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Extreme Learning Machine (ELM) is widely used in various fields because of its fast training and high accuracy. However, it does
not primarily work well for Domain Adaptation (DA) in which there are many annotated data from auxiliary domain and few
even no annotated data in target domain. In this paper, we propose a new variant of ELM called Discriminative Extreme Learning
Machine with Cross-Domain Mean Approximation (DELM-CDMA) for unsupervised domain adaptation. It introduces Cross-
Domain Mean Approximation (CDMA) into the hidden layer of ELM to reduce distribution discrepancy between domains for
domain bias elimination, which is conducive to train a high accuracy ELM on annotated data from auxiliary domains for target
tasks. Linear Discriminative Analysis (LDA) is also adopted to improve the discrimination of learned model and obtain higher
accuracy. Moreover, we further provide a Discriminative Kernel Extreme Learning Machine with Cross-Domain Mean Ap-
proximation (DKELM-CDMA) as the kernelization extension of DELM-CDMA. Some experiments are performed to investigate
the proposed approach, and the result shows that DELM-CDMA and DKELM-CDMA could effectively extend ELM suitable for
domain adaptation and outperform ELM and many other domain adaptation approaches.

1. Introduction

It is a challenge for mankind to extract or mine valuable
information from massive data generated from mobile de-
vices, Internet, and industrial sensors in the current society.
Classifiers based on machine learning play an important role
in data and information processing systems. Extreme
Learning Machine (ELM) [1] attracts attention due to its
faster learning and higher accuracy compared with kNearest
Neighbor (kNN) [2], Back-Propagating (BP) [3], Naive
Bayes (NB) [4], Support Vector Machine (SVM) [5], and
Decision Tree (DT) [6], and has been widely promoted in
many fields including image classification [7], traffic system
[8], COVID-19 detection [9], fault diagnosis [10, 11],
hyperspectral remote sensing images [12, 13], industrial
sensors [14], facial expression recognition [15], and brain-
computer interface (BCI) [16, 17] etc.

Due to its fast learning and strong generalization ca-
pability, Extreme Learning Machine attracted more atten-
tion. It randomly selects the input weights and the biases of

hidden layer neurons without training data, and only obtains
the optimal solution of output weight by minimizing the
training error and the norm of output weights simulta-
neously [18]. Since the hidden layer parameters are ran-
domly initialized and the output weights are solved by
finding a least squares solution, the training time of the
model is greatly reduced [1]. Recently, many variants of ELM
have emerged for improving its performance and have been
divided into three parts: supervised ELMs, semi-supervised,
and unsupervised ones. Supervised ELMs need numerous
labeled data to ensure its high performance, such as Kernel
Extreme Learning Machine (KELM) [19], Weighted Ex-
treme Learning Machine (WELM) [20], Twin Extreme
Machines (TELM) [21], and Adaptive Regularized Extreme
Learning Machine (A-RELM) [22]. Semi-supervised ELM
usually requires unlabeled data together with labeled data to
train models well, including Laplacian Twin Extreme
Learning Machine (Lap-TELM) [23], Semi-Supervised Ex-
treme Learning Machine (SS-ELM) [24], Robust Semi-Su-
pervised Extreme Learning Machine (RSS-ELM) [25], and
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Adaptive Safe Semi-Supervised Extreme Learning Machine
(AdSafe-SSELM) [26]. In some other cases where no labeled
data are available, some Unsupervised ELM (USELM) al-
gorithms are proposed for clustering, dimension reduction,
or data representation, such as Unsupervised Extreme
Learning Machine (USELM) [24], Extreme Learning Ma-
chine as an Auto-Encoder (ELM-AE) [27], Enhanced Un-
supervised Extreme Learning Machine (EUELM) [28], and
Unsupervised Feature Selection based Extreme Learning
Machine (UFSELM) [29]. Moreover, as deep learning has
been successful in many fields, deep ELMs are also devel-
oped to extract more abstract and expressive features, such
as Kernel-based Multi-Layer Extreme Learning Machine
ELM (ML-KELM) [30], Hierarchical-ELM (H-ELM) [31],
DS-ELM (a deep and stable extreme learning machine) [32],
and Deep Residual Compensation Extreme Learning Ma-
chine (DRC-ELM) [33]. Although the above algorithms
expand the application of ELM in various scenarios, they
perform not well when training data are not related to the
testing data.

