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A predator-prey model with Holling II functional response incorporating a prey refuge with impulse effect is considered in this
paper. With the help of the Floquet theory of impulsive differential equations, local stability and global attractivity of the boundary
periodic solution of the system are derived, and then sufficient conditions for global asymptotic stability of the boundary periodic
solution are obtained. Next, the permanence of the system is proved by constructing a Lyapunov function. Further, by applying
the bifurcation theory of impulsive differential equations, conditions under which the system has a positive periodic solution are
obtained. Finally, numerical simulations are presented to illustrate the analytical results.

1. Introduction

*e study of population dynamic system has always been the
focus of scholars. Population dynamics behavior is always
affected by many factors. Smith [1] pointed out that scholars
often study the effects on the behaviors such as territorial
behavior and migration. *e challenge of reducing the
negative environmental impacts of land use andmaintaining
economic and social benefits is considered [2]. Wildlife
species are also affected by agricultural activities, such as
farming, intercropping, drainage, rotation, grazing, and the
widespread use of pesticides and fertilizers [3]. One of the
more relevant behavioral traits that affect the dynamics of
predator-prey systems is the use of spatial refuges by the
prey. Some fractions of the prey population are partially
protected against predators by using refuges. González-
Olivares et al. [4] proposed a predator-prey system with
Holling type II functional response incorporating a constant
prey refuge:

dx(t)

dt
� αx(t) 1 −

x(t)

K
􏼠 􏼡 −

β(x(t) − m)y(t)

1 + a(x(t) − m)
,

dy(t)

dt
� − dy(t) +

cβ(x(t) − m)y(t)

1 + a(x(t) − m)
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1)

*ey investigated the local stability of equilibria and the
existence of limit cycle of the system. Chen et al. [5] dis-
cussed the instability and global stability properties of the
equilibria and the existence and uniqueness of limit cycle of
the above system. *e predator-prey systems with prey
refuge have been focused by several authors. Tripathi et al.
studied the model with Beddington-DeAngelis type function
response incorporating a prey refuge [6, 7], the model with
time delay and prey refuge [8], and the model for prey with
variable rates in protected areas [9]. Mondal and Samanta
[10] investigated the model with prey refuge dependent on
both species and constant harvest in predator [10] and the
model with nonlinear prey refuge [11, 12]. Many models
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with prey refuge have been studied; one can also refer to
[13–21] and the references cited therein.

It has been noticed that many dynamical systems may be
disturbed by impulsive factors. With profound under-
standing of human nature, the theory of impulsive differ-
ential equations [22–24] becomes more perfect. *e
impulsive differential equation has become a widely con-
cerned subject in recent years, and it is more appropriate to
apply to biological systems for the actual reality, for example
[25–35].

Shea and Amarasekare [33] pointed out that “conser-
vation, harvesting, and pest control are three aspects of the
same general problem: population management.” People
seek to maintain exploited populations at productive levels
by harvesting.

*e results show that the populationmodel with refuge is
practical. Many periodic factors, such as seasonal periodic
change, migration, and harvest, have a great impact on
population dynamics. *e model with refuge and impulsive
effect has also been studied by many scholars, one can refer
to [13, 34, 35]. Driven by the above reasons, we consider
system (1) with prey subject to periodic impulse harvesting,
the model is as follows:

dx(t)

dt
� αx(t) 1 −

x(t)

K
􏼠 􏼡 −

β(x(t) − m)y(t)

1 + a(x(t) − m)
,

dy(t)

dt
� − dy(t) +

cβ(x(t) − m)y(t)

1 + a(x(t) − m)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

t≠ nT,

△x(t) � − px(t),

△y(t) � 0,

⎫⎪⎪⎬

⎪⎪⎭
t � nT.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where x(t) and y(t) are the population density of prey and
predator, respectively, α represents the intrinsic growth rate,
K is the environment carrying capacity, β is the capture rate
of predator, d is the death rate of the predator, c is the
conversion factor denoting the number of newly born
predators for each captured prey, m is a constant number of
prey using refuges, which protect prey from predation, and
0<p< 1 is impulse capture rate of prey. We assume that the
population density of prey is more than the constant
m(m<x(t)), t, d, K, α, β, c, a, and m are all positive
constants,△x(t) � x(t+) − x(t),△y(t) � y(t+) − y(t), and
T is the period of the impulse effect.

*e rest of this paper is organized as follows. Some
definitions and preliminary lemmas are introduced in
Section 2. Existence and global attractivity of boundary
periodic solution of system (2) are discussed in Section 3.
Section 4 contributes to permanence of system (2), and
Section 5 aims at discussion of positive periodic solution.
Section 6 contains some numerical simulations and illus-
trates our analytical results. Some simple discussions are
given in Section 7.

