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We study the dynamics and stability of the economics of crime and punishment game from an evolutionary perspective.
Specifically, we model the interaction between agents and controllers as an asymmetric game exploring the dynamics of the classic
static model using a replicator dynamics equation, given exogenous levels of monitoring and criminal sanctions. .e dynamics
show five possible equilibria, from which three are stable. Our results show that a culture of honest agents is never stable; however
when the penalty is high enough, the system will neutrally tend to an equilibrium of honest agents and a monitoring firm. By
contrast, when the probability of detecting wrongdoing is small, the system, in some cases, will remain in a transient state, in which
it is impossible to predict the proportion of honest agents.

1. Introduction

Corruption is a form of dishonesty undertaken by an in-
dividual or organization to acquire illicit benefit or abuse
power for personal gain, deviating from established norms of
behavior with or without legal or ethical connotations (see
for instance [1, 2]).

It has always been an important concern for managerial
teams in all kinds of organizations, private and public, being
one of the main barriers to economic growth in many
countries [3]. .e World Economic Forum 1 estimated by
2018 that annual costs of corruption are about 5% of global
GDP.

.e classical theoretical studies on corruption, based on
Becker’s seminal work on crime and punishment [4, 5], hold
that an offender decides whether to commit a crime and how
much crime to commit by comparing the benefits and costs
of crime with those of alternative activities.

In Becker’s setting, an agent decides whether to commit a
crime by comparing the expected utility of the offenses with
those of alternative activities. In the context of a firm, an

agent (or employee) will be honest whenever its incentive
constraint is satisfied:

U(w)>(1 − θ)U(w + β) + θU w0 − f( 􏼁, (1)

where w represents salary, β represents the offenses, θ is the
probability of being caught, w0 is the alternative salary if
fired, f represents the fine an agent must pay if caught in
criminal acts, and U(·) is the expected utility.

.e implication of equation (1) is that an agent’s in-
centive to be honest depends on its “efficiency wage” (w −

w0) and the probability of detecting offenses, θ. Nevertheless,
the model does not pay attention to the optimal value of the
agent’s wage or the optimal level of monitoring. Indeed, in
the model, if θ � 1, equation (1) is always satisfied for
positive efficiency wages; by contrast, if θ � 0, equation (1) is
never satisfied. Paper [6] pointed out that for any reasonable
distribution of wages, implying a lower frequency of extreme
values, the more extreme the values taken by the monitoring
probability θ, the lower the effect of wages on offenses.

Following Becker’s approach, we assume “consensus” on
the variables under study and we just try to find some
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guidelines for the treatment of offenses. Our approach is to
analyze the dynamics of the classic game of criminal be-
havior using first an asymmetric 2-player game to model an
organization in which agents and controllers coexist. Par-
ticularly, we focus our study on the long-term interaction
between agents and controllers and their response to dif-
ferent incentives, by using the replicator dynamics equation
to model the evolutionary dynamics of the problem of
potential criminals (for an explanation of the replicator
equation, see for instance [7, 8]). .e solution of the system
is given by the set of evolutionary steady states of the honest
population and the probability of monitoring. Besides an-
alyzing the traditional Beckerian model, we also model the
dynamics of optimal enforcement policies.

.e remainder of this paper is organized as follows.
Section 2 presents a literature review. In Section 3 we present
our proposed model in its static and dynamic versions and
its evolutionary dynamics and contextualize our contribu-
tion. Section 4 analyzes the conditions under which the
equilibria are stable and under what conditions the system is
unstable. Section 5 provides some numerical simulations in
which we use elements of chaos theory to analyze our
replicator dynamics system in order to evaluate how sen-
sitive to initial conditions this system is. Finally, Section 6
puts forward some concluding remarks and future research.

2. Literature Review

Our work relates to some different literature. Firstly, there is
a large body of literature focusing on the design of rules,
punishments, and control structures to discourage unde-
sirable behavior in organizations. .is literature, beginning
with the seminal work of [4, 5] and its many successors (see,
for example, [9–12]), has a main aim to study to a certain
extent how the probability of being caught, the magnitude of
the punishment, the proceeds of criminal activity, and the
return to work (alternative to crime) would affect the level of
crime. See [13] for a complete review.

