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A nonlinear coupled wing model subject to unknown external disturbances is proposed in this paper. Since the model is modeled
by partial differential equations, the traditional control design scheme based on the ordinary differential equation model is not
applicable, and the control law design becomes very complex. In this paper, a new antidisturbance boundary control scheme based
on a finite time convergent disturbance observer is proposed. ,e control laws are designed based on the new disturbance
observers to make the external disturbance errors converge to zero in a finite time and ensure the uniformly bounded stability of
the controlled system. Finally, the effectiveness of the controllers and the finite-time convergence of disturbance errors are verified
by the simulation and comparison.

1. Introduction

Due to the characteristics of maneuverability, flexibility, and
wide vision, aircrafts are widely used in various fields.
Aircrafts include the fixed-wing, rotary-wing, and flapping-
wing aircraft. Among them, the flapping-wing aircraft has
unique advantages, including higher flight maneuverability
and low flight costs. In addition, although the size is small
and the flight resistance is large, the flight efficiency of the
flapping-wing aircraft will not be reduced [1]. ,erefore,
more and more researchers are engaged in the research of
flapping-wing aircraft [2–6]. Researchers combined the
structural design with bionics to develop and research the
flapping-wing aircraft. Some researchers used rigid materials
to make the wings, which ignored the influence of fluid
dynamic changes caused by the deformation of insect wings
so that the fuselage may not be flexible enough and prone to
failure during execution [7]. Because flexible materials have
the advantages of improving the running speed of the
mechanical system and further reducing the weight of the
structure, they are widely used in the mechanical structure
manufacturing in recent years [8, 9]. ,erefore, we can use
flexible materials to make flapping-wing aircraft wings [10].
Although the flexible wing can improve the flexibility of

flapping-wing aircraft, the vibration and deformation of
wings will affect the control effect and flight performance.
Consequently, the problem of wing vibration needs to be
solved urgently, which inspired our research. In this paper,
we regard a single wing as a coupled distributed parameter
system and use the combination of partial differential
equation and ordinary differential equation (PDE-ODE) to
describe the wing dynamic model. Due to the complexity of
distributed parameter system control design, more andmore
attention has been paid in recent years [11–21].

For the problem of vibration suppression of distributed
parameter systems, several researchers have proposed var-
ious control methods including the modal reductionmethod
[22] and boundary control [23–29]. ,e modal reduction
method can effectively reduce the order of the infinite-di-
mensional system and treat the system as a finite dimension,
but this method can easily cause spillover effects. ,e
boundary control strategy can effectively solve this problem
and improve the robustness of the system. In recent years,
the research on vibration suppression of flexible structural
systems based on the boundary control has made great
progress. For example, in [30], with the method of barrier
Lyapunov function, the controller could suppress the vi-
bration of the system and cope with the input and output
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constraints at the same time. In [31], a boundary controller
was constructed to suppress the vibration excursion of the
hose using the backstepping control method, and a smooth
hyperbolic tangent function was introduced to cope with the
input amplitude and rate constraints. In [32], a boundary
control was designed for the flexible string system with
vibration and input backlash. In [33], with the help of a new
disturbance observer, the external disturbance was effec-
tively suppressed, and the purpose of vibration reduction
was achieved. A robust adaptive controller was proposed to
deal with parameter uncertainties and stabilize the system in
[34]. In [35], the authors put forward an adaptive NN
control strategy for flexible string systems with input con-
straints and actuator failures. Two iterative learning
boundary control schemes were designed for a flexible
microair vehicle under spatiotemporal variation distur-
bances to suppress structural vibration and make it track the
target trajectory in [36]. As for the boundary control of the
flexible aircraft wing system, many scholars have researched
in recent years [37–39]. However, these studies did not
consider that the system was affected by both distributed
disturbances and boundary disturbances, and their existence
may bring great side effects to the system. ,erefore, dis-
turbance suppression has become a key problem in the wing
control design.