2. Definitions and Preliminary Lemmas

Let R+ � [0,∞) and R2
+ �

����z ∈ R2z≥ 0􏽮 􏽯. Denote the map
f � (f1, f2) defined by the right hand of system (2). Let V:
R+ × R2

+⟶ R+, then V is said to belong to class V0, if

(1) V is continuous in (nT, (n + 1)T] and
lim

(t,u)⟶(nT,z),t>nT
V(t, u) � V(nT+, z)

(2) V is locally Lipschitzian in x

Definition 1. If V ∈ V0, then for (t, z) ∈ (nT, (n + 1)T] ×R2
+,

the upper right derivative of V(t, x) of system (2) is defined
as D+V (t, z) � lim

h⟶0
sup1/h[V(t + h, z +hf(t, z)) − V

(t, z)].
It follows from the second equation of (2) that y(t)≥ 0

for y(0)≥ 0, so

dx(t)

dt
≥ αx(t) 1 −

x(t)

K
􏼠 􏼡 −

βx(t)y(t)

1 + a(x(t) − m)
. (3)

*erefore, the following Lemma 1 is obvious.

Lemma 1. If x(t) is a solution of system (2) with x(0+)≥ 0,
then x(t)≥ 0 for all t≥ 0.

Definition 2. System (2) is said to be permanent if there are
constants m, M> 0 (independent of initial value) and a finite
time T0, such that m≤x(t)≤M and m≤y(t) ≤M when
t≥T0 for all solutions (x(t), y(t)), with all initial values
x(0+)> 0 and y(0+)> 0.

Lemma 2 (see [22]). Let V: R+ × Rn⟶ R+ and V ∈ V0.
Assume that

D
+
V(t, z)≤ h(t, V(t, z)), t≠ nT,

V t, z t
+

( 􏼁( 􏼁≤ψn(V(t, z)), t � nT,

⎧⎨

⎩ (4)

where h: R+ × R+⟶ R satisfies ψn: R+⟶ R+ is nonde-
creasing; let r(t) be the maximal solution of the following
scalar impulsive differential equation:

du(t)

dt
� h(t, u(t)), t≠ nT,

u t
+

( 􏼁 � ψn(u(t)), t � nT,

u 0+
( 􏼁 � u0 ≥ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

existing on [t0, +∞). �en, V(t+
0 , x0)≤ u0 implies that

V(t, z(t))≤ r(t), t≥ t0, (6)

where z(t) � z(t, t0, z0) is any solution of system (2) existing
on [t0, +∞).

Now we first consider some basic properties of the
following subsystem of system (2):
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dx(t)

dt
� αx(t) 1 −

x(t)

K
􏼠 􏼡, t≠ nT,

△x(t) � − px(t), t � nT.

.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(7)

Lemma 3 (see [36]). System (7) has a positive periodic so-
lution x∗(t). Any solution x(t) of system (7) satisfies
x(t)⟶ x∗(t) as t⟶∞. It is easy to see that

x
∗
(t) �

K(1 − p − exp(− αT))

p exp(− α(t − nT)) +(1 − p − exp(− αT))
, t ∈ (nT, (n + 1)T]. (8)

*erefore, x∗(t) is the positive periodic solution of
system (7).

3. Global Attractivity of Boundary
Periodic Solution

First of all, we give the extinction of predator.

Theorem 1. Let (x(t), y(t)) be any solution of system (2), if

T> −
ln(1 − p)

α
,

− d −
cβm

q
􏼠 􏼡T +

cβK

α q
2

− Kaq􏼐 􏼑
ln

qp + exp(αT)(qR + KRa)

qp + qR + KRa
< 0,

(9)

then the stability of boundary periodic solution (x∗(t), 0) is
globally asymptotically stable, where q � 1 − am and
R � 1 − p − exp(− αT)> 0.

