Let ΞI � OΞI,ΔΞI,GΞI􏽮 􏽯 be collection of
SVNNs, where (I � 1, 2, ..., ℓ). A SVN Acz-Als weighted
geometric (SVNAWG) AO of dimention ℓ is a mapping with

weight vector ϖ � (ϖ1,ϖ1, ...,ϖℓ)
T such that ϖI > 0 and

􏽐
ℓ
I�1 ϖI � as

SV − NAWG Ξ1,Ξ2, . . . ,Ξℓ( 􏼁 � 􏽙
ℓ

I�1
ΞI( 􏼁
ϖI . (12)

Theorem 2. Suppose ΞI � OΞI,ΔΞI,GΞI􏽮 􏽯 be collection of
SVNNs, where (I � 1, 2, ..., ℓ). A SVN Acz-Als weighted
geometric (SVNAWG) AO of dimention ℓ is a mapping with
weight vector ϖ � (ϖ1,ϖ1, ...,ϖℓ)

T such that ϖI > 0 and
􏽐

ℓ
I�1 ϖI � is defined as:

SV − NAWG Ξ1,Ξ2, . . . ,Ξℓ( 􏼁 � 􏽙
ℓ

I�1
ΞI( 􏼁
ϖI �

e

− 􏽘

ℓ

I�1
ϖI − ℓn′OΞI􏼐 􏼑

℘⎛⎝ ⎞⎠

1/℘

, 1 − e

− 􏽘

ℓ

I�1
ϖI − ℓn′ 1 − ΔΞI( 􏼁( 􏼁

℘⎛⎝ ⎞⎠

1/℘

,

1 − e

− 􏽘

ℓ

I�1
ϖI − ℓn′ 1 − GΞI􏼐 􏼑􏼐 􏼑

℘⎛⎝ ⎞⎠

1/℘

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (13)

Proof. +eorem’s 2 proof is derived by implemention of
induction method as follows: □

Step 1. for ℓ � 2, we have

SV − NAWG Ξ1,Ξ2( 􏼁 � Ξ1( 􏼁
ϖ1 ⊗ Ξ2( 􏼁

ϖ2 . (14)

Utilizing the Definition 11, it follows that

Ξ1( 􏼁
ϖ1 � e

− ϖ1 − ℓn′OΞ1􏼐 􏼑
℘

􏼐 􏼑
1/℘

, 1 − e
− ϖ1 − ℓn′ 1− ΔΞ1􏼐 􏼐 􏼑􏼑

℘
􏼐 􏼑

1/℘

, 1 − e
− ϖ1 − ℓn′ 1− GΞ1􏼐 􏼐 􏼑􏼑

℘
􏼐 􏼑

1/℘

􏼨 􏼩, (15)

and

Ξ2( 􏼁
ϖ2 � e

− ϖ2 − ℓn′OΞ2􏼐 􏼑
℘

􏼐 􏼑
1/℘

, 1 − e
− ϖ2 − ℓn′ 1− ΔΞ2􏼐 􏼐 􏼑􏼑

℘
􏼐 􏼑

1/℘

, 1 − e
− ϖ2 − ℓn′ 1− GΞ2􏼐 􏼐 􏼑􏼑

℘
􏼐 􏼑

1/℘

􏼨 􏼩. (16)
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+erefore

SV − NAWG Ξ1,Ξ2( 􏼁 �

e
− ϖ1 − ℓn′OΞ1􏼐 􏼑

℘
􏼐 􏼑

1/℘

,

1 − e
− ϖ1 − ℓn′ 1− ΔΞ1􏼐 􏼐 􏼑􏼑

℘
􏼐 􏼑

1/℘

,

1 − e
− ϖ1 − ℓn′ 1− GΞ1􏼐 􏼐 􏼑􏼑

℘
􏼐 􏼑

1/℘

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

⊗

e
− ϖ2 − ℓn′OΞ2􏼐 􏼑

℘
􏼐 􏼑

1/℘

,

1 − e
− ϖ2 − ℓn′ 1− ΔΞ2􏼐 􏼐 􏼑􏼑

℘
􏼐 􏼑

1/℘

,

1 − e
− ϖ2 − ℓn′ 1− GΞ2􏼐 􏼐 􏼑􏼑

℘
􏼐 􏼑

1/℘

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

�
e

− ϖ1 − ℓn′OΞ1􏼐 􏼑
℘

+ϖ2 − ℓn′OΞ2􏼐 􏼑
℘

􏼐 􏼑
1/℘

, 1 − e
− ϖ1 − ℓn′ 1− ΔΞ1􏼐 􏼐 􏼑􏼑

℘
+ϖ2 − ℓn′ 1− ΔΞ2􏼐 􏼐 􏼑􏼑

℘
􏼐 􏼑

1/℘

,

1 − e
− ϖ1 − ℓn′ 1− GΞ1􏼐 􏼐 􏼑􏼑

℘
+ϖ2 − ℓn′ 1− GΞ2􏼐 􏼐 􏼑􏼑

℘
􏼐 􏼑

1/℘

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

�
e

− 􏽘

2

I�1
ϖI − ℓn′OΞI􏼐 􏼑

℘
⎛⎝ ⎞⎠

1/℘

, 1 − e

− 􏽘

2

I�1
ϖI − ℓn′ 1− ΔΞI􏼐 􏼐 􏼑􏼑

℘
⎛⎝ ⎞⎠

1/℘

,

1 − e

− 􏽘

2

I�1
ϖI − ℓn′ 1− GΞI􏼐 􏼐 􏼑􏼑

℘
⎛⎝ ⎞⎠

1/℘

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(17)

+us, +eorem 2 is valid. ℓ � 2. Now, we assume that,+eorem 2 is valid for ℓ � d, that is