In application, it is difficult to collect a large amount of
data which keeps consistent with test data because of
condition change, data noise, view variety, and so on. To
address this issue, Domain Adaptation (DA) [34–36], as an
important transfer learning technology, can remedy this
shortcoming of ELM, in which abundant labeled data from
other domains (source domain) is applied to help the current
domain (target domain) and there is inconsistency in dis-
tribution between domains. Consequently, L. Zhang and
D. Zhang [37] provided two ELMs with domain adaptation
including Source Domain Adaptation Extreme Learning
Machine (DAELM-S) and Target Domain Adaptation Ex-
treme LearningMachine (DAELM-T).+ey can improve the
generalization ability of ELM inmultiple domains. Similar to
DAELM, Zhao and Chen [38] also developed One Stage-
Transfer-Learning ELM (OSTL-ELM) and Two-Stage-
Transfer-Learning ELM (TSTL-ELM) to handle the problem
of insufficient labeled data from target domains in aero
engine fault diagnosis tasks. With the help of subspace
alignment and the weight approximation, Zang et al. [39]
put forward Transfer Extreme Learning Machine with
OutputWeight Alignment (TELM-OWA) to handle domain
adaptation. TL-ELM (Transfer Learning-based ELM) was
proposed by Li et al. [40], in which an output weight from
two domains were forced to be close to each other for
knowledge transfer. In the methods mentioned above, it is a
requirement that there are few labeled data in target do-
mains. However, annotating data are costly, laborious, and
time-consuming. Consequently, some unsupervised models
appear for unsupervised domain adaptation. Chen et al. [41]
presented an transfer ELM, in which output weight align-
ment was applied to reduce domain bias and L2, 1-norm was
imposed on output weight to enhance feature selection. For
minimizing the distribution discrepancy between source and
target domains, Li et al. [42], Chen et al. [43], and Zang et al.
[44] utilized Maximum Mean Discrepancy (MMD) [45] to
promote knowledge transfer in their respective models. Due
to the insufficient target sample labels, the performance of

unsupervised models is usually lower than that of supervised
models, but it is hard to collect labeled target samples.

In this paper, we propose a novel ELM called Dis-
criminative Extreme Learning Machine with Cross-Domain
Mean Approximation (DELM-CDMA) for unsupervised
domain adaptation. It introduces Cross-Domain Mean
Approximation (CDMA) [36] into the objective function of
ELM to jointly adapt the marginal and conditional distri-
butions discrepancy between the output of hidden layers
from source and target samples. CDMA could enhance the
ability of transferring knowledge across domains. Moreover,
to improve the discrimination, Linear Discriminant Analysis
(LDA) [46] is also added into the objective function. It
separates the samples with different categories and clusters
the samples with the same category, which can improve the
accuracy of ELM. Finally, we solve the designed objective
function and obtain an optimal ELM model for domain
adaptation. Moreover, we further present a Discriminative
Kernel Extreme Learning Machine with Cross-Domain
Mean Approximation (DKELM-CDMA) which not only
kernelize DELM-CDMA suitable for nonlinear data but also
eliminate the sensitivity of its accuracy to parameter ini-
tialization. DELM-CDMA is illustrated in Figure 1. Ex-
tensive experiments are carried out to verify the effectiveness
and superiority of DELM-CDMA and DKELM-CDMA for
unsupervised domain adaptation.

Contributions of this paper are as follows:

(1) Joint distribution adaptation based on CDMA
measure is introduced into ELM to narrow distri-
bution differences between domains. We apply LDA
to boost the class separability of DELM-CDMA and
thus improves its accuracy.

(2) As a kernel version of DELM-CDMA, it is proposed
to enhance the robustness for initialization of the
parameters of hidden layers and the adaptability to
nonlinear data.

(3) We efficiently solve a least-squares problem for the
objective function, and obtain an optimal ELM for
unsupervised domain adaptation. Moreover, classi-
fication experiments on object recognition and text
data sets are performed to investigate our ap-
proaches, and the results show that DELM-CDMA
and DKELM-CDMA can efficiently achieve the ca-
pability of transferring knowledge across domains.