Proof. Firstly, we will prove the local stability of boundary
periodic solution. Let x(t) � u(t) + x∗(t) and y(t) � v(t),
then the solution of variation equation of system (2) is

u(t)

v(t)
􏼠 􏼡 � Φ(t)

u(0)

v(0)
􏼠 􏼡, (10)

where Φ(t) satisfies

dΦ(t)

dt
�

α −
2αx
∗
(t)

K
−

β x
∗
(t) − m( 􏼁

1 + a x
∗
(t) − m( 􏼁

0 − d +
cβ x
∗
(t) − m( 􏼁

1 + a x
∗
(t) − m( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Φ(t),

(11)

and Φ(0) � I, in which I is the identity matrix. Hence, the
fundamental solution matrix is

Φ(T) �

exp 􏽚
T

0
α −

2αx
∗
(t)

K
􏼠 􏼡􏼠 􏼡dt ∗

0 􏽚
T

0
− d +

cβ x
∗
(t) − m( 􏼁􏼁

1 + a x
∗
(t) − m( 􏼁

􏼠 􏼡dt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12)

*en, the third equation and the forth equation of
system (2) are linearized to be

u nT
+

( 􏼁

v nT
+

( 􏼁
⎛⎝ ⎞⎠ �

1 − p 0

0 1
􏼠 􏼡

u(nT)

v(nT)
􏼠 􏼡. (13)
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Stability of boundary periodic solution depends on the
eigenvalue of J by

J �
1 − p 0

0 1
􏼠 􏼡Φ(T), (14)

and the eigenvalues of J are

μ1 � (1 − p)exp 􏽚
T

0
α −

2αx
∗
(t)

K
􏼠 􏼡dt􏼠 􏼡,

μ2 � exp 􏽚
T

0
− d +

cβ x
∗
(t) − m( 􏼁

1 + a x
∗
(t) − m( 􏼁

􏼠 􏼡dt􏼠 􏼡.

(15)

According to the Floquet theory of impulsive equation,
the boundary periodic solution (x∗(t), 0) is locally as-
ymptotically stable if |μ1|< 1 and |μ2|< 1; that is,

T> −
ln(1 − p)

α
,

− d −
cβm

q
􏼠 􏼡T +

cβK

α q
2

− Kaq􏼐 􏼑
ln

qp + exp(αT)(qR + KRa)

qp + qR + KRa
< 0.

(16)

Secondly, we will prove the global attractivity of
boundary periodic solution (x∗(t), 0). Let ϵ> 0, so as to

δ � 􏽒
T

0 (− d + cβ(x∗(t) + ϵ − m)/1 + a(x∗(t) + ϵ − m))dt;
that is.

− d −
cβ(m − ϵ)

1 − a(m − ϵ)
􏼠 􏼡T +

cβK

α q
2

− Kaq􏼐 􏼑
ln

qp + exp(αT)(qR + KRa)

qp + qR + KRa
< 0, (17)

where q � 1 − am, R � 1 − p − exp(− αT).
From the first equation of system (2), it is easy to obtain

dx(t)

dt
< αx(t) 1 −

x(t)

K
􏼠 􏼡. (18)

Consider the following comparison system:

dz(t)

dt
� αz(t) 1 −

z(t)

K
􏼠 􏼡, t≠ nT,

△z(t) � − pz, t � nT,

z 0+
( 􏼁 � x 0+

( 􏼁> 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

When t is large enough, by Lemmas 2 and 3, we can
obtain that

x(t)≤ z(t)<x
∗
(t) + ϵ. (20)

For t≥ 0, we assume that x(t)≤ z(t)<x∗(t) + ϵ, and
then we have

dy(t)

dt
≤ − dy +

cβ x
∗
(t) − m + ϵ( 􏼁y

1 + a x
∗
(t) − m + ϵ( 􏼁

. (21)

Integrating and solving the above system on
(nT, (n + 1)T], we can derive that

y((n + 1)T)≤y(nT)exp 􏽚
(n+)T

nT
− d +

cβ x
∗
(t) − m + ϵ( 􏼁

1 + a x
∗
(t) − m + ϵ( 􏼁

􏼠 􏼡dt􏼠 􏼡. (22)
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*erefore, y(nT)≤y(0+)(1 − p)nδ, then y(nT)⟶ 0 as
n⟶∞. When t ∈ (nT, (n + 1)T], we can easily know that
0 <y(nT)≤y(nT)H, so y(t)⟶ 0 as t⟶∞, where H �

supu ∈(0, T] exp(􏽒
u

0(− dcβ(x∗(t) − m +ϵ)/1 + a(x∗(t)

− m + ϵ))dt).
Next, we prove x(t)⟶ x∗(t) as t⟶∞. By

dx(t)/dt< αx(t)(1 − x(t)/K), we can obtain x(t)< x∗(t).
By Lemma 3, we can get

x
∗
(t) �

K(1 − p − exp(− αT))

p exp(− α(t − nT)) +(1 − p − exp(− αT))

≤
K(1 − p − exp(− αT))

(1 − p)(1 − exp(− αT))
, t ∈ (nT, (n + 1)T].