SV − NAWG Ξ1,Ξ2, . . . ,Ξd( 􏼁

�
e

− 􏽘

d

I�1
ϖI − ℓn′OΞI􏼐 􏼑

℘
⎛⎝ ⎞⎠

1/℘

, 1 − e

− 􏽘

d

I�1
ϖI − ℓn′ 1− ΔΞI􏼐 􏼐 􏼑􏼑

℘
⎛⎝ ⎞⎠

1/℘

,

1 − e

− 􏽘

d

I�1
ϖI − ℓn′ 1− GΞI􏼐 􏼐 􏼑􏼑

℘
⎛⎝ ⎞⎠

1/℘

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

.
(18)

Now we prove that+eorem 2 is valid for ℓ � d + 1. +at
is, we prove

SV − NAWG Ξ1,Ξ2, . . . ,Ξd,Ξd+1( 􏼁 � 􏽙
ℓ

I�1
ΞI( 􏼁
ϖI ⊗ Ξd+1( 􏼁

ϖd+1

􏽙

ℓ

I�1
ΞI( 􏼁
ϖI ⊗ Ξd+1( 􏼁

ϖd+1 �

e

− 􏽘

d

I�1
ϖI − ℓn′OΞI􏼐 􏼑

℘⎛⎝ ⎞⎠

1/℘

,

1 − e

− 􏽘

d

I�1
ϖI − ℓn′ 1 − ΔΞI􏼐 􏼑􏼐 􏼑

℘⎛⎝ ⎞⎠

1/℘

,

1 − e

− 􏽘

d

I�1
ϖI − ℓn′ 1 − GΞI􏼐 􏼑􏼐 􏼑

℘⎛⎝ ⎞⎠

1/℘

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⊗

e
− ϖd+1 − ℓn′OΞd+1

􏼐 􏼑
℘

􏼐 􏼑
1/℘

,

1 − e
− ϖd+1 − ℓn′ 1− ΔΞd+1

􏼐 􏼑􏼐 􏼑
℘

􏼐 􏼑
1/℘

,

1 − e
− ϖd+1 − ℓn′ 1− GΞd+1

􏼐 􏼑􏼐 􏼑
℘

􏼐 􏼑
1/℘

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭
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�

e

− 􏽘

d

I�1
ϖI − ℓn′OΞI􏼐 􏼑

℘
+ ϖd+1 − ℓn′OΞd+1( 􏼁

℘⎛⎝ ⎞⎠

1/℘

,

1 − e

− 􏽘

d

I�1
ϖI − ℓn′ 1 − ΔΞI􏼐 􏼑􏼐 􏼑

℘
+ ϖd+1 − ℓn′ 1 − ΔΞd+1( 􏼁( 􏼁

℘⎛⎝ ⎞⎠

1/℘

,

1 − e

− 􏽘

d

I�1
ϖI − ℓn′ 1 − GΞI􏼐 􏼑􏼐 􏼑

℘
+ ϖd+1 − ℓn′ 1 − GΞd+1( 􏼁( 􏼁

℘⎛⎝ ⎞⎠

1/℘

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

�
e

− 􏽘

d+1

I�1
ϖI − ℓn′OΞI􏼐 􏼑

℘⎛⎝ ⎞⎠

1/℘

, 1 − e

− 􏽘

d+1

I�1
ϖI − ℓn′ 1 − ΔΞI􏼐 􏼑􏼐 􏼑

℘⎛⎝ ⎞⎠

1/℘

,

1 − e

− 􏽘

d+1

I�1
ϖI − ℓn′ 1 − GΞI􏼐 􏼑􏼐 􏼑

℘⎛⎝ ⎞⎠

1/℘

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(19)

Prove that, +eorem 2 is valid for all ℓ.
Using the operator SVNAWG, we can efficiently illus-

trate the following characteristics.

Theorem 3. (Idempotency) Let ΞI � OΞI,ΔΞI,GΞI􏽮 􏽯(I �

1, 2, ..., ℓ) be a collection of equivalent SVNNs, ΞI � Ξ for
each (I � 1, 2, ..., ℓ). @en

SV − NAWG Ξ1,Ξ2, . . . ,Ξℓ( 􏼁 � Ξ. (20)

Proof. Since

SV − NAWG Ξ1,Ξ2, . . . ,Ξℓ( 􏼁 �
e

− 􏽘
ℓ

I�1
ϖI − ℓn′OΞI􏼐 􏼑

℘⎛⎝ ⎞⎠

1/℘

, 1 − e

− 􏽘
ℓ

I�1
ϖI − ℓn′ 1 − ΔΞI􏼐 􏼑􏼐 􏼑

℘⎛⎝ ⎞⎠

1/℘

,

1 − e

− 􏽘

ℓ

I�1
ϖI − ℓn′ 1 − GΞI􏼐 􏼑􏼐 􏼑

℘⎛⎝ ⎞⎠

1/℘

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (21)

Put

ΞI � OΞI,ΔΞI,GΞI􏽮 􏽯 � Ξ(I � 1, 2, ..., ℓ), (22)

we have

SV − NAWG Ξ1,Ξ2, . . . ,Ξℓ( 􏼁 �
e

− 􏽘

ℓ

I�1
ϖI − ℓn′OΞ( 􏼁

℘⎛⎝ ⎞⎠

1/℘

, 1 − e

− 􏽘

ℓ

I�1
ϖI − ℓn′ 1 − ΔΞ( 􏼁( 􏼁

℘⎛⎝ ⎞⎠

1/℘

,

1 − e

− 􏽘

ℓ

I�1
ϖI − ℓn′ 1 − GΞ( 􏼁( 􏼁

℘⎛⎝ ⎞⎠

1/℘

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

�
e

− − ℓn′OΞ( )
℘

( 􏼁
1/℘

, 1 − e
− − ℓn′ 1− ΔΞ( ( ))

℘
( )

1/℘

,

1 − e
− − ℓn′ 1− GΞ( ( ))

℘
( )

1/℘

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

� OΞ,ΔΞ,GΞ( 􏼁 � Ξ.