In the past few years, one of the most commonly used
antidisturbance methods is the disturbance observer tech-
nique. ,is method can be used for nonlinear systems with
uncertainties and efficiently improve the robustness of the
system [40–42]. ,e boundary disturbance observer-based
control problem of a vibrating single-link flexible manip-
ulator system with external disturbances was studied in [43].
In [44], considering the influence of extraneous disturbance
acting on the wing, a new observer was proposed for con-
troller design. A new disturbance observer was proposed to
deal with the distributed disturbance and boundary dis-
turbance of a flexible-link manipulator in [45]. However, it is
noted that although the disturbance observer proposed in
the above research could effectively track the change of
unknown disturbance, it must be assumed that the distur-
bance changes slowly, and it could not ensure that the
disturbance error converged in a finite time. For systems
affected by the external disturbance with unknown varying
frequency, it is very important to ensure that the disturbance
error converges in a finite time [46]. So far, there has been no
research on the finite-time convergence control of the
coupled aircraft wing system, which motivates this research.

In this article, the stability of nonlinear flexible coupled
wing systems under external disturbances is studied. We
briefly describe the contributions of this work: (i) Consid-
ering the unknown boundary disturbances of the flexible
wing, the model is updated on this basis. (ii) ,e proposed
observer can guarantee that the disturbance errors can
converge to zero in a finite time. (iii) ,e vibration problem
of the wing structure is well solved, and there is no spillover
effect in the system control.

,e rest of this paper is organized as follows: the dy-
namics of the coupled aircraft wing system are presented in
Section 2. Section 3 presents the new finite-time control

scheme and a detailed analysis of the stability of the closed-
loop system. Simulation and analysis are carried out in
Section 4. Finally, the conclusion is given in Section 5.

2. Problem Statement

2.1. SystemModel. A vibrating flexible flapping-wing aircraft
subject to unknown disturbances is depicted in Figure 1. In
this paper, R represents a collection of real numbers, xec is
the length between the shear center and the mass center of
the wing cross section, and xac is the distance from the
aerodynamic center to the shear center of the wing. ρ is the
mass per unit of the wing, Ip describes the polar moment of
inertia, EIb denotes the bending rigidity, GJ represents
torsion rigidity, gh(z, t) denotes the distributed disturbance,
ξ represents the Kelvin–Voigt damping coefficient, and τ1(t)

and τ2(t) represent the control inputs. Besides, g1(t) and
g2(t) are the unknown disturbances at the wing tip z � s.
For simplicity, some symbols are replaced with
(·)

.

� z(·)/zt, (·)′ � z(·)/zz, (·)′
.

� z2(·)/zz zt,
(·)″ � z2(·)/zz2, and (·)

..

� z2(·)/zt2.
,e kinetic energy Ek(t) of the flexible wing in this study

is given directly as follows:

Ek(t) �
1
2
ρ􏽚

s

0
[ _q(z, t)]

2dz +
1
2
Ip 􏽚

s

0
[θ

.

(z, t)]
2dz. (1)

Ep(t) denotes the potential energy of the flexible wing:

Ep(t) �
1
2

EIb 􏽚
s

0
q″(z, t)􏼂 􏼃

2dz +
1
2

GJ 􏽚
s

0
θ′(z, t)􏼂 􏼃

2dz. (2)

,e virtual work of damping on the wing is expressed by

δHd(t) � − ξEIb 􏽚
s

0
_q″(z, t)δq″(z, t)dz

− ξGJ 􏽚
s

0
. θ′(z, t)δθ′(z, t)dz.

(3)

,e virtual work of the coupling of bending and torsion
stiffness is presented as follows:

δHc(t) � ρxec 􏽚
s

0
€q(z, t)δθ(z, t)dz

+ ρxec 􏽚
s

0
θ
..

(z, t)δq(z, t)dz.

(4)

,e virtual work of unknown disturbance is given as

δHf(t) � 􏽚
s

0
gh(z, t)δq(z, t) − xacgh(z, t)δθ(z, t)􏼂 􏼃dz

+ g1(t)δq(s, t) + g2(t)δθ(s, t).

(5)

,e virtual work δHτ(t) performed by the control inputs
can be obtained as follows:

δHτ(t) � τ1(t)δq(s, t) + τ2(t)δθ(s, t). (6)

,en, we add all the virtual works of the system:

δH(t) � δ Hc(t) + Hd(t) + Hf(t) + Hτ(t)􏽨 􏽩. (7)

Hamilton’s principle is formulated as follows [47, 48]:
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􏽚
t2

t1

δ Ek(t) − Ep(t) + H(t)􏽨 􏽩dt � 0. (8)

According to (8), we can obtain the flexible wing dy-
namics as follows:

Ip
€θ(z, t) − GJθ″(z, t) − ρxec€q(z, t)

− ξGJ _θ″(z, t) � − xacgh(z, t),

ρ€q(z, t) + EIbq‴′

− ρxec
€θ(z, t) + ξEIb _q‴′(z, t) � gh(z, t).