(23)

Let m2 � K(1 − p − exp(− αT))/(1 − p)(1 − exp(− αT)),
we have proved that x(t)<x∗(t) + ϵ for any ϵ> 0 when t is
large enough. Suppose that x(t)≤m2 as t> 0. *ere exist
T0 > 0 and m1 > 0 for t≥T0 such that y(t) ≤m1. Assume that
y(t)≤m1 as t> 0, it follows by system (2)

dx(t)

dt
≥ αx(t) 1 −

x(t)

K
􏼠 􏼡 −

βm1 m2 − m( 􏼁

1 + a m2 − m( 􏼁
. (24)

Consider the comparison system

dw(t)

dt
� αw(t) 1 −

w(t)

K
􏼠 􏼡 −

βm1 m2 − m( 􏼁

1 + a m2 − m( 􏼁
, t≠ nT,

△w(t) � − pw(t), t � nT,

w 0+
( 􏼁 � x 0+

( 􏼁> 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

By equation (25), we can obtain

w
∗
(t) � exp(M(t − nT))

(1 − p)Q1(1 − exp(MT))

1 − (1 − p)(1 − exp(MT))
−

Q1

M
􏼠 􏼡 +

Q1

M
,

(26)

where M � α(1 − m2/K) � αp exp (− αT)/(1 − p)(1 − exp
(− αT)) and Q1 � βm1(m2 − m)/1 + a(m2 − m).

By Lemmas 2 and 3, one can obtain that w(t)⟶ x∗(t)

andw(t)⟶ w∗(t), as t⟶∞. So, for any ϵ2, there exists a
T1, such that x∗(t) − ϵ2 <x(t)< x∗(t) − ϵ2 as t>T1. Let
ϵ2⟶ 0, then x(t)⟶ x∗(t) as t⟶∞. *e theorem is
completely proved. □

4. Permanence of System (2)

Theorem 2. �ere exists a constant S> 0 such that x(t)< S

and y(t)< S for each solution (x(t), y(t)) of system (2) when
t is large enough.

Proof. Suppose that (x(t), y(t)) is any solution of system
(2). Let V � cx(t) + y(t) and 0< λ<d; we calculate the

upper right derivative of V(t) along system (2) and get the
following inequality:

D
+
V(t) + λV(t) � cαx(t) 1 −

x(t)

K
􏼠 􏼡 − dy(t)

+ cλx(t) + λy(t)

� −
cαx

2
(t)

K
+ c(α + λ)x(t) +(λ − d)y(t)

≤
Kc(α + λ)

2

4α
, t≠ nT.

(27)

*erefore, it is bounded. We choose an M0 such that

D
+
V(t)≤ − λV(t) + M0. (28)

It is easy to know that

V nT
+

( 􏼁 � y(nT) +(1 − p)x(nT) ≤V(nT). (29)

According to Lemma 2, we have

V(t)≤ V 0+
( 􏼁 −

M0

λ
􏼒 􏼓exp(− λt) +

M0

λ
, t ∈ (nT, (n + 1)T].

(30)

*erefore, V(t) is ultimately bounded. *ere exists a
constant S> 0 such that any solution (x(t), y(t)) of system
(2) satisfies x(t)≤ S and y(t)≤ S for t large enough. □

Theorem 3. System (2) is permanent if

− d −
cβm

1 − am
􏼠 􏼡T +

cβK

α q
2

− Kaq􏼐 􏼑
ln

qp + exp(αT)(qR + KRa)

qp + qR + KRa
> 0,

(31)

where q � 1 − am and R � 1 − p − exp(− αT).

Proof. Suppose (x(t), y(t)) is any solution of system (2); we
have proved there exists an M such that x(t)≤M and
y(t)≤M. Let h � K(1 − p − exp(− αT))/1 − exp(− αT) − ϵ;
we can know x(t)> h when t is large enough. We will find a
constant m4 such that y(t)≥m4 when t is large enough,
where m4 � m3 exp((1 + n2 + n3)Tδ2) and m3 is a constant.
Next, we consider the following two cases. Firstly, there
exists a sufficient small ϵ1 such that

δ1 � 􏽚
T

0
− d +

c v
∗
(t) − m − ϵ1( 􏼁

1 + a x
∗
(t) − m − ϵ1( 􏼁

􏼠 􏼡dt. (32)

We can prove y(t) <m3 is not satisfied for any t;
otherwise,

dx(t)

dt
> αx(t) 1 −

m2

K
􏼒 􏼓 −

β m2 − m( 􏼁m3

1 + a m2 − m( 􏼁
. (33)