(23)

+us, SV − NAWG(Ξ1,Ξ2, ...,Ξℓ) � Ξ holds. □
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Theorem 4. (Boundedness) Let ΞI � OΞI,ΔΞI,GΞI􏽮 􏽯(I �

1, 2, ..., ℓ) be collection of SVNNs. Let Ξ−I � 􏼠minI OΞI􏽮 􏽯,

maxI ΔΞI􏽮 􏽯, maxI GΞI􏽮 􏽯􏼡 and Ξ+I � 􏼠maxI OΞI􏽮 􏽯,

minI ΔΞI􏽮 􏽯,minI GΞI􏽮 􏽯􏼡(I� 1,2, ...,ℓ). @en,

Ξ−I ≤ SV − NAWG Ξ1,Ξ2, . . . ,Ξℓ( 􏼁≤Ξ+I. (24)

Proof. Since minI OΞI􏽮 􏽯≤OΞI ≤maxI OΞI􏽮 􏽯, it follows that

e
− 􏽐

ℓ

I�1
ϖI − ℓn′ minOΞI􏼐 􏼑􏼐 􏼑

℘
􏼠 􏼡

1/℘

≤ e
− 􏽐

ℓ

I�1
ϖI − ℓn′OΞI􏼐 􏼑

℘
􏼠 􏼡

1/℘

≤ e
− 􏽐

ℓ

I�1
ϖI − ℓn′ maxOΞI􏼐 􏼑􏼐 􏼑

℘
􏼠 􏼡

1/℘

.
(25)

Similarly

1 − e
− 􏽐

ℓ

I�1
ϖI − ℓn′ max 1− ΔΞI􏼐 􏼐 􏼑􏼑􏼐 􏼑

℘
􏼠 􏼡

1/℘

≤ 1 − e
− 􏽐

ℓ

I�1
ϖI − ℓn′ 1− ΔΞI􏼐 􏼐 􏼑􏼑

℘
􏼠 􏼡

1/℘

≤ 1 − e

− 􏽘

ℓ

I�1
ϖI − ℓn′ min 1 − ΔΞI􏼐 􏼑􏼐 􏼑􏼐 􏼑

℘⎛⎝ ⎞⎠

1/℘

.

(26)

Now we have

1 − e
− 􏽐

d

I�1
ϖI − ℓn′ max 1− GΞI􏼐 􏼐 􏼑􏼑􏼐 􏼑

℘
􏼠 􏼡

1/℘

≤ 1 − e
− 􏽐

d

I�1
ϖI − ℓn′ 1− GΞI􏼐 􏼐 􏼑􏼑

℘
􏼠 􏼡

1/℘

≤ 1 − e

− 􏽘

d

I�1
ϖI − ℓn′ min 1 − GΞI􏼐 􏼑􏼐 􏼑􏼐 􏼑

℘⎛⎝ ⎞⎠

1/℘

.

(27)

+erefore
Ξ−I ≤ SV − NAWG Ξ1,Ξ2, . . . ,Ξℓ( 􏼁≤Ξ+I. (28)

□

Theorem 5. Let ΞI � OΞI,ΔΞI,GΞI􏽮 􏽯 and Ξ∗I � O
∗
ΞI ,Δ∗ΞI ,􏽮

G∗ΞI}(I � 1, 2, ..., ℓ) be two collections of SVNNs. If ΞI ≤Ξ∗I
for (I � 1, 2, ..., ℓ). @en,

SV − NAWG Ξ1,Ξ2, . . . ,Ξℓ( 􏼁≤ SV − NAWG Ξ∗1 ,Ξ∗2 , . . . ,Ξ∗ℓ( 􏼁.

(29)

Proof. +e proof is straightforward. □

Definition 13. Let ΞI � OΞI,ΔΞI,GΞI􏽮 􏽯 be a collection of
SVNNs, where (I � 1, 2, ..., ℓ). An SVN Acz-Als ordered

weighted geometric (SV-NAOWG) AO of dimention ℓ is a
mapping Iℓ⟶ I with ϖ � (ϖ1,ϖ1, ...,ϖℓ)

T such that
ϖI > 0 and 􏽐

ℓ
I�1 ϖI � as

SV − NAOWG Ξ1,Ξ2, . . . ,Ξℓ( 􏼁 � 􏽙
ℓ

I�1
Ξτ(I)􏼐 􏼑

ϖI
, (30)

where (τ(1), τ(2), ..., τ(ℓ)) are the permutation in such a
way that. Ξτ(I) ≤Ξτ(I− 1).

Theorem 6. Suppose ΞI � OΞI,ΔΞI,GΞI􏽮 􏽯 be a collection of
SVNNs, where (I � 1, 2, ..., ℓ). An SVN Acz-Als ordered
weighted geometric (SV-NAOWG) AO of dimention ℓ is a
mapping Iℓ⟶ I with weight vector ϖ � (ϖ1,ϖ1, ...,ϖℓ)

T

such that ϖI > 0 and 􏽐
ℓ
I�1 ϖI � is defined as:

Complexity 9



SV − NAOWG Ξ1,Ξ2, . . . ,Ξℓ( 􏼁 � 􏽙
ℓ

I�1
Ξτ(I)􏼐 􏼑

ϖI

�
e

− 􏽘

ℓ

I�1
ϖI − ℓn′OΞτ(I)

􏼒 􏼓
℘

⎛⎝ ⎞⎠

1/℘

, 1 − e

− 􏽘

ℓ

I�1
ϖI − ℓn′ 1 − ΔΞτ(I)

􏼒 􏼓􏼒 􏼓
℘

⎛⎝ ⎞⎠

1/℘

,

1 − e

− 􏽘

ℓ

I�1
ϖI − ℓn′ 1 − GΞτ(I)

􏼒 􏼓􏼒 􏼓
℘

⎛⎝ ⎞⎠

1/℘

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(31)

where (τ(1), τ(2), ..., τ(ℓ)) are the permutation in such a way
as. Γτ(I) ≤ Γτ(I− 1).