(9)

Moreover, we can get the boundary conditions of the
system:

q(0, t) � q′(0, t) � q″(s, t) � θ(0, t) � 0,

EIbq‴(s, t) + ξEIb _q‴(s, t) � − τ1(t) − g1(t),

GJθ′(s, t) + ξGJ _θ′(s, t) � τ2(t) + g2(t).

(10)

2.2. Preliminaries. ,e lemmas and assumption are pro-
posed here to facilitate the later controller design and sta-
bility analysis.

Assumption 1. For g1(t), g2(t), and gh(z, t), we suppose
that there exist ζ1 > 0, ζ2 > 0, and ghmax > 0 such that
|g1(t)|≤ ζ1, |g2(t)|≤ ζ2, and |gh(z, t)|≤ghmax, (z, t) ∈ t

[0, s]n × q[0, +∞). ,is assumption is reasonable because
the energy of external disturbances is limited.

Lemma 1 (see [49]). If there exist ϖ1(s, t),ϖ2(s, t) ∈R,
p> 0 with (s, t) ∈ t[0, f]n × q[0, +∞), we can obtain

ϖ1ϖ2 ≤
1
p
ϖ21 + pϖ22. (11)

Lemma 2 (see [49]). If ϖ(s, t) ∈R satisfies the condition
ϖ(0, t) � 0, then

ϖ2 ≤f 􏽚
f

0
ϖ′2ds, (12)

where (s, t) ∈ t[0, f]n × q[0, +∞).

Lemma 3. 0e following inequality for the positive definite
function Q(t) is used to derive our main results as follows:

_Q(t)≤ − ϕ1Q(t) − ϕ2Q
ϕ3(t). (13)

,en, the function Q(t) will have an equilibrium point.
It can converge to the point in a finite time as follows:

tf ≤
1

ϕ1 1 − ϕ3( 􏼁
ln
ϕ1Q

1− ϕ3(0) + ϕ2
ϕ2

, (14)

with ϕ1 > 0, ϕ2 > 0, and 0<ϕ3 < 1 being undetermined
constants.

3. Control Design

,e emphasis of the research is how to construct boundary
controllers to suppress the vibration of a coupled wing
system. For the sake of the control goal, a new control
scheme based on finite-time disturbance observer is adop-
ted, which can ensure the stability of the closed-loop system.
,e control block diagram of the system is shown in
Figure 2.

First, the boundary control laws are proposed as follows:

τ1(t) � − k1[aq(s, t) + b _q(s, t)] − 􏽢g1(t),

τ2(t) � − k2[aθ(s, t) + b _θ(s, t)] − 􏽢g2(t),
(15)

where k1, k2 > 0.

Step 1. ,e auxiliary functions are defined as follows:

σ1(t) � − ξEIq‴(s, t) − ]1(t), (16)

_]1(t) � κ1σ1(t) + κ2sign σ1(t)( 􏼁 + κ3σ
2a1− a2/a2
1 (t)

+ τ1(t) + EIbq‴(s, t),
(17)

σ2(t) � ξGJθ′(s, t) − ]2(t), (18)

_]2(t) � κ4σ2(t) + κ5sign σ2(t)( 􏼁 + κ6σ
2b1− b2/b2
2 (t)

+ τ2(t) − GJθ′(s, t).
(19)

To arrive at the control objectives that deal with the
unknown disturbances g1(t) and g2(t), we define the es-
timation form of disturbance terms as follows:

Twist
θ (z,t)

Bending
q (z,t)

Figure 1: Flapping-wing robotic aircraft.
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􏽢g1(t) � κ1σ1(t) + κ2sign σ1(t)( 􏼁 + κ3σ
2a1− a2/a2
1 (t), (20)

􏽢g2(t) � κ4σ2(t) + κ5sign σ2(t)( 􏼁 + κ6σ
2b1− b2/b2
2 (t), (21)

where κ1, κ2, κ3, κ4, κ5, and κ6 are all positive numbers.
Moreover, a1, a2, b1, and b2 are all odd numbers that satisfied
a1 < a2 < 2a1 and b1 < b2 < 2b1.