Consider the comparison system

Complexity 5



dv(t)

dt
� αv(t) 1 −

v(t)

K
􏼠 􏼡 −

βm3 m2 − m( 􏼁

1 + a m2 − m( 􏼁
, t≠ nT,

△v(t) � − pv(t), t � nT,

v 0+
( 􏼁 � x 0+

( 􏼁> 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(34)

It is not hard to get v∗(t) � exp(M(t − nT))

((1 − p)Q2(1 − exp(MT))/1 − (1 − p)(1 − exp(MT))

− Q2/M) + Q2/M,where

M � α 1 −
m2

K
􏼒 􏼓 �

αp exp(− αT)

(1 − p)(1 − exp(− αT))
,

Q2 �
βm3 m2 − m( 􏼁

1 + a m2 − m( 􏼁
.

(35)

*erefore, there exists a t2 > 0 such that
v∗(t) − ϵ1 < v∗(t)≤ x(t) for t> t2. Let n1 ∈ N and n1T≥ t1 as
n> n1. It is easy to know that

dy(t)

dt
≥y(t) − d +

cβ v
∗
(t) − ϵ1 − m( 􏼁

1 + a v
∗
(t) − ϵ1 − m( 􏼁

􏼠 􏼡. (36)

Integrating and solving the above system on
(nT, (n + 1)T], we can derive that

y((n + 1)T)≥y(nT)exp 􏽚
(n+1)T

nT
− d +

cβ v
∗
(t) − ϵ1 − m( 􏼁

1 + a v
∗
(t) − ϵ1 − m( 􏼁

􏼠 􏼡dt􏼠 􏼡 � y(nT)exp δ1( 􏼁. (37)

*en, j⟶∞, y((n + j)T)≥y(nT)exp(jδ1)⟶∞; it
contradicts with y(t)<m3. *us, there is a t0 > 0 such that
y(t0)≥m3.

Secondly, if t> t0, then y(t)≥m3. Otherwise, let
t∗ � inf

t>t0
t|y(t)<m3􏼈 􏼉, we can easily know y(t)≥m3 when

t ∈ [t1, t∗), choose n2, n3 ∈ N such that exp((n2 + q) δ2T)exp
(n3δ1T)> 1, where δ2 � − d + cβ(h − m)/1 + a(h − m). Let
T � (n2 + n3)T, then there is a t2 ∈ [n1T, (n1 + 1)T + T]

such that y(t2)≥m3. Otherwise, y(t)<m3 as t ∈
[n1T, (n1 + 1)T + T]. From system (25), we can obtain

y n1 + 1 + n2 + n − 3( 􏼁T( 􏼁≥y n1 + 1 + n2( 􏼁exp n3δ1( 􏼁. (38)

as dy(t)/dt � − dy(t) + cβ(x(t) − m)y(t)/1 + a(x(t) − m),
so dy/dt≥ − dy(t) + cβ(h − m)y(t)/1 + a(h − m).

Integrating and solving the above system on
(t∗, (n1 + n2 + 1)T], we can derive that y((n1 + n2
+1)T) ≥m3 exp((n2 + 1)δ2)T), so y((n1 + 1 + n2 +n − 3)T)

≥m3 exp ((n2 + 1)δ2T)exp(n3δ1T)>m3, it contradicts with
the assumption y(t)<m3. Let t � inf t|y􏼈 (t)≥m3}, t> t∗,
we have x(t) � m3 exp((1 + n2 +n3)Tδ2) ≜m4. For t> t, as
x(t)≥m3, we discuss it in the same way, at last we obtain
y(t)≥m4, for any t≥ t1. □

5. Existence of Positive Periodic Solution

In this section, we will study the existence of positive pe-
riodic solution by bifurcation theory of impulsive differential
equations. In order to be consistent with [37], we denote
x(t), y(t) as x1(t), x2(t), respectively. System (2) is

dx1(t)

dt
� αx1(t) 1 −

x1(t)

K
􏼠 􏼡 −

β x1(t) − m( 􏼁x2(t)

1 + a x1(t) − m( 􏼁
≜F1 x1(t), x2(t)( 􏼁,

dx2(t)

dt
� − dx2(t) +

cβ x1(t) − m( 􏼁x2(t)

1 + a x1(t) − m( 􏼁
≜F2 x1(t), x2(t)( 􏼁,

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

t≠ nT,

x1 nT
+

( 􏼁 � (1 − p)x1(nT)≜ θ1 x1(nT), x1(nT)( 􏼁,

x2 nT
+

( 􏼁 � x2(nT)≜ θ2 x1(nT), x1(nT)( 􏼁,

⎫⎪⎪⎬

⎪⎪⎭
t � nT.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(39)