Using the operator SV-NAOWG, we can efficiently il-
lustrate the following characteristics.

Theorem 7.
(1) (Idempotency) Let ΞI � OΞI,ΔΞI,GΞI􏽮 􏽯(I � 1, 2,

..., ℓ) be collection of equivalent SVNNs, ΞI � Ξ for
each (I � 1, 2, ..., ℓ). @en

SV − NAOWG Ξ1,Ξ2, . . . ,Ξℓ( 􏼁 � Ξ. (32)

(2) (Boundedness) Let ΓI � OΓI,ΔΓI,GΓI􏽮 􏽯(I � 1, 2, ...,

ℓ) be a collection of SVNNs. Let Γ−
I �

(minI OΓI􏽮 􏽯,maxI ΔΓI􏽮 􏽯,maxI GΓI􏽮 􏽯) and Γ+
I �

(max
I

OΓI􏽮 􏽯,min
I

ΔΓI􏽮 􏽯,min
I

GΓI􏽮 􏽯)(I � 1, 2, ..., ℓ).

@en

Ξ−I ≤ SV − NAOWG Ξ1,Ξ2, . . . ,Ξℓ( 􏼁≤Ξ+I. (33)

(3) Let ΓI � OΓI,ΔΓI,GΓI􏽮 􏽯 and
Γ∗I � O

∗
ΓI ,Δ∗ΓI ,G∗ΓI􏽮 􏽯(I � 1, 2, ..., ℓ) be two collec-

tion of SVNNs. If ΓI ≤ Γ∗I for (I � 1, 2, ..., ℓ). @en

SV − NAOWG Ξ1,Ξ2, . . . ,Ξℓ( 􏼁

≤ SV − NAOWG Ξ∗1 ,Ξ∗2 , . . . ,Ξ∗ℓ( 􏼁.
(34)

Proof. Using +eorem 2, 3 and 4, the proof is
straightforward. □

5. EDAS Method Based on SVN Aczel–Alsina
Aggregation Information

A novel extended EDAS approach is built here to handle the
complex uncertain data in real-life D-S issues in order to
validate the effectiveness of the SVNAcz-Als geometric AOs.
+e following are the particular measures to take.

Assume, that there is a set of ℓ alternatives, and an
acceptable rating by the attributes R1,R2, ...,Rm􏼈 􏼉. +en, the
usefulness of different attributes Rı(ı � 1, 2, ...,m) is speci-
fied by ϖ � (ϖ1,ϖ1, ...,ϖm)T such that ϖı > 0 and 􏽐

m
ı�1 ϖı �.

Let ΞIı � OΞIı
,ΔΞIı

,GΞIı
􏽮 􏽯 for OΞIı

, ΔΞIı
, GΞIı
∈[0, 1] be

the acceptable rating of every attribute for each alternative,
where OΞℓm depicts the +ve grade function the alternative
(I� 1, 2, . . . , ℓ) satisfies Rı(ı � 1, 2, ...,m). ΔΞℓm and GΞℓm
designate the nutral grade function and − ve grade function,
respectively. +e decision matrix of SVNNs can be obtained
based from assessment data: Ξ � (ΞIı)ℓm.

+e procedure for determining the best alternative using
EDAS methodology depends on SVN Acz-Als aggregation
information is prsented as the following steps: Step-1: Select
a series of attributes that are suitable for use in evaluating the
problem under consideration:

+e prospective assessment characteristics are gathered
via a study of the literature, and an expert DM committee is
created to screen the attributes in order to develop an ac-
ceptable collection of evaluation attributesRı(ı � 1, 2, ...,m).

DI×ı �

R1

R2

⋮

Rℓ

R1 R2 Rm

OΞ11,ΔΞ11,GΞ11􏼐 􏼑 OΞ12,ΔΞ12,GΞ12􏼐 􏼑 ... OΞ1m
,ΔΞ1m

,GΞ1m
􏼐 􏼑

OΞ21,ΔΞ21,GΞ21􏼐 􏼑 OΞ22,ΔΞ22,GΞ22􏼐 􏼑 ... OΞ2m
,ΔΞ2m

,GΞ2m
􏼐 􏼑

⋮ ⋮ ⋱ ⋮

OΞℓ1,ΔΞℓ1,GΞℓ1􏼐 􏼑 OΞℓ2,ΔΞℓ2,GΞℓ2􏼐 􏼑 ... OΞℓm,ΔΞℓm,GΞℓm􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (35)
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Step 2. Normalization is used to obtain the normalised
decision matrix as:

NI×ı �
OΞIı

,ΔΞIı
,GΞIı

􏼐 􏼑 if CI

GΞIı
,ΔΞIı

, OΞIı
􏼐 􏼑 if CII

,
⎧⎪⎨

⎪⎩
(36)

where CI refers to “ifRı(ı � 1, 2, ...,m) is a benefit criterion”
and CII refers to “if Rı(ı � 1, 2, ...,m) is a cost criterion”.

Step 3. Aggregated Data: Established SVN Acz-Als opera-
tors are utilized to aggregate the specialists uncertain data of
D-S problems.