Step 2. We choose Lyapunov candidate function as

W(t) � Wa(t) + Wo(t), (22)

where

Wa(t) �
b

2
ρ􏽚

s

0
[ _q(z, t)]

2dz +
b

2
EIb 􏽚

s

0
q″(z, t)􏼂 􏼃

2dz +
b

2
Ip 􏽚

s

0
[ _θ(z, t)]

2dz +
b

2
GJ 􏽚

s

0
θ′(z, t)􏼂 􏼃

2dz,

Wo(t) � aρ􏽚
s

0
_q(z, t)q(z, t)dz + aIp 􏽚

s

0
_θ(z, t)θ(z, t)dz

− aρxec 􏽚
s

0
[ _q(z, t)θ(z, t) + q(z, t) _θ(z, t)dz − bxec 􏽚

s

0
_q(z, t) _θ(z, t)dz,

(23)

where a> 0 and b> 0.

Remark 1. In this paper, we use the Lyapunov direct method
to design the controller given in the specific form of Lya-
punov function, where Wa(t) is derived from the system
kinetic energy Ek(t) and potential energy Ep(t), which is
called the energy term. Wo(t) is derived from the coupling of
various state quantities of the system and becomes a crossing
term.Q1(t) andQ2(t) will be given later in this article, which
represent the auxiliary items of the system to deal with
disturbance errors. By adjusting the control laws (15)–(21)
and Lyapunov candidate function, we ensure that the de-
rivative of Lyapunov function W(t) has an upper bound and
let Q1(t) and Q2(t) satisfy Lemma 3 so as to prove the
uniform boundedness of state variables and the finite-time
convergence of disturbance errors.

Remark 2. ,e control signals q(s, t), _q(s, t), θ(s, t), _θ
(s, t), q‴(s, t), θ′(s, t), _q‴(s, t), and _θ′(s, t) in the control
equations (15)–(21) can be obtained during execution, where
q(s, t) and θ(s, t) are obtained by the laser displacement
sensors, and θ′(s, t) is obtained by the inclinometer. ,e

remaining variables _q(s, t), _θ(s, t), q‴(s, t), _q‴(s, t), and
_θ′(s, t) are further obtained by the backward difference
algorithms.

Theorem 1. 0e Lyapunov function (22) has upper and
lower bounds:

0≤ λ2κ(t)≤W(t)≤ λ1κ(t), (24)

where λ1 and λ2 are positive numbers.

Proof. A new function is defined as follows:

κ(t) � 􏽚
s

0
[ _q(z, t)]

2
+[q′′(z, t)]

2
+[ _θ(z, t)]

2
+ θ′(z, t)􏼂 􏼃

2
􏼚 􏼛dz.

(25)

Hence, we obtain

y2κ(t)≤Wa(t)≤y1κ(t), (26)

where y1 and y2 are two positive numbers,
y1 � (b/2)max EIb, Ip, GJ, ρ􏽮 􏽯, and y2 � (b/2)min ρ, EIb,􏼈

Ip, GJ}. For Wo(t), we can obtain

Model Control Design
τ1 (t) τ2 (t)

External
disturbances

Finite-time disturbance observer

Backward Difference

Coupled Aircraft wing

q′′′(s,t) q· ′′′(s,t)

q·  (s,t) θ· (s,t)

θ (s,t)
θ′ (s,t)
q (s,t)

θ·′(s,t)

Sensors

Figure 2: Finite-time control for the coupled aircraft wing.
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Wo(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ aρ 􏽚
s

0
[ _q(z, t)]

2dz + s
4

􏽚
s

0
q″(z, t)􏼂 􏼃

2dz􏼚 􏼛 + aIp 􏽚
s

0
[ _θ(z, t)]

2dz + s
2

􏽚
s

0
θ′(z, t)􏼂 􏼃

2dz􏼚 􏼛

+ aρxec 􏽚
s

0
[ _q(z, t)]

2dz + 􏽚
s

0
[ _θ(z, t)]

2dz􏼚 􏼛 + aρxec s
4

􏽚
s

0
q″(z, t)􏼂 􏼃

2dz + s
2

􏽚
s

0
θ′(z, t)􏼂 􏼃

2dz􏼚 􏼛

+ bρxec 􏽚
s

0
[ _q(z, t)]

2dz + 􏽚
s

0
[ _θ(z, t)]

2dz􏼚 􏼛 + aIp + aρxec + bρxec􏼐 􏼑 􏽚
s

0
[ _θ(z, t)]

2dz + aIp + aρxec􏼐 􏼑s
2

· 􏽚
s

0
θ′(z, t)􏼂 􏼃

2dz≤y3κ(t),

(27)

where y3 � max aρ + aρxec + bρxec􏼈 , (aρ + aρxec)s4, aIp+

aρxec + bρxec, (aIp + aρxec)s2} and b satisfies b> 2y3/min
ρ, Ip, EIb, GJ􏽮 􏽯.