+e rest of this paper is summarized as follows: We
describe domain adaptation, CDMA and ELM very simply
in Section 2. +en, we represent DELM-CDMA and
DKELM-CDMA in Section 3. Next, the experiment is
performed in Section 4 to verify the validity of DELM-
CDMA. Finally, Section 5 is the conclusion of this paper.

2. Related Work

Since our method mainly extends ELM to handle domain
adaptation, we will briefly introduce domain adaptation,
CDMA and ELM in this section.
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2.1. Domain Adaptation. Transfer learning [34, 36, 47, 48],
as one of the important research branches of machine
learning, helps target tasks to learn a high-quality model
with the knowledge from source domains which have rich
labeled data/samples but different distributions with target
domains. Domain adaptation [36] is a hot topic in transfer
learning and aims to adjust the distribution between do-
mains in order to eliminate domain shift. In recent years, a
large number of approaches have emerged for domain
adaptation and have been roughly divided into five cate-
gories according to what is adapted, that is, instance ad-
aptation, feature adaptation, parameter adaptation, deep
network adaptation, and adversarial domain adaptation.

(1) Instance Adaptation. Most instance-adaptation
methods attempt to find a strategy in which each
instance is assigned a weight to balance the distri-
bution difference between domains. Li et al. [49]
proposed Prediction Reweighting for Domain Ad-
aptation (PRDA) which first reweighed classifier
training on source domain and then adopted
manifold regularization to diffuse the labels from
high confidence samples to low confidence ones.
TrAdaBoost [50], as a classic domain adaptation
method, weighs each sample in source and target
domains by a dynamic mechanism to minimize the
distribution discrepancy between domains. More-
over, bad samples and good samples from source
domains are distinguished by weight, which pro-
motes the knowledge transferring across domains.

(2) Feature Adaptation. +is method usually finds
shared feature subspace to reduce the domain dis-
tribution bias and transfer knowledge across do-
mains. Many technologies such as K-L discrepancy
[51], Bregman divergence [52], MMD [53], and
Subspace alignment [54–56] are used to minimize
distribution discrepancy and seek optimal common
features between domains. Transfer Component
Analysis (TCA) [57] and Joint Distribution Adap-
tation (JDA) [53] solve a projection matrix mini-
mizing MMD measurement from source and target
domains and extract shared features to obtain ef-
fective target learner training on source domain.

(3) Parameter Adaptation. +ose approaches do not
transfer shared knowledge in instance or feature

levels but find optimal shared parameters of learner
across domains. +e DAELM-S(T), TELM-OWA,
TL-ELM, and so on mentioned above belong to this
method.

(4) Deep Network Adaptation.+ismethod combines the
traditional domain adaptation technology with the
deep learning model. It not only uses the former to
reduce the distribution differences between domains
but also applies the deep network structure of the
latter to extract the high-level respective and semantic
features across domains, which enables more efficient
knowledge transfer. Domain Adaptation Network
(DAN) [58], Joint Adaptation Network (JAN) [59],
and Residual Transfer Network (RTN) [60] all utilize
MMD to reduce the distribution differences between
different domains and the data set bias.

(5) Adversarial Domain Adaptation. Based on the gen-
erative adversarial network, this method produces
target sample/data using domain-invariant feature
generators, and subsequently applies the domain
discriminator training on source samples to find the
weakness of generated samples for generator adap-
tation, which could reduce the domain gap. As an
unsupervised domain adaptation method based on
deep feed-forward architecture, Domain Adversarial
Neural Network (DANN) [61] introduces adversarial
learning for domain adaptation. It simultaneously
learns classifiers, feature extractors, and domain
discriminators and obtains domain-invariant feature
representation by minimizing classifier errors and
maximizing the discriminant errors. Collaborative
and Adversarial Network (CAN) [62] first uses
collaborative learning to distinguish the domain-
informative features of the sample belonging to
source domain or target domain, and then utilizes
adversarial learning to learn difficult-distinguish
domain-uninformative features. Finally, domain-
invariant features could be extracted.