Several extensions have been made to Becker’s original
work; however, the economics of crime maintains its
original spirit. One interesting variation is made by [14] and
used latter by [15]. .is approach models explicitly the
probability of being caught and fined using a smooth
function p(m, x), wherem represents the outlays devoted by
society to monitoring and fining individuals and where x
represents the individual’s outlays on avoidance. With this
formulation, it is possible to determine the optimal en-
forcement with screening for Becker’s problem.

Another branch of this literature, also related to our
study, shows how corruption and other activities become
profitable when others also engage in such behavior, po-
tentially leading to multiple equilibria. See for instance
[16–18].

Our work is also related to those modeling the evolution
of crime. For instance, [19] studies the consequences of
asymmetric and symmetric penalties by developing deter-
ministic and stochastic evolutionary game-theoretic models
of bribery, finding that a reduction in incidents of bribery
when using asymmetric penalties depends on how the

players update their strategies over time. Similarly, [20]
models the evolution of a system of corruption where players
play a series of supergames with randomly chosen oppo-
nents. .ey find the conditions under which a population of
adaptive and nonadaptive players lead to a corruption
equilibrium which is stable. However, when corruption
causes small but cumulative social costs, the corruption
equilibrium becomes unstable and a new equilibrium of
conditional honest players can be reached. Finally, [21]
models the dynamics of corruption using the stability theory
of differential equations. .e model exhibits forward bi-
furcation. .ey reformulate the model as an optimal control
problem, with the use of two time-dependent controls to
assess the impact of corruption on human population,
finding that an integrated control strategy must be followed
to successfully fight corruption.

A more recent branch of research that is more closely
related to our work investigates the dynamics of crime.
Paper [22] studies the relationship between corruption in
public procurement and economic growth. In particular, the
authors implement a Solow growth model in discrete time,
assuming that the public good is an input and that the state
fixes a monitoring level on corruption. .ey find multiple
equilibria, perform a stability analysis, and prove the exis-
tence of a compact global attractor. .e main finding is that
no long-run equilibria with zero corruption exist and,
furthermore, that periodic or aperiodic fluctuations in
economic growth are likely to emerge. Paper [23] put for-
ward a model of crime transmission to study the spread of
crime, imprisonment, and recidivism. One of the main
findings of this work is that the long-run effect of increasing
the length of prison terms has no effect on changing the
fraction of criminally active people in the population, which
contrasts findings from [24] who propose a model of crime
transmission inherited with memory property. .ey show
the progression of the flow of population by classifying into
three systems based on involvement in crime and impris-
onment by considering the criminal history of an individual.
.ey conclude that both high and low crime-equilibria exist
and that a crime-free equilibrium can also be found. .ey
show that a minute growth in the imprisonment rate tends to
lower the spread of crime. Paper [25] also proposes a
fractional-order crime transmissionmodel with four types of
citizens. Paper [26] proposes a differential equationmodel to
analyze whether more legal guns mean less crime committed
by illegal guns. .e results of this work show that strong gun
control does not ensure a crime-free society. On the con-
trary, weak gun control can lead to a crime-free society;
however, this policy requires the maximum number of legal
guns in the hands of civil society. Paper [27] proposes a
bimatrix game between property owners and criminals (or
potential criminals) to analyze the private effort made by
property owners, given a certain level of enforcement and
magnitude of penalties. .ey conclude that high penalties
and greater police enforcement not always deter crime in the
long-term. .ey also show a cyclical behavior of crime over
time. Paper [28] analyzes the dynamics of crime considering
that punishments are costly, and therefore, using sequential
games, they examine optimal enforcement of law strategies
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that minimize the effective punishments required to deter
crime. In [23] instead of analyzing the dynamics of crime at
the macro level, they do so at the micro level and study “the
criminal career” and its dynamics with respect to punish-
ment. .ey propose a model in which a criminal can be in
one of five stages: (1) no criminal behavior, (2) criminal
behavior and never incarcerated, (3) incarcerated, (4) repeat
offenders, and (5) released. .ey find conditions leading to
crime-free equilibrium when citizens can turn to crime only
through contagion. However, when citizens can also turn to
crime by their own, a crime-free society is not possible.