By formally deriving the equation
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d
dt

(Φ(t, x(0))) � F(Φ(t, x(0))), (40)

which characterized the dynamics of the unperturbed flow
associated to the first two equations in (2), we obtain that

d
dt

DxΦ(t, x(0))􏼂 􏼃 � DxF(Φ(t, x(0)))DxΦ(t, x(0)). (41)

*is relation will be integrated in what follows in order
to compute the components of DxΦ(t, x(0)) explicitly.
Firstly, it is clear that

Φ t, x0( 􏼁 � ϕ1 t, x0( 􏼁, ϕ2 t, x0( 􏼁( 􏼁. (42)

*en, we derive that

d
dt

zϕ1
zx1

zϕ1
zx2

zϕ2
zx1

zϕ2

zx2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

α −
2αx
∗
(t)

K
−

β x
∗
(t) − m( 􏼁

1 + a x
∗
(t) − m( 􏼁

0 − d +
cβ x
∗
(t) − m( 􏼁

1 + a x
∗
(t) − m( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

zϕ1
zx1

zϕ1
zx2

zϕ2
zx1

zϕ2

zx2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

t, x0( 􏼁. (43)

*e initial condition at t � 0 being DxΦ(0, x0) � I. Here
I is the identity matrix. It follows that

zϕ2 t, x0( 􏼁

zx1
� exp 􏽚

t

0
− d +

cβ x
∗
(s) − m( 􏼁

1 + a x
∗
(s) − m( 􏼁

􏼠 􏼡ds􏼠 􏼡
zϕ2 0, x0( 􏼁

zx1
. (44)

As DxΦ(0, x0) � I, we can get zϕ2(t, x0)/zx1 � 0 for
t≥ 0. We can obtain from (43) that

d
dt

zϕ1 t, x0( 􏼁

zx1
� α −

2αx
∗
(t)

K
􏼠 􏼡

zϕ1 t, x0( 􏼁

zx1
,

d
dt

zϕ1 t, x0( 􏼁

zx2
� α −

2αx
∗
(t)

K
􏼠 􏼡

zϕ1 t, x0( 􏼁

zx2

d
dt

zϕ1 t, x0( 􏼁

zx2
−

β x
∗
(t) − m( 􏼁

1 + a x
∗
(t) − m( 􏼁

zϕ2 t, x0( 􏼁

zx2
,

d
dt

zϕ2 t, x0( 􏼁

zx2
� − d +

β x
∗
(t) − m( 􏼁

1 + a x
∗
(t) − m( 􏼁

􏼠 􏼡
zϕ2 t, x0( 􏼁

zx2
.

(45)

According to the initial condition, we obtain that

zϕ1 t, x0( 􏼁

zx1
� exp 􏽚

t

0
α −

2αx
∗
(s)

K
􏼠 􏼡ds􏼠 􏼡,

zϕ1 t, x0( 􏼁

zx2
� 􏽚

t

0
exp􏽚

t

u

α −
2αx
∗
(r)

K
􏼠 􏼡dr −

β x
∗
(u) − m( 􏼁

1 + a x
∗
(u) − m( 􏼁

􏼠 􏼡exp 􏽚
u

0
− d +

cβ x
∗
(r) − m( 􏼁

1 + a x
∗
(r) − m( 􏼁

􏼠 􏼡dr􏼠 􏼡
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦du,

zϕ2 t, x0( 􏼁

zx2
� exp 􏽚

t

0
− d +

β x
∗
(r) − m( 􏼁

1 + aβ x
∗
(r) − m( 􏼁

􏼠 􏼡dr􏼠 􏼡.

(46)

From (4), we obtain that DxN(0, (0, 0)) � I

− DxΦ(T0, x0),which implies
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DxN(0, (0, 0)) �
a0′ b0′

0 d0′
􏼠 􏼡, (47)

where a0′, b0′, and d0′ are

a0′ � 1 − (1 − p)exp αT0 − 2ln
(1 − p − exp(− αT))exp αT0( 􏼁 + p

1 − exp(− αT)
􏼠 􏼡> 0,

b0′ � (p − 1) 􏽚
T0

0
exp 􏽚

T0

u
α −

2αx
∗
(r)