In the methods mentioned in Section 2.1, the instance
adaptation method has higher knowledge transferring effi-
ciency, but it usually requires high-quality samples to ensure
its excellent performance. Feature adaptation method has
higher flexibility and wider application, but finding the
shared feature with better generalization is a challenge. Due
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Figure 1: An illustration of DELM-CDMA. (1) Cross-domain mean approximation (CDMA) is adopted to reduce the domain shift. (2)
Linear discriminant analysis (LDA) is added into object function to enhance the discrimination ability of DELM-CDMA. (3) +e objective
function is solved efficiently.
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to the lack of direct utilization of sample and feature in-
formation, the parameter adaptation method usually has
lower efficiency of knowledge transfer compared with the
two former ones, but its domain knowledge utilization is
more diversified. Deep network adaptation and adversarial
domain adaptation have good performance owing to higher-
level feature extraction. +ey strictly belong to feature ad-
aptation method because obtaining good features is their
primary task. However, Deep network adaptation usually
requires plenty of labeled samples, more consuming-time
and memory, simultaneously finding efficient feature ex-
tractors and discriminators is also a challenge for adversarial
domain adaptation. In this paper, DELM-CDMA belongs to
parameter adaptation method, and DKELM-CDMA is
shallow feature adaptation method.

2.2. Cross-Domain Mean Approximation (CDMA). To ad-
dress the problem that MMD ignores sample individual
difference, and thus insufficiently mining local information
of data, Zang et al. [36] designed Cross-Domain Mean
Approximation (CDMA), as shown in Figure 2. Given
source domain xSi, ySi􏼈 􏼉

nS

i�1 with nS sample xSi and according
to its label ySi, and target domain xTj, yTj􏽮 􏽯

nT

j�1 including nT

sample xTj and according to its label yTj.+e distribution
discrepancy between source and target domains based on
CDMA can be defined as follows:

LCDMA DS, DT( 􏼁 � 􏽘

nS+nT

i�1
xi − μ

����
����
2
2, (1)

where μ �
μT, if xi ∈ DS

μS, if xi ∈ DT

, μT(S) is the mean vector of the

target (source) domain samples. Moreover, to adapt the
marginal and conditional distribution together, label in-
formation of sample is added into CDMA, and (1) is
modified as given in the following equation:
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where μ(c) �
μ(c)

T , if x
(c)
i ∈ D

(c)
S

μ(c)
S , if x

(c)
i ∈ D

(c)
T

, μ(c)
T(S) is the mean vector of

the target (source) domain D
(c)
T(S) with c category.

ELM is a single-layer neural network with fast learning
and high accuracy, without tuning input weight and bias. It
efficiently obtains optimal output weight by solving a least

squares problem. Given a data set (xi, yi)􏼈 􏼉
N

i�1 including N

samples xi with label yi. A classic ELM network is given:
CDMA is an efficient evaluation metric of the distribution

discrepancy between domains, which is adopted in our DELM-
CDMA and DKELM-CDMA to reduce the marginal and
conditional distribution discrepancy. Different from Joint Dis-
tribution Adaptation based on Cross Domain Mean Approxi-
mation (JDA-CDMA) [36] which uses CDMA to construct the
objective function and incorporates subspace learning for
extracting shared feature between the source and target domains,
DELM-CDMA applies CDMA into the hidden layer of ELM for
domain bias elimination and enhancing the generalization of the
parameters of learned ELM and DKELM-CDMA applies
CDMA together with reconstruction error for shared feature
extraction in KELM framework.

2.3. Extreme LearningMachine (ELM). ELM is a single-layer
neural network with fast learning and high accuracy, without
tuning input weight and bias. It efficiently obtains optimal
output weight by solving a least squares problem. Given a
data set (xi, yi)􏼈 􏼉

N

i�1 including N samples xi with label yi. A
classic ELM network is given by the following equation:

y
T
i � 􏽘

L

j�1
βT

j g wjxi + bj􏼐 􏼑, (3)

where xi is an input sample, wj and bj are the input layer
weight and bias, respectively, g(x) represents the nonlinear
activation function, L represents the number of nodes in the
hidden layer, and βj represents the hidden layer output
weight. We can obtain an optimal β∗ by solving the objective
function as given by the following equation:

min
β

:
1
2
‖β‖

2
+
λ
2

􏽘

N

i�1
εi

����
����
2

s.t.g xi( 􏼁β � yTi − εTi , i � 1, . . . , N,

(4)

where ‖β‖2 is applied to avoid model overfitting, εi is the
error vector corresponding to the empirical risk of sample xi

with the tradeoff parameter λ. +e constraint is removed and
equation (4) changes into the following equation:

LELM � min
β

:
1
2
‖β‖

2
+
λ
2
‖Y − Hβ‖

2
, (5)

where H � [g(xi)
T, . . . , g(xN)T]T, β �

β1
⋮
βL

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦, and

Y �

y1
⋮
yN

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦.
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+e objective function is considered as a ridge regression
or a regular least square problem. We set zLELM/zβ � 0 and
the optimal solution is got according to [18] as given by the
following equation:

β∗ �

HTH +
IL

λ
􏼒 􏼓HTY, N>L,

HT HTH +
IN

λ
􏼒 􏼓Y, N≤L.

(6)

+en, the prediction result of test sample xTe can be
determined by the following equation:

yTe �
sign hTTeβ∗􏼐 􏼑, for binary classification,

argmax hTTeβ∗􏼐 􏼑, formulti − classification,
(7)

where hTe � g(xTe).

3. Proposed Methodology

In recent decades, ELM has been better than traditional
classifiers of machine learning in speed and accuracy because
of its ability in the generalization and global approximation.
+us, many variants of ELM appear for classification and
regression in machine learning and pattern recognition to
improve it in both theory and application. Nevertheless,
ELM will be unsuccessful in the case of insufficient labeled
samples [37]. In response to this issue, we develop Dis-
criminative Extreme Learning Machine with Cross-Domain
Mean Approximation (DELM-CDMA) for unsupervised
domain adaptation, which use CDMA to narrow the mar-
ginal and conditional distributions between domains and
adopt LDA to enhance category separability. Next, we will
introduce it in detail in this Section 3.1.

3.1. Objective Function of DELM-CDMA. In unsupervised
domain adaptation, given two different but related data sets:
source domain DS � (xs(i), ys(i))􏽮 􏽯

nS

i�1 owning nS sample xSi

with label ySi, and target domainDT � xTj􏽮 􏽯
nT

j�1 including nT

unlabeled sample xTj. We hope DELM-CDMA training on
DS perform well on DT.

First, we transform DS and DT to HS and HT using
activation function g(x), and then construct the objective
function of DELM-CDMA as given by the following equation:

LDELM−CDMA � LELM + α1LCDMA + α2LLDA. (8)

From equation (8), we can see that there are three parts
in the objective function of DELM-CDMA. LELM represents
the loss function of regularized ELM, LCDMA denotes
marginal or conditional CDMA measure between source
and target domains, and LLDA is LDA term. α1 and α2 are
tradeoff parameters of LCDMA and LLDA, respectively.

3.1.1. Loss Function of Regularized ELM. In this paper, we
carry out unsupervised domain adaptation task in which no
labeled samples appear on target domain, so we can obtain a
Regularized ELM on source domain as given by the fol-
lowing equation:

LELM � min
β

:
1
2
‖β‖

2
+
λ1
2

HSβ − YS

����
����
2
. (9)

In equation (9), the first term is a regularizer to avoid
over-fitting, and the second term is classification error of
samples from source domain. λ1 is a parameter that balances
the two terms.

In the iterative refinement process of labels, when the
pseudo labels of the target samplesY

∧
T are obtained, we could

add the classification error from target domain, and equa-
tion (9) becomes equation (10).

LELM � min
β

:
1
2
‖β‖

2
+
λ1
2

HSβ − YS

����
����
2

+ HTβ − Y
∧
T

�������

�������

2
􏼠 􏼡

� min
β

:
1
2
‖β‖

2
+
λ1
2

‖Hβ − Y‖
2

􏼐 􏼑,

(10)

where H �
HS

HT

􏼠 􏼡 and Y �
YS

Y
∧
T

􏼠 􏼡.