On the empirical side, [29] uses data of one specific
Swedish street gang composed by three different datasets, to
develop different social networks analysis and compare them
by computing distance, centrality, and clustering measures.
.ey show that different data sources about the same object
of study have a fundamental impact on the results. Paper
[30] presents an empirical approach to model corruption
using complex networks. .ey describe a major corruption
scandal in Mexico involving a network of hundreds of shell
companies. .eir analysis offers insight into the systemic
nature of corruption and the shortcomings of reductionist
analyses.

Our study is close to the theoretical models outlined in
the review. Using a two-population dynamic replicator, we
model the classical variables mentioned in the economic
literature to control corruption in an organization, such as
wage, monitoring, and penalties to study to what extent
these variables discourage crime and under what conditions
the equilibria found are stable.

3. The Model

For model specification, multiple populations can be used
(see, for example, [31]). To simplify notation, we model a
two-population system, where we will model the interaction
between employees and controllers within an organization.
Let us define G as a static asymmetric 2-player game defined
by G � (Sa, Sc, uac, vac), where Si is a finite set of actions for
player i; uij: Sa × Sc⟶ R and vij: Sa × Sc⟶ R are their
payoff functions. Player 1 is an employee and player 2 is a
controller within the firm, who is in charge of deterring
wrongdoing. Each player in this game has two available
strategies. For the employee, the strategies are to behave
honestly, h, or to behave corruptly, c, represented by
Sa � h, c{ }, and for a controller, representing the firm, the
strategies are to monitor or not to monitor, represented by
Sc � m, nm{ }. Correspondingly, Δa and Δc stand for their
respective spaces of mixed strategies. .e payoff matrices U,
V ∈ R2x2 are defined for the employee and the controller,
respectively.

.e notation is presented in Table 1, and Table 2
summarizes the payoffs of the game.

Proposition 1. Considering the asymmetric two-player game
G described above, we obtain the following results:

(1) /ere is a unique Nash equilibrium given by the
criminal behavior of the employee and a monitoring
firm c, m{ } whenever vcnm < vcm and uh < ucm

(2) /ere is a unique Nash equilibrium given by the
criminal behavior of the employee and a non-
monitoring firm c, nm{ } whenever vcnm > vcm

(3) /e game also has a single mixed-strategy equilibrium
whenever vcnm < vcm and uh > ucm, with a probability
of an employee being honest of p � 1 − m/θ(αβ + f)

and a probability of a monitoring firm of
s � β/θ(w + β + f − w0)

Proposition 1.1 implies that
f ∈ ((m/θ) − αβ, (β/θ) − w − β + w0); that is, if earnings per
wrongdoing β are high enough and the probability θ⟶ 0,
there will be no penalty high enough to stop the offenses. By
contrast, Proposition 1.2 implies that f<m/θ − αβ, which
means that when the penalty is rather low, the firm will not
monitor, and agents will behave corruptly. Proposition 1.3
implies that if f> (β/θ) − w − β + w0 whenever (β/θ) − w −

β + w0 > (m/θ) − αβ or if f> (m/θ) − αβ whenever
(β/θ) − w − β + w0 < (m/θ) − αβ, the two players have no
pure strategies which are optimal responses to each other.
.e payoff structure implies that an employee will commit a
crime if not monitored and behave honestly if monitored. In
contrast, the controller monitors if employees commit a
crime and does not monitor if employees do not commit a
crime. .is implies that there is not a “dominant strategy.”
.is in turn means that there is no best decision regardless of
the decision of the opponent. However, we found a mixed
strategy for the probability distribution of the employee
behavior (p, 1 − p) and the probability distribution of the
controller decision to monitor or not (s, 1 − s) of their set of
pure strategies. .e expected payoff of an employee and the
controller are as follows:

umixed � puh +(1 − p) (1 − s)ucnm + sucm􏼂 􏼃

vmixed � (1 − s)(1 − p)vcnm + s pvhm +(1 − p)vcm􏼂 􏼃.
(2)

From equation (2), we can determine the proportion of
honest agents and the probability that a controller monitors
or not:

zumixed

zp
� θs w + β + f − w0( 􏼁 − β

zvmixed

zs
� θ(1 − p)(αβ + f) − m.

(3)

From equation (3) we can conclude that

p
∗

� 1 −
m

θ(αβ + f)

s
∗

�
β

θ w + β + f − w0( 􏼁
.