K
􏼠 􏼡dr􏼠 􏼡 −

β x
∗
(u) − m( 􏼁

1 + a x
∗
(u) − m( 􏼁

􏼠 􏼡􏼠

exp 􏽚
u

0
􏽚

T0

0
− d +

cβ x
∗
(r) − m( 􏼁

1 + a x
∗
(r) − m( 􏼁

dr􏼠 􏼡du􏼠 􏼡> 0,

d0′ � 1 − exp 􏽚
T0

0
− d +

cβ x
∗
(r) − m( 􏼁

1 + a x
∗
(r) − m( 􏼁

􏼠 􏼡dr􏼠 􏼡,

(48)

where T0 is the root of d0′ � 0.
Firstly, we make sure the sign of C, where

C � 2
zθ2
zx2

b0′

a0′
z
2ϕ2 T0, x0( 􏼁

zx1zx2
−

zθ2
zx2

z
2ϕ2 T0, x0( 􏼁

zx
2
2

. (49)

For determining C, we must calculate z2ϕ2(T0, x0)/zx2
2

and z2ϕ2(T0, x0)/zx1zx2.
We have

z
2ϕ2 T0, x0( 􏼁

zx
2
2

� 􏽚
T0

0

exp 􏽚
T0

u
− d +

cβ x
∗
(r) − m( 􏼁

1 + a x
∗
(r) − m( 􏼁

􏼠 􏼡dr􏼠 􏼡􏼠 􏼡
cβ

1 + a x
∗
(u) − m( 􏼁( 􏼁

2
⎛⎝ ⎞⎠

exp 􏽚
T0

u
α −

2αx
∗
(r)

K
􏼠 􏼡dr􏼠 􏼡 −

β x
∗
(u) − m( 􏼁

1 + a
∗
(u) − m

􏼠 􏼡exp 􏽚
p

0
􏽚

T0

u
− d +

cβ x
∗

( r( ) − m)

1 + a x
∗

( r( ) − m)
􏼠 􏼡dr􏼠 􏼡dp􏼠 􏼡􏼠 􏼡􏼢 􏼣

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

du< 0.

(50)

*en, we have

z
2ϕ2 T0, x0( 􏼁

zx1zx2
� 􏽚

T0

0

cβ
1 + a x

∗
(u) − m( 􏼁( 􏼁

2
⎛⎝ ⎞⎠du exp 􏽚

T0

0
− d +

cβ x
∗
(r) − m( 􏼁

1 + a x
∗
(r) − m( 􏼁

􏼠 􏼡dr􏼠 􏼡> 0. (51)

*erefore, C> 0. Secondly, we make sure the sign of B, where

B � −
z
2θ2

zx1zx2

zϕ1 T0, x0( 􏼁

zT
+

zϕ1 T0, x0( 􏼁

zx1

1
a0′

zϕ1 T0, x0( 􏼁

zT
􏼠 􏼡

zϕ2 T0, x0( 􏼁

zx2

−
zθ2
zx2

z
2ϕ2 T0, x0( 􏼁

zTzx2
+

z
2ϕ2 T0, x0( 􏼁

zx1zx2

1
a0′

θ1
x1

zϕ1 T0, x0( 􏼁

zT
􏼠 􏼡.

(52)

*erefore, we have to calculate z2ϕ2(T0, x0)/zTzx2,
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z
2ϕ2 T0, x0( 􏼁

zTzx2
� − d +

cβ x
∗

T0( 􏼁 − m( 􏼁

1 + a x
∗

T0( 􏼁 − m( 􏼁
􏼠 􏼡exp 􏽚

T0

0
− d +

cβ x
∗
(r) − m( 􏼁

1 + a x
∗
(r) − m( 􏼁

􏼠 􏼡dr􏼠 􏼡.

(53)

*en, we have

B � − − d +
cβ x
∗

T0( 􏼁 − m( 􏼁

1 + a x
∗

T0( 􏼁 − m( 􏼁
􏼠 􏼡exp 􏽚

T0

0
− d +

cβ x
∗
(r) − m( 􏼁

1 + a x
∗
(r) − m( 􏼁

􏼠 􏼡dr􏼠 􏼡. (54)

In order to make sure the sign of B, let

f(t) � − d +
cβ x
∗
(t) − m( 􏼁

1 + a x
∗
(t) − m( 􏼁

. (55)

*en,

f′(t) �
cβ

1 + a x
∗
(u) − m( 􏼁( 􏼁

2
K(1 − p − exp(− αT))pα exp(− αT)

(1 − p − exp(− αT)) +p exp(− αt))
2 > 0. (56)

As d0′ � 0, we can obtain 􏽒
T0

0 f(t)dt � 0. Because f(t) is
an increasing function, so f(T0)> 0. According to equation,
we can know B< 0, thus BC< 0. According to [37], the
following conclusion can be derived.