Now, we can prove equation (24) as follows:

O≤ λ2κ(t)≤W(t)≤ λ1κ(t), (28)

where λ2 � y2 − y3 and λ1 � y1 + y3. □

Step 3. ,e derivative of Wa(t) gives

_Wa(t)≤ − b _q(s, t) EIbq‴(s, t) + ξEIb _q‴(s, t)􏼂 􏼃 + b _θ(s, t) GJθ′(s, t) + ξGJ _θ′(s, t)􏽨 􏽩

+ bρxec 􏽚
s

0
[ _q(z, t)€θ(z, t) + €q(z, t) _θ(z, t)]dz −

bξGJ

2s
2 − η2bxac􏼠 􏼡 􏽚

s

0
[ _θ(z, t)]

2dz −
bξEIb

2s
4 − η1b􏼠 􏼡 􏽚

s

0
[ _q(z, t)]

2dz

+
b

η1
+

bxac

η2
􏼠 􏼡sg

2
hmax −

bξEIb

2
􏽚

s

0
_q″(z, t)􏼂 􏼃

2dz −
bξGJ

2
􏽚

s

0
_θ″(z, t)􏽨 􏽩

2
dz.

(29)

Similarly, differentiating Wo(t) leads to

_Wo(t) � aρ􏽚
s

0
€q(z, t)q(z, t)dz

+ aIp 􏽚
s

0
€θ(z, t)θ(z, t)dz

− aρxec 􏽚
s

0
€q(z, t)θ(z, t)dz

− aρxec 􏽚
s

0
q(z, t)€θ(z, t)dz

+ aρ􏽚
s

0
[ _q(z, t)]

2dz + aIp 􏽚
s

0
[ _θ(z, t)]

2dz

− bρxec 􏽚
s

0
€q(z, t) _θ(z, t)dz

− bρxec 􏽚
s

0
_q(z, t)€θ(z, t)dz

− 2aρxec 􏽚
s

0
[ _q(z, t) _θ(z, t)]dz.

(30)

Considering (10) and controllers (15)–(21), we obtain

_W(t)≤ − k2 −
1
η9

􏼠 􏼡[aθ(s, t) + b _θ(s, t)]
2

+ 􏽥g
2
2(t)η9

− k1 −
1
η8

􏼠 􏼡[aq(s, t) + b _q(s, t)]
2

+ 􏽥g
2
1(t)η8

− aEIb −
aξEIb

η3
− η6as

4
􏼠 􏼡 􏽚

s

0
[q′′(z, t)]dz

− aGJ −
aξGJ

η4
− η7s

2
xac􏼠 􏼡 􏽚

s

0
θ′(z, t)􏼂 􏼃

2dz

−
bξEIb

2s
4 − η1b − aρ − 2aρxecη5􏼠 􏼡 􏽚

s

0
[ _q(z, t)]

2dz

−
bξGJ

2s
2 − η2bxac − aIp −

2aρxec

η5
􏼠 􏼡 􏽚

s

0
[ _θ(z, t)]

2dz

−
bξEIb

2
− aξEIbη3􏼠 􏼡 􏽚

s

0
[ _q′′(z, t)]

2dz

−
bξGJ

2
− aξGJη4􏼠 􏼡 􏽚

s

0
_θ
’
(z, t)􏼔 􏼕

2
dz

+
b

η1
+

bxac

η2
+

a

η6
+

axac

η7
􏼠 􏼡sg

2
hmax

≤ − λ3κ(t) + ε,
(31)
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where ηi > 0, i � 1 . . . 9. In addition, because 􏽢g1(t) and 􏽢g2(t)

are estimates of g1(t) and g2(t), under the action of dis-
turbance observers, the errors between them are also
bounded. ,us, there exist positive numbers ζ3 and ζ4,
satisfying |􏽥g1(t)|≤ ζ3 and |􏽥g2(t)|≤ ζ4.