(4)

Nevertheless, the relationship between agents and
controllers is a continuous and long-term relationship. .is
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relationship will not necessarily conform to optimal pro-
portions of honest/corrupt and controllers who choose to
monitor or not just by playing the game..is adjustment is a
complex and dynamic process. In reality, information is
incomplete for both agents and controllers, and obtaining
additional information is always costly. In terms of our
model, we assume that while individuals are economic
agents pursuing material benefits, in some cases individuals
do not act rationally, at least from the perspective of the
economy as a whole, that is, trying to achieve maximum
social benefit. In this sense, we model the dynamics of agents
and controllers actions using the replicator dynamics
equation, which explicitly models the process by which the
frequency of a strategy changes in the population, allowing
us to study the evolutionary dynamics of the model. In the
context of the replicator dynamics, individuals imitate the
strategies of randomly sampled members of the population
with a probability proportional to the difference in gains
between the players, as long as the difference is positive.
Assuming that individuals always imitate the best performing
agents, otherwise the dynamics change. .e replicator dy-
namics can be interpreted as a model of bounded-rationality,
in which individuals learn about the game on a trial and error
basis and where more efficient behavior, in evolutionary
terms, tends to be imitated..is approach allows us to analyze
the impact of different initial shares of agent and controller
populations and the relevance of the parameters in explaining
the stability (or instability) of corruption.

Consider the game G described above, where strategies
Sa and Sc in the infinite sequence of action profiles are
represented by (a, c). At each period t ∈ [0,∞) every
member of each population is randomly matched with an
individual from the other population to play a bilateral finite

game with payoff matrices given by U and V, where uij �

πa(sa
i , sc

j) and vij � πc(sa
i , sc

j) stand for the payoff obtained by
the agent and the firm, respectively, if the former adopts
strategy sa

i and the latter strategy sc
j.

Consequently, the dynamic adjustment process of our
two-population replicator equations can be represented as
follows:

dp

dt
� p suh +(1 − s)uh − u􏼂 􏼃

ds

dt
� s pvhm +(1 − p)vcm − v􏼂 􏼃,

(5)

where p represents the proportion of honest agents (and
then 1 − p represents the proportion of criminals), and s

represents the proportion of controllers who do monitor (and
therefore 1 − s is the proportion of controllers who do not
monitor). It should be noted that these ratios can also be viewed
as the probabilities associated with honest/corrupt agents and
monitor/do not monitor. Finally, u and v are the expected
payoff to the two players when the agent uses mixed strategy
Sa ∈ Δa and the controller uses mixed strategy Sc ∈ Δc, with
u � s[puh + (1 − p)ucm] + (1 − s)[puh + (1 − p)ucnm] and
v � p[svhm + (1 − s)vhnm] + (1 − p)[svcm + (1 − s)vcnm].

By solving the system (dp/dt) � 0, (ds/dt) � 0, we get 5
equilibria solutions (p∗, s∗) in which the system converges
(fixed points of the system). E1, E2, and E3 represent the
Nash equilibria of the static game (Proposition 1), where
E1 � (0, 0) represents environment where all agents are
corrupt and the firm does not monitor, E2 � (0, 1) in which
all agents are corrupt and the firm always monitors, and
E3 � (1 − (m/θ(αβ + f)), β/θ(w + β + f − w0)), where the
proportion 1 − (m/θ(αβ + f)) of agents are honest and the
firm monitors with probability (β/θ(w + β + f − w0)).
Additionally, we get E4 � (1, 0), representing an organiza-
tion where all agents are honest and the firm does not
monitor and E5 � (1, 1), where all agents are honest, but the
firm still monitors at all times.

4. Analysis of Equilibria

.e Jacobian matrix for the system presented in equation (5)
is as follows:

Table 1: Notation.

w Wages
w0 Alternative wage when fired/opportunity cost
β Earnings per wrongdoing
m Monitoring costs
f Penalty if detected in wrongdoing
α Proportion of the recovered earnings per wrongdoing when a criminal is caught
θ Probability of detecting wrongdoing

Table 2: Expected payoffs random matching game. m

No monitoring Monitoring
Honest uh � w, uh � w,

vhnm � 0 vhm � − m

Criminal ucnm � w + β, ucm � (1 − θ)(w + β) + θ(w0 − f),
vcnm � − β vcm � θ(f + αβ) − β − m

m represents monitoring costs and α is a proportion of the recovered
earnings per wrongdoing when a criminal is caught.
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J �

− p sθ w + β + f − w0( 􏼁 − β( 􏼁+

(1 − p) sθ w + β + f − w0( 􏼁 − β( 􏼁
θp(1 − p) w + β + f − w0( 􏼁

− θs(1 − s)(αβ + f)
s(− θ(1 − p)(αβ + f) + m)+

(1 − s)(θ(1 − p)(αβ + f) − m)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

.e approach we follow to study the stability of each
point is by means of the analysis of eigenvalues from the
Jacobian matrix, which means imposing the condition
λi < 0∀i.

By solving the characteristic polynomial of the Jacobian
(equation (6)) with fixed point E1, the eigenvalues are

λ1 � − β, λ2 � θ(αβ + f) − m. (7)

Since β> 0, E1 to be stable must satisfy that
λ2 < 0⇔f< (m/θ) − αβ, which is consistent with the Nash
equilibrium condition.

When solving equation (6) with fixed point E2, the ei-
genvalues are

λ1 � θ β + f + w − w0( 􏼁 − β, λ2 � m − θ(αβ − f). (8)

Imposing the condition λ1 < 0 and λ2 < 0, we get that E2
is a stable fixed point if f ∈ ((m/θ) − αβ, (β/θ) − w − β + w0)

and (m/θ) − αβ< (β/θ) − w − β + w0, which is also consis-
tent with Proposition 1.

For fixed point E3, the eigenvalues of the Jacobian
represented in (6) are given by

λ1,2 � ±

����������������������������������������������������������
− mβ w + β + f − w0( 􏼁(αβ + f)(θ(w + β + f − w0) − β)(θ(αβ + f) − m)

􏽱

θ(αβ + f) w + β + f − w0( 􏼁
. (9)

In this case, when f> (β/θ) − w − β − w0 and − mβ(w +

β + f − w0)(αβ + f)(θ(w + β + f − w0)−

β)(θ(αβ + f) − m)> 0, the equilibrium will be a saddle
point. On the other side, if f> (β/θ) − w − β − w0 and
− mβ(w + β + f − w0)(αβ + f)(θ(w + β + f − w0) − β)

(θ(αβ + f) − m)< 0, the eigenvalues are purely imaginary
numbers, which means that the system will oscillate around
the equilibrium with constant amplitude, getting a neutrally
stable equilibrium.

.e eigenvalues when evaluating the Jacobian at the
point E4 are

λ1 � − m, λ2 � β. (10)

Since m, β> 0E4 is a saddle point.
Finally, the eigenvalues associated with E5 are

λ1 � m, λ2 � − θ w + β + f − w0( 􏼁 + β. (11)

If λ2 > 0, E5 represents an unstable node and when λ2 < 0,
E5 represents a saddle point.

It is not surprising that an equilibrium of honest agents
(E4 and E5) is not stable, since in an asymmetric game only
pure-strategy Nash equilibria can be asymptotically stable
(see [32]). .e Nash equilibrium represents a situation in
which an individual has no incentives to change its strat-
egies, assuming the other players remain constant in their
actions. .us, the results found point to the fact that there is
not a clear cut solution to beat crime, which cannot be a
surprise, since crime has been a conduct difficult to break
since the beginning of time.

5. Numerical Simulation

In this section we present some numerical examples of the
model to illustrate some of our theoretical results. In par-
ticular, we are interested in simulating the parameters as-
sociated with earnings per wrongdoing β, the penalty f, the
proportion of the recovered earnings per wrongdoing α, the
probability θ, and the cost of monitoring m. For a better
understanding of our model of crime and punishment and
its chaotic behavior, we analyze the long-term game of
system depicted in 5 by using initial value sensitivity and
bifurcation diagrams.

Note that, in all the experiments, we use the wage as
numeraire. In other words, we set the value of the wage to 1
and for each experiment we made the value of a parameter
vary. For instance, when we vary the parameter β between
0.1 and 4, this implies that it varies in terms relative to the
wage between 10% and 400%.

5.1. Initial Value Sensitivity. Figure 1 shows two examples of
basin of attraction of the equilibrium points, the left graph
when f � 1.5 and the right graph when f � 3. .ere are
coexisting attractors, where the red, blue, green, purple, and
pink regions are the feasible basin of attraction for E1, E2, E3,
E4, and E5, respectively. .e axes represent the initial value
taken by system 5.