SV − NAWG Ξ1,Ξ2, . . . ,Ξℓ( 􏼁 � 􏽙
ℓ

I�1
ΞI( 􏼁
ϖI �

e

− 􏽘
ℓ

I�1
ϖI − ℓn′OΞI􏼐 􏼑

℘⎛⎝ ⎞⎠

1/℘

, 1 − e

− 􏽘
ℓ

I�1
ϖI − ℓn′ 1 − ΔΞI􏼐 􏼑􏼐 􏼑

℘⎛⎝ ⎞⎠

1/℘

,

1 − e

− 􏽘
ℓ

I�1
ϖI − ℓn′ 1 − GΞI􏼐 􏼑􏼐 􏼑

℘⎛⎝ ⎞⎠

1/℘

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (37)

Step 4. Determine the average solution (AVS) depends on all
provided characteristics:

AVS � AVSı􏼂 􏼃1×m �
􏽐

ℓ
I�1 ΞIı( 􏼁

ℓ
􏼢 􏼣

1×m

(38)

Based on Definition 11, we get

AVS � AVSı􏼂 􏼃1×m �
􏽐

ℓ
I�1 ΞIı( 􏼁

ℓ
􏼢 􏼣

1×m

�
1 − e

− 􏽘
ℓ

I�1
1/ℓ − ℓn′ 1 − OΞIı

􏼐 􏼑􏼐 􏼑
℘⎛⎝ ⎞⎠

1/℘

, e

− 􏽘
ℓ

I�1
1/ℓ − ℓn′ΔΞIı( 􏼁

℘⎛⎝ ⎞⎠

1/℘

,

e

− 􏽘

ℓ

I�1
1/ℓ − ℓn′GΞIı

􏼐 􏼑
℘⎛⎝ ⎞⎠

1/℘

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (39)

Step 5. According to the results of AVS, we can compute the
positive distance from average (PDAv) and negative dis-
tance from average (NDAv) by using the following formula:

PDAvIı
�
max 0, ΞIı − AVSı( 􏼁( 􏼁

AVSı
,

NDAvIı
�
max 0, AVSı − ΞIı( 􏼁( 􏼁

AVSı
.

(40)

Wemay adopt the score function of SVNNs described in
Definition 8 to compute the PDA and NDA as follows:

PDAvIı
�
max 0, Q ΞIı( 􏼁 − Q AVSı( 􏼁( 􏼁( 􏼁

Q AVSı( 􏼁
,

NDAvIı
�
max 0, Q AVSı( 􏼁 − Q ΞIı( 􏼁( 􏼁( 􏼁

Q AVSı( 􏼁
,

(41)

where Q represented the score value.

Step 6. Determine SPDA and SNDA, which represent the
weighted average of PDA and NDA as follows:

SPDAI � 􏽘

m

ı�1
ϖıPDAvIı

,

SNDAI � 􏽘
m

ı�1
ϖıNDAvIı,

(42)

Where ϖı ∈ [0, 1],􏽐
m
ı�1 ϖı � 1.

Step 7. Normalize weighted sum of PDA and NDA is
denoted and defined as respectively:

NSPDAI �
SPDAI

max SP DAI( 􏼁
,

NSNDAI �
SNDAI

max SNDAI( 􏼁
.

(43)

Step 8. Compute the values of appraisal score (ASC) de-
pends on each alternative’s as:

ASC
I

�
1
2

NSPDAI + 1 − NSNDAI( 􏼁. (44)

Step 9. Depending on the calculating values of ASC,alter-
natives are ranked in a decreasing order, and the bigger value
of ASC

I
is the best alternative selected will be.
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6. Numerical Illustration of EDAS Method

In order to authenticate the effectiveness and appropriate of
the developed technique, We call on Akram and Khan [53]’s
example related to the role of commercial banks in providing
loans to their customers to validate the MAGDM method,
and perform a sensitivity analysis and comparative analysis
with other existing methods. +e problem is described
below.

6.1. Case Study. Low pricing are offered to clients by
commercial banks. Like wholesale corporations, clients
purchase large quantities and then resell them at a lower
price to other customers. Discounts include free checking,
no fees for creating accounts, and reduced interest rates
for real estate loans. A debit card, credit card, or both are
all options available at commercial banks, as are invest-
ment accounts, commercial real estate loans, and mort-
gage plans. In addition to managing their checking and
savings accounts, customers may use Internet banking to
pay bills, move money between accounts, apply for short-
and long-term loans, and more. Using a 24-hour ATM, a
client may maintain control of their accounts even if their
bank is closed. Long and short-term loans are both
available from commercial banks. Long-term loans are
available to help a variety of businesses get their start-up

capital. Suppose a customer is looking for financing for his
food business. He had a list of five banks and wanted to
check out. He called a DM specialist to help him choose a
bank that could lend him money, and the expert looked at
the following criteria:

(1) Markup and penalty (R1);
(2) Customers’ guarantee requirements and regulations

(R2);
(3) Paperwork costs and customer packages (R3);
(4) Procedural time and credit time (R4);
(5) safe and secure banking (R5).

In this evaluation, experts were requested to utilize SV
neutrosophic information to determine the best bank for
business loans.

Table 1 summarizes the expert assessment data for
SVNNs:

Cost type SVN information is given in I2 and I4.
+erefore the normalised expert evaluation decision infor-
mation matrix is enclosed in Table 2:

Because there is just one expert in this case study,
we do not need to calculate the cumulative decision
matrix.

As per Table 2, we may use formula (3) to get the AVS

depends on all provided characteristics.

AVS2 �

1 − e

−
1/5∗ (− ℓog(1 − 0.5))5 + 1/5∗ (− ℓog(1 − 0.7))5 + 1/5∗ (− ℓog(1 − 0.6))5+

1/5∗ (− ℓog(1 − 0.7))5 + 1/5∗ (− ℓog(1 − 0.5))5
⎛⎝ ⎞⎠

1/5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e
− 1/5∗ (− ℓog(0.2))5+1/5∗ (− ℓog(0.2))5+1/5∗ (− ℓog(0.2))5+1/5∗ (− ℓog(0.2))5+1/5∗ (− ℓog(0.1))5( )

1/5

􏼒 􏼓

e
− 1/5∗ (− ℓog(0.3))5+1/5∗ (− ℓog(0.3))5+1/5∗ (− ℓog(0.4))5+1/5∗ (− ℓog(0.2))5+1/5∗ (− ℓog(0.2))5( )

1/5

􏼒 􏼓

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

� (0.447278, 0.157468, 0.245549).