Let μ1 � k2 − (1/η9)> 0 and μ2 � k1 − (1/η8)> 0. ,e
selection of intermediate parameters is provided as follows:

μ3 �
bξEIb

2s
4 − η1b − aρ − 2aρxecη5 > 0,

μ4 �
bξGJ

2s
2 − η2bxac − aIp −

2aρxec

η5
> 0,

μ5 � aEIb −
aξEIb

η3
− η6as

4 > 0,

μ6 � aGJ −
aξGJ

η4
− η7as2xac> 0,

λ3 � min μ3, μ4, μ5, μ6􏼈 􏼉> 0,

ε �
b

η1
+

bxac

η2
+

a

η6
+

axac

η7
􏼠 􏼡sg

2
hmax + η9ζ

2
4 + η8ζ

2
3 < +∞.

(32)

,erefore, we can obtain
_W(t)≤ − λW(t) + ε, (33)

where λ � λ3/λ1.

Theorem 2. 0rough the dynamical system and the proposed
control laws, the controlled system’s states q(z, t) and θ(z, t)

are uniformly ultimately bounded.

Proof. Invoking (33) and multiplying eλt yields

_W(t)e
λt ≤ − λW(t)e

λt
+ εeλt

. (34)

Integrating (34), we have

W(t)≤ W(0) −
ε
λ

􏼔 􏼕e
− λt

+
ε
λ
≤W(0)e

− λt
+
ε
λ
. (35)

Furthermore, invoking (24) and Lemma 2, we have
1
s
3[q(z, t)]

2 ≤
1
s
2 􏽚

s

0
q′(z, t)􏼂 􏼃

2dz

≤ 􏽚
s

0
q″(z, t)􏼂 􏼃

2dz≤ κ(t)≤
1
λ

W(t).

(36)

Finally, this results in

|q(z, t)|≤

����������������

s
3

λ2
W(0)e

− λt
+
ε
λ

􏼒 􏼓

􏽳

,∀(z, t) ∈ [0, s] ×[0, +∞),

|θ(z, t)|≤

����������������
s

λ2
W(0)e

− λt
+
ε
λ

􏼒 􏼓

􏽳

,∀(z, t) ∈ [0, s] ×[0, +∞).

(37)

□

Theorem 3. Provided that κ2 ≥ ζ1 holds, the disturbance
error 􏽥g1(t) ensures convergence to zero before t≥ tf1, where

tf1 ≤
a2

2κ1 a2 − a1( 􏼁
ln

κ1Q
a2− a1/a2
1 (0) + 2 a1/a2( )− 1κ3

2a1/a2− 1κ3

⎧⎨

⎩

⎫⎬

⎭, (38)

with Q1(0) denoting an initial value of Q1(t), and
Q1(t) � σ21(t)/2

Theorem 4. Provided that κ5 ≥ ζ2 holds, the disturbance
error 􏽥g2(t) converges to zero before t≥ tf2, where

tf2 ≤
b2

2κ4 b2 − b1( 􏼁
ln

κ4Q
b2− b1/b2
2 (0) + 2 b1/b2( )− 1κ6

2b1/b2− 1κ6

⎧⎨

⎩

⎫⎬

⎭, (39)

with Q2(0) denoting an initial value of Q2(t), and
Q2(t) � σ22(t)/2.

Proof. Differentiating Q1(t) and invoking (16) and (17), we
have

_Q1(t) � σ1(t) _σ1(t)

� σ1(t) ξEIb _q‴(s, t) − _]1(t)􏼂 􏼃

� σ1(t) ξEIb _q‴(s, t) − κ1ϕ1(t) − κ2sign ϕ1(t)( 􏼁 − κ3σ
2a1− a2/a2
1 (t) − τ1(t) − EIbq(s, t)􏽨 􏽩

� − κ1σ
2
1(t) − κ2 σ1(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − κ3σ1(t)

2a1− a2/a2(t) + σ1(t) + g1(t)

≤ − κ1σ
2
1(t) − κ2 − ζ1( 􏼁 σ1(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − κ3ϕ1(t)σ2a1− a2/a2

1 (t)

≤ − κ1σ
2
1(t) − κ3σ1(t)σ2a1− a2/a2

1 (t).