3.1.2. Cross-Domain Mean Approximation Measure. In
unsupervised domain adaptation, since source domain and
target domain have distribution discrepancy, the prediction
error of model training on DS become increases on target
domain. CDMA is an effective strategy for evaluation of
inter-domain distribution differences. We apply it to mea-
sure the distribution discrepancy of output-layer data of
ELM training on source and target domains, and compute it
as given by the following equation:

LCDMA � min
β

:
1
2

HTβ − HS_avβ
�����

�����
2

+ HSβ − HT_avβ
�����

�����
2

􏼒 􏼓 +
1
2

􏽘
C

c�1
H(c)

T β − H(c)
S_avβ

�����

�����
2

+ H(c)
S β − H(c)

T_avβ
�����

�����
2

􏼒 􏼓
⎧⎨

⎩

⎫⎬

⎭. (11)

In equation (11), the first term measures the marginal
distribution discrepancy, and the second term measures the
conditional distribution discrepancy.

3.1.3. Linear Discriminant Analysis on Output Layer. To
further improve the discrimination of ELM, we add Linear
Discriminant Analysis (LDA) into it. LDA forces the samples

with the same class closer and the ones with different class
farther so as to enhance ELM category separability in un-
supervised domain adaptation. We apply LDA on data from
the output layer, in which Sb and Sw, respectively, denote the
between-class scatter and the within-class scatter and could
been computed as given by the following equation:

Complexity 5



Sb � 􏽘
C

c�1
n

(c) βH(c)
− βHav􏼐 􏼑

T
βH(c)

− βHav􏼐 􏼑, (12)

Sw � 􏽘

C

c�1
􏽘

n(c)

i�1
βH(c)

− βH(c)
av􏼐 􏼑

T
βH(c)

− βH(c)
av􏼐 􏼑. (13)

In equations (12) and (13), Hav �
HT_av
HS_av

􏼠 􏼡,

H(c)
av �

H(c)
T_av

H(c)
S_av

⎛⎝ ⎞⎠,H(c) represents samples with c category in

HS andHT.HS_av andHT_av are mean vectors ofHS andHT,
respectively. H

(c)
T(S) av is the mean vector of the target

(source) domain H
(c)
T(S) with c category. +en, we construct

the loss of LDA on the output layer as given by the following
equation:

LLDA � min
β

:
1
2

Sw − Sb( 􏼁. (14)

3.1.4. Total Objective Function. To improve the ability of
knowledge transferring and discrimination of ELM, DELM-
CDMA joins CDMA and LDA to ELM. +erefore, we bring
equations (9) or (10), (11) and (14) into (8), and then the
objective function of DELM-CDMA is established:

LDELM−CDMA � LELM + α1LCDMA + α2LLDA

� min
β

:

1
2
‖β‖

2
+
λ1
2

‖Hβ − Y‖
2

+
α1
2

Hβ − Havβ
����

����
2

+ 􏽘

C

c�1
H(c)β − H(c)

av β
�����

�����
2

􏼒 􏼓⎛⎝ ⎞⎠

+
α2
2
βT

􏽘

C

c�1
􏽘

n(c)

i�1
H(c)

− H(c)
av􏼐 􏼑

T
H(c)

− H(c)
av􏼐 􏼑

− 􏽘
C

c�1
H(c)

av − Hav􏼐 􏼑
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(15)

3.2. Model Learning. To solve optimal output weight, we let
zLDELM−CDMA/zβ � 0 and yield
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According to [18], equation (16) has a closed form
solution:
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After optimal β∗ is obtained, the test samples are clas-
sified by equation (7). A complete classification procedure of
DELM-CDMA is summarized in Algorithm 1.

3.3. Kernelization. Although DELM-CDMA can improve
the performance of ELM with fewer labeled samples or lack
of conditions, it has two shortcomings: (1) +e random
initialization of hidden layer parameters will cause perfor-
mance instability. (2) Inability to enhance the high-di-
mensional separability of nonlinear data. +erefore, we
present a kernel version of DELM-CDMA named

Discriminative Kernel Extreme Learning Machine with
Cross-Domain Mean Approximation (DKELM-CDMA) to
address above problems. DKELM-CDMA has two stages:
feature extraction and classification.