AVS3 �

1 − e

−
1/5∗ (− ℓog(1 − 0.2))5 + 1/5∗ (− ℓog(1 − 0.6))5 + 1/5∗ (− ℓog(1 − 0.6))5+

1/5∗ (− ℓog(1 − 0.4))5 + 1/5∗ (− ℓog(1 − 0.4))5
⎛⎝ ⎞⎠

1/5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e
− 1/5∗ (− ℓog(0.2))5+1/5∗ (− ℓog(0.3))5+1/5∗ (− ℓog(0.1))5+1/5∗ (− ℓog(0.5))5+1/5∗ (− ℓog(0.1))5( )

1/5

􏼒 􏼓

e
− 1/5∗ (− ℓog(0.6))5+1/5∗ (− ℓog(0.2))5+1/5∗ (− ℓog(0.2))5+1/5∗ (− ℓog(0.2))5+1/5∗ (− ℓog(0.5))5( )

1/5

􏼒 􏼓

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

� (0.69715, 0.141507, 0.23343).
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AVS4 �

1 − e

−
1/5∗ (− ℓog(1 − 0.3))5 + 1/5∗ (− ℓog(1 − 0.6))5 + 1/5∗ (− ℓog(1 − 0.5))5+

1/5∗ (− ℓog(1 − 0.5))5 + 1/5∗ (− ℓog(1 − 0.4))5
􏼠 􏼡

1/5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e
− 1/5∗ (− ℓog(0.2))5+1/5∗ (− ℓog(0.4))5+1/5∗ (− ℓog(0.1))5+1/5∗ (− ℓog(0.2))5+1/5∗ (− ℓog(0.3))5( )

1/5

􏼒 􏼓

e
− 1/5∗ (− ℓog(0.4))5+1/5∗ (− ℓog(0.2))5+1/5∗ (− ℓog(0.3))5+1/5∗ (− ℓog(0.2))5+1/5∗ (− ℓog(0.6))5( )

1/5

􏼒 􏼓

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

� (0.606536, 0.168535, 0.252183).

AVS5 �

1 − e

−
1/5∗ (− ℓog(1 − 0.3))5 + 1/5∗ (− ℓog(1 − 0.7))5 + 1/5∗ (− ℓog(1 − 0.6))5+

1/5∗ (− ℓog(1 − 0.4))5 + 1/5∗ (− ℓog(1 − 0.3))5
􏼠 􏼡

1/5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e
− 1/5∗ (− ℓog(0.3))5+1/5∗ (− ℓog(0.1))5+1/5∗ (− ℓog(0.4))5+1/5∗ (− ℓog(0.5))5+1/5∗ (− ℓog(0.2))5( )

1/5

􏼒 􏼓

e
− 1/5∗ (− ℓog(0.4))5+1/5∗ (− ℓog(0.2))5+1/5∗ (− ℓog(0.3))5+1/5∗ (− ℓog(0.4))5+1/5∗ (− ℓog(0.4))5( )

1/5

􏼒 􏼓

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

� (0.642351, 0.176204, 0.28647).

(45)

+en we can get the value of AVSı as

AVSı �

(0.513968, 0.143849, 0.278161), (0.447278, 0.157468, 0.245549),

(0.69715, 0.141507, 0.23343), (0.606536, 0.168535, 0.252183),

(0.642351, 0.176204, 0.28647)

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
. (46)

According to the results of average solution AVSı, we can
compute the positive distance from average (PDA v ) and
negative distance from average (NDA v ) by using formula
(5) which are listed in Tables 3–5.

Calculate the values of SP DAI and SN DAI by (6) and
attributes weighting vector ϖ � (0.15, 0.28, 0.20, 0.22, 0.15),
we can obtain the results as:

SPDA1 � 0.00 SP DA2 � 1.50 SP DA3 � 0.00 SP DA4 � 1.79 SP DA5 � 0.98

SNDA1 � 2.38 SN DA1 � 0.35 SN DA1 � 1.10 SN DA1 � 1.05 SN DA1 � 1.68

NSNDA1 � 2.16NSN DA2 � 0.323NSND3 � 1.00

NSNDA4 � 0.95NSN DA5 � 1.526.

(47)

Normalize weighted sum of PDA andNDA are evaluated
by (7) as follows:

NSP DA1 � 0.00NSP DA2 � 1.53NSP DA3 � 0.00

NSP DA4 � 1.82NSP DA5 � 1.00.
(48)

Compute the values of appraisal score (ASC) depends on
each alternative’s NSPDA and NSNDA as:

ASC1 � − 0.580ASC2 � 1.103ASC3 � 0.000

ASC4 � 0.933ASC5 � 0.236.
(49)

Based on ASC results, we may rate all of the possibilities;
the greater ASC, the better the alternative selected. Obvi-
ously, ranking results are and is the best alternative.

7. Comparison of EDAS Method with Some
Aggregation Operators under SVNNs

In order to evaluate the established EDAS approach’s po-
tential and effectiveness and to compare it with new dis-
coveries, we’ve included some applicable instances below.
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Table 1: Expert evaluation information.