(40)

,erefore, Q1(t) will converge to an equilibrium point in
a finite time tf1. We define p � a1/a2, and then we multiply
(40) by Q

p
1(t)/(1 − p) to derive the following:

dQ1 ≤
− 2κ1(1 − p)Q

1− p
1 (t) − 2pκ3(1 − p)􏽮 􏽯Q

p
1(t)

((1 − p)dt)
. (41)
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Letting ι(t) � Q
1− p
1 (t), with the analysis made in (41), we

derive

_ι(t)≤ − 2κ1(1 − p)ι(t) − 2pκ3(1 − p). (42)

Multiplying (42) by e2κ1(1− p)t results in

_ι(t)e
2κ1(1− p)t ≤ − 2κ1(1 − p)e

2κ1(1− p)tι(t)

− 2pκ3(1 − p)e
2κ1(1− p)t

.
(43)

,en, we obtain

d ι(t)e
2κ1(1− p)t

􏼐 􏼑

dt
≤ − 2pκ3(1 − p)e

2κ1(1− p)t
. (44)

We apply the integral of (44) as follows:

ι(t)≤ −
2(p− 1)κ3

κ1
+ ι(0) +

2(p− 1)κ3
κ1

􏼨 􏼩e
− 2κ1(1− p)t

. (45)

Equation (45) can be rewritten as

Q
1− p

(t)≤ −
2(p− 1)κ3

κ1
+ Q

1− p
1 (0) +

2(p− 1)κ3
κ1

􏼨 􏼩e
− 2κ1(1− p)t

.

(46)

Invoking Q1(t) and (40) yields

Q1(t)≥ 0, _Q1(t)≤ 0. (47)

According to (46) and (47), we have

Q
1− p
1 (0) +

2(p− 1)κ3
κ1

􏼨 􏼩e
− 2κ1(1− p)tf1 −

2(p− 1)κ3
κ1
≥ 0. (48)

When t � tf1 and Q1(tf1) � 0, then we have Q1(t) ≡ 0.
We can further obtain

e
2κ1(1− p)tf1 ≤

κ1Q
1− p
1 (0) + 2(p− 1)κ3

2(p− 1)κ3
. (49)

Taking the logarithm for it as follows:

tf1 ≤
1

2κ1(1 − p)
ln

κ1Q
1− p
1 (0) + 2(p− 1)κ3

2(p− 1)κ3

⎧⎨

⎩

⎫⎬

⎭

�
a2

2κ1 a2 − a1( 􏼁
ln

κ1Q
a2− a1/a2
1 (0) + 2a1/a2 − 1κ3

2a1/a2− 1κ3
􏼨 􏼩.

(50)

In a word, considering κ2 ≥ ζ1, when t≥ tf1, we derive

Q1(t) ≡ 0. (51)

Invoking (51) and Q1(t), we obtain the following when
t≥ tf1,

σ1(t) ≡ 0. (52)

Moreover, when t≥ tf1, we arrive at

_σ1(t) ≡ 0. (53)

,e disturbance estimation error is expressed as follows:

􏽥g1(t) � g1(t) − 􏽢g1(t). (54)

,e combination of (10), (20), and (54) gives

􏽥g1(t) � − τ1(t) − ξEIb _q‴(s, t) − EIbq‴(s, t) − 􏽢g1(t)

� − ξEIb _q‴(s, t) + − τ1(t) − EIbq‴(s, t) + κ1σ1(t)(􏼈

+ κ2sign σ1(t) + κ3σ
2a1− a2/a2
1􏼒 􏼓􏼓􏼛

� _σ1(t).

(55)

Invoking (53) and (55), we can conclude that if κ2 ≥ ζ1
holds, 􏽥g1(t) converges to zero for ∀t≥ tf1. Similarly, we can
prove that if κ5 ≥ ζ2 holds, 􏽥g2(t) converges to zero for
∀t≥ tf2. □

4. Simulation

In this section, the finite difference method is used to ap-
proximate the dynamics of the system with system pa-
rameters as s � 2.0m, xec � 0.35m, EIb � 0.2Nm2, GJ �

0.5Nm2, ρ � 10kg/m, xac � 0.05N, Ip � 1.5kgm, and
ξ � 0.6. ,e initial condition of the system is set as
q(z, 0) � z/s, and θ(z, 0) � (πz/2s). Besides, we have
_q(z, 0) � 0 and _θ(z, 0) � 0. ,e inevitable external distur-
bances are defined as follows:

gh(z, t) � (1 + +3 cos(3πt) + sin(πt))z/30

g1(t) � 0.02 + 0.06 sin(0.05t)

g2(t) � 0.04 + 0.02 sin(0.1t).