5.2.1DDiagramBifurcation. In Figure 2, we simulate values
of β ∈ [0, 4]. E1 is never stable, since it must satisfy that
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β< − 4.375..e fixed point E2 is stable when β> 1.93.When
β ∈ (0, 1.93), the eigenvalues for fixed point E3 are always
pure imaginary numbers, and then an oscillation around the
equilibrium point (1 − (0.25/0.4β + 2), (2.5β/2.9 + β)). In
Figure 3, we simulate the proportion of honest agents and
the probability the firm will monitor for β � 0.3, β � 1.1, and
β � 3, showing that for small values of β the firm does not
monitor and for high values, although the firm always
monitors, the agents are corrupt.

We simulate values for f ∈ [0, 4]. Figures 4 and 5 show
graphically what would happen with the organization, set-
ting different values for the fine f. E1 is never stable, since it
must satisfy that f< − 0.35. .e fixed point E2 is stable
when f< 1.35. .e eigenvalues for fixed point E3 are always
pure imaginary numbers. In Figure 5 we simulate the
proportion of honest agents and the probability the firm will
monitor for f � 0.8, f � 2, and f � 4, showing that for
small values of f the firm monitors, but agents are corrupt.
For a value equal to twice the wage, there is instability, in

which case, high fines do not fulfill the purpose of deterring
corruption. Only when fines are extremely high (for ex-
ample, f four times the wages), the agents become honest
and the firm will not monitor.

We simulate values for α ∈ [0, 1]. Figures 6 and 7 show
that, for our simulations, α has no major impact on the
behavior of agents or the firm. .e proportion of recovered
earnings per wrongdoing is not a determinant of chaos in
our model. .e model converges to E2 for all values of α
under the parameters of our simulation. In Figure 7, we
simulate the proportion of honest agents and the probability
the firm will monitor for α � 0.05, α � 0.2, and α � 0.8,
showing the same convergence to E2 for all values of the
proportion of recovered earnings per wrongdoing.

We simulate values for θ ∈ [0, 1]. Figures 8 and 9 show
the evolution of an organization by varying the auditing
probability of detecting wrongdoing θ. For values of
θ< 0.037, the system converges to the equilibrium E1. When
θ ∈ (0.037, 0.5), the system converges to E2, and for values of

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

s

p

0.8

0.8

1.0

0.0

0.2

0.4

0.6
s

0.8

1.0

1.0 0.0 0.2 0.4 0.6
p

0.8 1.0

Figure 1: .e basin of attraction when w � 1, w0 � 0.1, β � 1, m � 0.5, α � 0.4, θ � 0.4. Left: f � 1.5. Right: f � 3.

p s

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 40
β

1 2 3 40
β

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2:.e bifurcation cascade for honest agents and the probability of monitoring as a function of earnings per wrongdoing. Parameters:
w0 � 0.1, m � 0.1, f � 2, α � 0.4, θ � 0.4.

6 Complexity



p

0.0

0.2

0.4

0.6

0.8

1.0

s

1 2 3 40
f

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 40
f

Figure 4: .e bifurcation cascade for honest agents and the probability of monitoring as a function of the penalty. Parameters: w0 � 0.1,
m � 0.1, β � 1.5, α � 0.4, θ � 0.4.

p s

150 2500 50
Time

–0.5

0.0

0.5

1.0

–0.5

0.0

0.5

1.0

50 150 2500
Time

f=0.8
f=2
f=4

f=0.8
f=2
f=4

Figure 5: Time series of system for f � 0.8, f � 2, and f � 4. Parameters: w0 � 0.1, m � 0.1, β � 1.5, α � 0.4, θ � 0.4.
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Figure 3: Time series of system for β � 0.3, β � 1.1, and β � 3. Parameters: w0 � 0.1, m � 0.1, f � 2, α � 0.4, θ � 0.4.
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Figure 7: Time series of system for θ � 0.05, θ � 0.15, and θ � 0.4. Parameters: w0 � 0.1, m � 0.1, β � 3, f � 1.5, θ � 0.4.
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Figure 8: .e bifurcation cascade for honest agents and the probability of monitoring as a function of the probability of catching
wrongdoing. Parameters: w0 � 0.1, m � 0.1, β � 3, f � 1.5, α � 0.4.
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Figure 6: .e bifurcation cascade for honest agents and the probability of monitoring as a function of the proportion of recovered earnings
per wrongdoing. Parameters: w0 � 0.1, m � 0.1, β � 3, f � 1.5, θ � 0.4.
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θ> 0.5, the eigenvalues associated with E3 are pure imagi-
nary number, which means that the system oscillates around
the point (1 − (0.037/θ), (0.5/θ)).