R1 R2 R3 R4 R5

∅1 (0.5, 0.3, 0.4) (0.3, 0.2, 0.5) (0.2, 0.2, 0.6) (0.4, 0.2, 0.3) (0.3, 0.3, 0.4)

∅2 (0.7, 0.1, 0.3) (0.3, 0.2, 0.7) (0.6, 0.3, 0.2) (0.2, 0.4, 0.6) (0.7, 0.1, 0.2)

∅3 (0.5, 0.3, 0.4) (0.4, 0.2, 0.6) (0.6, 0.1, 0.2) (0.3, 0.1, 0.5) (0.6, 0.4, 0.3)

∅4 (0.7, 0.3, 0.2) (0.2, 0.2, 0.7) (0.4, 0.5, 0.2) (0.2, 0.2, 0.5) (0.4, 0.5, 0.4)

∅5 (0.4, 0.1, 0.3) (0.2, 0.1, 0.5) (0.4, 0.1, 0.5) (0.6, 0.3, 0.4) (0.3, 0.2, 0.4)

Table 2: Normalized expert data.

R1 R2 R3 R4 R5

∅1 (0.5, 0.3, 0.4) (0.5, 0.2, 0.3) (0.2, 0.2, 0.6) (0.3, 0.2, 0.4) (0.3, 0.3, 0.4)

∅2 (0.7, 0.1, 0.3) (0.7, 0.2, 0.3) (0.6, 0.3, 0.2) (0.6, 0.4, 0.2) (0.7, 0.1, 0.2)

∅3 (0.5, 0.3, 0.4) (0.6, 0.2, 0.4) (0.6, 0.1, 0.2) (0.5, 0.1, 0.3) (0.6, 0.4, 0.3)

∅4 (0.7, 0.3, 0.2) (0.7, 0.2, 0.2) (0.4, 0.5, 0.2) (0.5, 0.2, 0.2) (0.4, 0.5, 0.4)

∅5 (0.4, 0.1, 0.3) (0.5, 0.1, 0.2) (0.4, 0.1, 0.5) (0.4, 0.3, 0.6) (0.3, 0.2, 0.4)

Table 4: +e valus of P DAv.

R1 R2 R3 R4 R5

∅1 0.0 0.0 0.0 0.0 0.0
∅2 2.262 3.518 0.0 0.0 1.226
∅3 0.0 0.0 0.0 0.0 0.0
∅4 1.174 5.777 0.0 0.0 0.0
∅5 0.0 3.518 0.0 0.0 0.0

Table 3: Score value of ZIı and AVSı.

R1 R2 R3 R4 R5

∅1 0.2 0 − 0.6 − 0.3 − 0.4
∅2 0.3 0.2 0.1 0 0.4
∅3 − 0.2 0 0.3 0.1 − 0.1
∅4 0.2 0.3 − 0.3 0.1 − 0.5
∅5 0 0.2 − 0.2 − 0.5 − 0.3
AVSı 0.0919 0.0442 0.3222 0.1858 0.1796

Table 5: +e valus of NDAv.

R1 R2 R3 R4 R5

∅1 3.174 1.00 2.862 2.614 3.226
∅2 0.00 0.00 0.689 1.00 0.00
∅3 3.174 1.00 0.068 0.461 3.782
∅4 0.00 0.00 1.931 0.461 3.782
∅5 1.00 0.00 1.620 3.690 2.669

Table 6: SVN Acz-A1s geometric AOSVNAWG.

∅1 (0.354965, 0.228894, 0.413376)

∅2 (0.658326, 0.226143, 0.24175)

∅3 (0.562678, 0.194736, 0.321488)

∅4 (0.54847, 0.316751, 0.228029)

∅5 (0.410712, 0.152477, 0.392657)
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Table 8: Existing aggregated SVN information.

SVNHWA [40] SVNHWA [40] L − SVNWA [55] L − SVNOWA [55]
∅1 (0.37, 0.22, 0.40) (0.36, 0.22, 0.40) (0.31, 0.17, 0.35) (0.32, 0.19, 0.36)

∅2 (0.66, 0.20, 0.23) (0.66, 0.20, 0.23) (0.64, 0.19, 0.23) (0.65, 0.17, 0.23)

∅3 (0.56, 0.17, 0.31) (0.56, 0.30, 0.22) (0.49, 0.17, 0.33) (0.48, 0.18, 0.33)

∅4 (0.56, 0.29, 0.22) (0.56, 0.30, 0.22) (0.55, 0.27, 0.19) (0.55, 0.29, 0.19)

∅5 (0.41, 0.14, 0.36) (0.41, 0.14, 0.37) (0.28, 0.12, 0.37) (0.24, 0.12, 0.38)

Table 7: Exisiting Aggregated SVN information.

SVNWA [54] SVNOWA [54] NWA [55] SVNFWA [42]
∅1 (0.37, 0.22, 0.40) (0.38, 0.24, 0.40) (0.37, 0.23, 0.42) (0.37, 0.22, 0.40)

∅2 (0.66, 0.20, 0.23) (0.66, 0.18, 0.24) (0.66, 0.24, 0.24) (0.66, 0.20, 0.23)

∅3 (0.56, 0.17, 0.31) (0.55, 0.18, 0.31) (0.56, 0.21, 0.32) (0.56, 0.17, 0.31)

∅4 (0.57, 0.29, 0.22) (0.57, 0.31, 0.22) (0.57, 0.33, 0.23) (0.56, 0.29, 0.22)

∅5 (0.41, 0.14, 0.36) (0.39, 0.13, 0.36) (0.41, 0.16, 0.41) (0.41, 0.14, 0.36)

Table 9: Existing aggregated SVN information.