(56)

Figures 3 and 4 show the displacement of the coupled
wing without control, that is, τ1(t) � 0 and τ2(t) � 0.
Figures 5 and 6 depict the three-dimensional represen-
tation of flexible wings with boundary control. ,e control
parameters are chosen as k1 � 2, k2 � 1, κ1 � 0.8, κ2 � 1,
κ3 � 4, κ4 � 0.8, κ5 � 1, κ6 � 4, a1 � b1 � 7, and
a2 � b2 � 13. Figures 7 and 8 represent the response
generated by the control inputs τ1(t) and τ2(t). As shown
in Figures 9 and 10, we can conclude that the control
design can ensure that the flexible wing system has good
performance by comparing with the freely vibrating sit-
uation. At last, we provide two pictures Figures 11 and 12
about the disturbance estimation errors. It can be con-
cluded from the figures that the disturbance estimation
errors can converge to zero in a finite time.

,e simulation results Figures 3–12 show that the
designed controller can effectively suppress the vibration of
flexible wing, and the bending and torsion deformation of a
flexible wing q(z, t) and θ(z, t) under the presented control
are guaranteed to be stable. ,e last two figures show the
finite-time convergence of the disturbance estimation errors
􏽥g1(t) and 􏽥g2(t). In order to further highlight the advantages
of the proposed control strategy, a boundary control strategy
based on the nonlinear disturbance observers (DOBC) is
expressed as follows:
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τ1(t) � − k1[aq(s, t) + b _q(s, t)] − 􏽢g1(t),

τ2(t) � − k2[aθ(s, t) + b _θ(s, t)] − 􏽢g2(t),

􏽢g1(t) � − ξEIq‴(s, t) + σ1(t),

_σ1(t) � − τ1(t) − EIbq‴(s, t) − 􏽢g1(t),

􏽢g2(t) � ξGJθ′(s, t) + σ2(t),

_σ2(t) � − τ2(t) + GJθ′(s, t) − 􏽢g2(t),

(57)

where parameter selections are consistent with the above
design. Figures 13–20 show the control effect of the system
using the DOBC strategy. It can be seen that the control

0q 
(z

,t)
[m

]

-1

1

2

3

0 20 40 60

Time [s]

80 100

0
0.5

1
1.5

s [m]

2

Figure 3: Bending displacement of the wing without control.
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Figure 4: Twist displacement of the wing under without control.
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Figure 5: Bending displacement of the wing with the proposed
control.
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effect is worse than that of the control strategy proposed in
this paper. As can be seen from the figures, the inputs τ1(t)

and τ2(t) and displacements q(z, t), θ(z, t), q(s, t), and
θ(s, t) cannot converge to zero quickly. Although the dis-
turbance observers can track the change of external dis-
turbances to a certain extent, they will still produce a certain
disturbance errors. To sum up, we can get that the control
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Figure 9: Boundary bending displacement of the wing with the
proposed control.
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Figure 10: Boundary twist displacement of the wing with the
proposed control.

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

g~ 1 
[t]

10 20 30 40 50 60 70 80 90 1000
Time [s]

Figure 11: Disturbance estimation error 􏽥g1(t) with the proposed
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Figure 14: Twist displacement of the wing with DOBC.

Complexity 9



-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

τ 1
 (t

)

10 20 30 40 50 60 70 80 90 1000
Time [s]

Figure 15: Designed control command τ1(t) with DOBC.

10 20 30 40 50 60 70 80 90 1000
Time [s]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

τ 2
 (t

)

Figure 16: Designed control command τ2(t) with DOBC.
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Figure 20: Disturbance estimation error 􏽥g2(t) with DOBC.

Complexity 11



effect of the derived finite-time convergence antidisturbance
control strategy is better than that of the DOBC strategy.

5. Conclusion

In this paper, based on Lyapunov’s direct method and the
new coupled wing model, we addressed the control problem
for the flexible wing subject to external disturbances with a
new finite-time convergence antidisturbance control strat-
egy. Under the action of the controllers, the external dis-
turbance errors converged to zero in a finite time. Hence, we
concluded that the proposed control scheme could stabilize
the flexible wing system with a better performance. Finally,
we analyzed the stability of the closed-loop system and the
effectiveness of the boundary controller through strict
theoretical proof and simulation results. Future research
directions may include the adaptive control [50–53], in-
telligent techniques [54–57], and the uncertainty and dis-
turbance estimator-based control [58–60].
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