Theorem 4. System (2) has a critical bifurcation; there exists
a positive periodic solution of system (2) if t>T0, near T0.

6. Numerical Simulations

In this section, we investigate the effects of impulsive per-
turbations on system (2) by using numerical method to
illustrate our theoretical results. For convenience, we assume
keeping some parametric values of system (2) as α � 0.5,
K � 4, c � 0.5, β � 0.4, m � 2, a � 0.2, and d � 0.2. By
simple calculation, we can get T0 ≈ 2.4023 for

d0′ � 1 − exp 􏽚
T0

0
− d +

cβ x
∗
(r) − m( 􏼁

1 + a x
∗
(r) − m( 􏼁

􏼠 􏼡dr􏼠 􏼡 � 0. (57)

Now, we choose different parameter T to illustrate our
main results by numerical simulation. Let T � 1.5,
x(0) � 3.3, and y(0) � 0.05; bounded periodic solution
(x∗(t), 0) is globally asymptotically stable (see Figure 1); By
*eorem 2, consider the comparison system, let T � 3,
x(0) � 3.3, and y(0) � 0.14, and one can get system (2) is
permanent (see Figure 2). By *eorem 4, let T � 2.42 nearly
to T0, x(0) � 3.3, and y(0) � 0.005; system (2) has a critical
bifurcation (Figure 3). Let T � 2.38, x(0) � 3.3, and
y(0) � 0.005; the number of predators population y(t) of
system (2) decreases significantly (Figure 4). Further, take
the smaller y(0) � 0.00001, T � 2.38, and x(0) � 3.3, and
we can obtain that the predator will be extinct (Figure 5).

We simulate the influence of the refuge constant m on
the system (see Figures 6 and 7) and the influence of pulse
time T on the system (see Figure 8).

7. Discussion

We have studied a predator-prey model with Holling II
functional response incorporating a prey refuge and impul-
sive effect. Bounded periodic solution (x∗(t), 0) is globally
asymptotically stable if T<T0. System (2) is permanent if
T>T0. By Figures 1 and 2, we show the facts above. System
(2) has a critical bifurcation; there exists a positive periodic
solution of system (2) if t>T0, nearby T0. *e facts above are
shown in Figure 3. By *eorem 1, one can know that the
predator is extinct when T is little smaller than T0, as shown
in Figure 5. It is easily known that T0 is a threshold. From the
view point of biology, if the harvest period T of the prey is too
short (T<T0), that is, the harvest frequency is relatively
frequent, the number of the prey is bound to be small, which
cannot guarantee the food supply of the predator, resulting in
the final extinction of the predator. On the contrary, if the
harvest period exceeds the threshold (T>T0), the food
supply of the predator is sufficient, and the system is per-
sistent.*is provides a good theoretical basis for how to select
appropriate parameters to maintain ecological balance.

*e influence of refuge constant m on system (2) can be
seen in Figures 6 and 7. *is shows that the predator be-
comes extinct and the number of prey remains unchanged
when the prey refuge constant reaches a certain value. *is
shows that when the number of prey entering the shelter
reaches a certain amount, the prey that the predator can
catch is less and insufficient, and the supply of prey is in
short supply, resulting in the extinction of the predator. It is
consistent with the reality. *e impact of the change of pulse
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Figure 1: *e x(t) time series and y(t) time series are simulated by numerical integration of system (2) with T � 1.5, x(0) � 3.3, and
y(0) � 0.05. Bounded periodic solution (x∗(t), 0) is globally asymptotically stable.
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Figure 2: *e x(t) time series and y(t) time series are simulated by numerical integration of system (2) with T � 3 and
x(0) � 3.3y(0) � 0.14. System (2) is permanent.
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x(0) � 3.3, and y(0) � 0.005. System (2) has a critical bifurcation.
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Figure 6: Bifurcation diagram of system (2) affected by prey refuge constant number m with T � 2.
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Figure 7: Bifurcation diagram of system (2) affected by prey refuge constant number m with T � 4.
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time T on system (2) is shown in Figure 8, this shows that the
selection of pulse period T also has an obvious impact on the
system. From (b) of Figure 8, we can see that the predator
y(t) is persistent when T>T0 ≈ 2.4023.

*e effects of different pulse forms on the dynamic
behavior of the system are also very different, so it is nec-
essary for us to study the effects of these different pulse forms
on the dynamic behavior of the system. *e state feedback
control of the system is also close to the real problem, we will
study it in the following work.
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