ST − SVNWA [43] ST − SVNWG [43] ST − SVNOWA [43] ST − SVNOWG [43]
∅1 (0.56, 0.02, 0.07) (0.50, 0.02, 0.08) (0.56, 0.02, 0.08) (0.51, 0.03, 0.08)

∅2 (0.86, 0.02, 0.02) (0.85, 0.03, 0.03) (0.86, 0.01, 0.02) (0.85, 0.02, 0.03)

∅3 (0.77, 0.01, 0.04) (0.76, 0.02, 0.05) (0.77, 0.01, 0.04) (0.76, 0.03, 0.05)

∅4 (0.78, 0.04, 0.02) (0.73, 0.06, 0.02) (0.78, 0.04, 0.02) (0.72, 0.06, 0.02)

∅5 (0.60, 0.09, 0.06) (0.59, 0.01, 0.08) (0.58, 0.09, 0.06) (0.57, 0.01, 0.08)

Table 10: Overall ranking of the alternatives.

Exsisting operations Ranking Best alternative
NWA [55] Q(∅2)>Q(∅3)>Q(∅1)>Q(∅5)>Q(∅4) ∅2
SVNWA [54] Q(∅2)>Q(∅3)>Q(∅1)>Q(∅5)>Q(∅4) ∅2
SVNOWA [54] Q(∅2)>Q(∅3)>Q(∅1)>Q(∅5)>Q(∅4) ∅2
SVNFWA [42] Q(∅2)>Q(∅3)>Q(∅1)>Q(∅5)>Q(∅4) ∅2
SVNHWA for c � 2 [40] Q(∅2)>Q(∅3)>Q(∅1)>Q(∅5)>Q(∅4) ∅2
SVNHWA for c � 3 [40] Q(∅2)>Q(∅3)>Q(∅1)>Q(∅5)>Q(∅4) ∅2
L − SVNWA [55] Q(∅2)>Q(∅3)>Q(∅1)>Q(∅5)>Q(∅4) ∅2
L − SVNOWA [55] Q(∅2)>Q(∅3)>Q(∅1)>Q(∅5)>Q(∅4) ∅2
ST − SVNWA [43] Q(∅2)>Q(∅3)>Q(∅1)>Q(∅5)>Q(∅4) ∅2
ST − SVNWG [43] Q(∅2)>Q(∅3)>Q(∅1)>Q(∅5)>Q(∅4) ∅2
ST − SVNOWA [43] Q(∅2)>Q(∅3)>Q(∅1)>Q(∅5)>Q(∅4) ∅2
ST − SVNOWG [43] Q(∅2)>Q(∅3)>Q(∅1)>Q(∅5)>Q(∅4) ∅2
SVNAWG (proposed) Q(∅2)>Q(∅3)>Q(∅1)>Q(∅5)>Q(∅4) ∅2

Table 11: Sensitivity analysis of parameter ℘.

Υ Operators
Score

Ranking best alternative
Q(∅1) Q(∅2) Q(∅3) Q(∅4) Q(∅5)

⟶ 0.2 SVNAWG − 0.274 0.203 0.060 0.025 − 0.113 ∅2
⟶ 1 SVNAWG − 0.309 0.168 0.022 − 0.034 − 0.168 ∅2
⟶ 2 SVNAWG − 0.352 0.129 − 0.022 − 0.107 − 0.232 ∅2
⟶ 5 SVNAWG − 0.464 0.051 − 0.116 − 0.265 − 0.357 ∅2
⟶ 10 SVNAWG − 0.562 − 0.010 − 0.189 − 0.372 − 0.450 ∅2
⟶ 15 SVNAWG − 0.606 − 0.038 − 0.223 − 0.413 − 0.494 ∅2
⟶ 30 SVNAWG − 0.652 − 0.068 − 0.260 − 0.456 − 0.546 ∅2
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+e expert evaluation information under SVNNs is given
in Table 1.

Now we apply proposed single valued neutrosophic Acz-
Als geometric AOs to adrress the uncertainty and chose the
best alternative as follows in Table 6:

Tables 7–9 illustrate how existing techniques of AOs are
used to aggregate the ambiguous information.

Now, according to collective data, the overall ranking of
alternative is in the following Table 10.

Based on the outcomes of the recommended operators
and the previously employed methodologies, we may deduce
that the ranking lists are identical. Based on Acz-Als ag-
gregation operations depends EDAS technique is general-
ized and new way to dealing with uncertainty in DM
situations. It is more flexible and economical in real-world
issues to use Acz-Als norm-depends aggregate operators in a
single valued NS context.

7.1. Sensitivity Analysis. Using the given SVN Acz-Als ag-
gregation approaches, we change the parameter ℘ value from
0 to 30 in this section to investigate the different patterns of
scores and ranking of the alternatives. +e findings from
suggested SVNAWG operator is listed in Table 11. +e
obtained results illustrate to decision-makers that they can
obtain the best option depends on their preferences.

Attribute analysis within a few previous techniques are
as follows in Table 12.

8. Conclusion

In this study, we extended Acz-Als t-norm and t-conorm to
single-valued neutrosophic scenarios, suggested a few novel
working rules for SVNNs, and studied their properties and
linkages in this research. +is led to the development of an
additional set of aggregate operators, including an Acz-Als
depends approach for dealing with conflicts in SVNNs,
which were introduced at that time. Various attractive
qualities and special circumstances of these operators, as well
as the connections between these operators, have recently
been investigated in more depth. +e suggested operators
and decision making methodology, along with SVN data,
were placed on MAGDM problems, and to demonstrate the
DMprocedure, a mathematical formulation was offered.+e
influence of parameter ℘ on the results of DM has been
investigated. Operators may be used to find the best solution
by adjusting a parameter ℘.+is means that decision-makers
now have a more flexible way for addressing the problems of
SVN-MAGDM. +e aggregation process is more clearly
observable when a parameter is provided, making it easier to
represent ambiguous information than other existing
methodologies.+e existing AOs [54, 55], on the other hand,

do not make data aggregation more flexible. It is because of
this that our suggested AOs in SVN data DM are more
complex and trustworthy.

We will investigate the use of Acz-Als weighted AOs of
SVNNs in additional domains, such as intelligent
manufacturing, machine learning, and data mining, in fu-
ture research.
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