However, Figure 8 shows chaos for the proportion of
honest agents when θ< 0.18, which is not predicted by the
analysis of the eigenvalues.What is happening in this zone of
small values of θ is that the rate at which the system con-
verges to equilibrium E1 (when θ< 0.037) and to E2 (when
θ ∈ (0.037, 0.18)) tends to infinity, and therefore, the system
will reach equilibrium in infinite time. Figure 10 shows in
panel (a) the phase diagram when θ � 0.01, panel (b) when
θ � 0.09, panel (c) when θ � 0.4, and finally panel (d) when
θ � 0.7, where we show the differences in convergence of
these four values for the probability of detecting wrongdoing
θ.

We simulate values for the cost of monitoring m ∈ [0, 4].
Figure 11 shows the 1D diagram bifurcation and Figure 12
shows for three values of monitoring costs their evolution
through time. For our simulation, the system converges to
E2 whenever f< 1.08. However, the condition for E1 to be
stable and E3 to be a neutrally stable equilibrium is the same
(m> 1.08), which means that in some zones the equilibrium
will become E1 and in others, it will be E3. As shown in
Figure 11, for m> 1.08 the proportion of honest agents is
unstable. .e probability of monitoring is zero when
m ∈ [1, 2.65] and unstable for values of m> 2.65.

5.3. 2DBifurcationDiagram. We first study the limit cycle of
the system for β versus θ, with the rest of the parameters
fixed, being w0 � 0.1, m � 0.1, f � 1.5, α � 0.4, and for β
versus f and the parameters w0 � 0.1, m � 0.1, α � 0.4,
θ � 0.4. Figure 13 shows the results. Panel (a) shows our

findings when varying the values of β and θ simultaneously,
where three infinite period bifurcations are found. In the
limit cycle IPB123 collides with the equilibria E1, E2, and E3.
In the limit cycle IPB235 collides with the equilibria E2, E3,
and E5. Finally, in the limit cycle IPB134 collides with the
equilibria E1, E3, and E4. Panel (b) shows the limit cycles
when we vary the values of β andf. We find four limit cycles,
where IPB123 is an infinite period bifurcation where the
equilibria E1, E2, and E3 collide. In the limit cycle IPB235
collides with the equilibria E2, E3, and E5. In the limit cycle
IPB134 collides with the equilibria E1, E3, and E4. Finally, SC3
is the stable limit cycle of a supercritical Hopf bifurcation.

By means of 2D bifurcation diagrams, we analyze the
areas in which the system converges to the fixed points and
which areas are chaotic. Red area is used to represent the
equilibrium point of corrupt agents and a nonmonitoring
firm (E1), light blue area for corrupt agents and a moni-
toring firm (E2), green area for a proportion p∗ of honest
agents and a firm that monitors with probability s∗, purple
for honest agents and a nonmonitoring firm (E4), pink for
the equilibrium of honest agents and a monitoring firm, and
gray area for indicating chaotic region of the system.

Figure 14 shows four two-dimensional bifurcation di-
agrams. .e upper left panel indicates the relation between
probability of detecting wrongdoing and earnings per
wrongdoing. We can conclude that when θ is relative small,
there are no incentives to monitor, and therefore agents will
become corrupt. When θ increases, there is a path of petty
crime (small β), where the firm does not monitor. However
when β becomes attractive and θ is not high enough, the path
is of corruption and a monitoring firm, but as θ becomes
larger, even for high amounts of β, the agents are honest..e
upper right panel shows a similar pattern when we study the
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Figure 9: Time series of system for θ � 0.05, θ � 0.15, and θ � 0.4. Parameters: w0 � 0.1, m � 0.1, β � 3, f � 1.5, α � 0.4.
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relation between β and the fine f. If β is small, f serves no
purpose and regardless of the size of the fine, there will be
petty crime. As β increases, the fine, in order to deter crime,
must be very high; otherwise in the long-run there will only
be corrupt agents and a firm that always monitors. However

the challenge is that corrupt agents actually pay the penalties
imposed. .e lower left panel shows the relation between β
and monitoring costs m. We conclude that if monitoring is
cheap, then there is convergence towards an honest agents’
condition. .e lower right panel shows the relation between
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Figure 12: Time series of system for m � 0.3, m � 1.5, and m � 3. Parameters: w0 � 0.1, β � 3, f � 1.5, α � 0.4, θ � 0.4.
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β and the proportion of the recovered earnings α. When β is
high, then the path is towards corrupt agents and a mon-
itoring firm.

6. Concluding Remarks and Future Research

.e main aim of this work was to find out under which
conditions what shares of honest agents andwhat probabilities
of monitoring are evolutionary stable. Hence, we first con-
structed a static model with an associated asymmetric payoff-
matrix which allowed us to infer hypotheses about the growth
of these groups. Second, we use the same payoff-matrix to
build an evolutionary model, using the replicator dynamics
model. Formal analyses of the model revealed the existence of
five possible equilibrium points, which do not however always
exist and which are not always evolutionary stable.

.e complexity behavior of the system is studied by
using 1D and 2D bifurcation diagrams, chaotic attractors,
and limit cycle. Finally, we make effective control of the
chaotic behaviors in the system by using control variables.

From this analysis we can put forward the following
conclusions:

(1) Despite the fact that corrupt agents and a non-
monitoring firm are stable, in practice this happens

only when the probability of detecting wrongdoing is
low and the rate at which the system converges to the
equilibrium point is slow, taking infinite time to
reach the equilibrium, showing an organization that
is always in a transient state. In this case, it is not
possible to predict the proportion of honest agents
the organization will have and since the probability
of detecting wrongdoing is small, the firm will not
monitor at all.

(2) An equilibrium of corrupt agents and a monitoring
firm is stable whenever the earnings per wrongdoing
are high and the penalty is in the low to medium
range. When the penalty is high enough, the equi-
librium of corrupt agents and a monitoring firm
becomes no longer stable, moving towards a neu-
trally stable system, where the center is given by a
proportion of honest agents p∗ and the probability of
monitor is s∗. When the probability of detecting
wrongdoing is small and the conditions of stability
for the equilibrium of corrupt agents and a moni-
toring firm are satisfied, again it may happen that the
rate at which the system converges to the equilibrium
point is slow, taking infinite time to reach the
equilibrium, showing an organization that is always
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in a transient state, where the proportion of honest
agents behaves chaotically, while the firm monitors.

(3) A culture of honest agents, with or without moni-
toring, is never evolutionary stable. Nevertheless,
when the penalty is high enough, the system is
neutrally stable to
E3 � (1 − (m/θ(αβ + f)), (β/θ(w + β + f − w0))),
which converges to E � (1, 0) when f⟶∞.

It is not surprising that an equilibrium of honest agents
(E4 and E5) is not stable, since in an asymmetric game only
pure-strategy Nash equilibria can be asymptotically stable.
Nash equilibrium is a situation in which an individual has no
incentives to change his/her strategies, assuming the other
players remain constant in their actions. .us, the results
found point to the fact that there is not a clear cut solution to
defeat crime. .is is not surprising, as crime has been hard-
to-break behavior since the beginning of time.

.ere is further analysis that could be undertaken in this
field. We would like to highlight two future avenues of re-
search. Firstly, it is relevant to differentiate between petty
crime (that possibly many people do) and serious crimes,
which are more important from a deterrence point of view.
.ese are different types of crimes that require different
deterrence strategies, which obviously in turn imply different
dynamics. Secondly, it could be of great interest, to use the
present dynamic setting to model the case in which indi-
viduals can commit more than one offense (e.g., up to two). In
the static literature, a different fine has been suggested for the
second offense. Indeed, it is argued that, in some cases, it
might be better to punish repeat offenders more severely than
first-time offenders, while in another cases, it might be better
to impose less severe penalties on repeat offenders; see [33].
To explore these assumptions in a dynamic setting could
therefore contribute to the development of the subject.
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