3.3.1. Feature Extraction. At this stage, we let K � HHT,
K(ij) � g(xi)g(xj)

T � Ω(xi, xj), Ω(xi, xj) is a kernel
function such as sigmoid kernel, linear kernel, and radial
basis kernel. +e objective function of DKELM-CDMA is
given by the following equation:

LDKELM−CDMA � LKELM + αk1LCDMA + αk2LLDA
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,

(18)

where X � x(i)􏽮 􏽯
nS+nT

i�1 and K are its kernel maps of Kav �

KT_av
KS_av

􏼠 􏼡 and K(c)
av �

K(c)
T_av

K(c)
S_av

⎛⎝ ⎞⎠; K(c) represents samples

with c category inKS andKT.KS andKT are the kernel maps
of xS(i)􏽮 􏽯

nS

i�1 and xT(j)􏽮 􏽯
nT

j�1. KS_avand KT_av are mean vectors

of KS and KT, respectively. K
(c)
T(S) av is the mean vector of the

target (source) domain K
(c)
T(S) with c category.

+e first term of equation (18) is
LKELM � min

βk

: 1/2‖βk‖2 + λ2/2‖Kβk − X‖2, and the second
and third terms are CDMA measure and LDA, respectively.
αk1 and αk2 are tradeoff parameters of LCDMA and LLDA,
respectively.

+e first part of LKELM is the regularization parameter to
prevent model overfitting, and the second part of LKELM

denotes the reconstruction error. λ2 is a parameter that
balances the two parts. We set zLDKELM−CDMA/zβk � 0, and
get
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βk

−λ2K Kβk − X( 􏼁
T

+
αk1

2

K − Kav( 􏼁 K − Kav( 􏼁
T

+ 􏽘
C

c�1
K(c)

− K(c)
av􏼐 􏼑 K(c)

− K(c)
av􏼐 􏼑

T

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+αk2

􏽘

C

c�1
􏽘

n(c)

i�1
K(c)

− K(c)
av􏼐 􏼑 K(c)

− K(c)
av􏼐 􏼑

T

− 􏽘
C

c�1
K(c)

av − Kav􏼐 􏼑 K(c)
av − Kav􏼐 􏼑

T

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

βk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 0, (19)

β∗k � KT Ω + αk1

K − Kav( 􏼁 K − Kav( 􏼁
T

+ 􏽘
C

c�1
K(c)

− K(c)
av􏼐 􏼑 K(c)

− K(c)
av􏼐 􏼑

T

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + αk2

􏽘

C

c�1
􏽘

n(c)

i�1
K(c)

− K(c)
av􏼐 􏼑 K(c)

− K(c)
av􏼐 􏼑

T

− 􏽘
C

c�1
K(c)
av − Kav􏼐 􏼑 K(c)

av − Kav􏼐 􏼑
T

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
I nS+nT( )× nS+nT( )

λ2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

X.

(20)

After obtaining β∗k , we could learn a new feature rep-
resentation of DS and DT by KS1� KSβ

∗
k , KT1� KTβ

∗
k .

3.3.2. Classification. At this stage, we transformKS1 andKT1
to KS2 and KT2 by kernel mapping
kij1 ⟶ mappingΩ(kij1) � kij2. We obtain a standard repre-
sentation of kernel ELM according to [19].

f(x)� Ω kij1􏼐 􏼑KT
S2 Ω KS2( 􏼁 +

InS

λ3
􏼠 􏼡YS, (21)

where f(x) is output of a test sample x, λ3 is the tradeoff
parameter of empirical risk in kernel ELM. We summarize
the DKELM-CDMA procedure in Algorithm 2.

4. Experiment and Analysis

In this section, we will perform experiments on object
recognition and text data sets (described in Tables 1 and 2)
for classification tasks under domain adaptation, and esti-
mate DELM-CDMA and DKELM-CDMA. For fairness, all
experiments were conducted on a PC with 8GB memory

and Windows 10 operating system. +e algorithms are
implemented in MATLAB 2017b. Each experiment runs 20
times, and the average is recorded. +e accuracy rate
[36, 39, 53] is adopted to evaluate each algorithm in
experiments.

4.1. Data Set Description. USPS+MNIST [53]: USPS and
MNIST (shown in Figure 3 and Table 1) are two image data
sets with different but related distributions for handwritten
number recognition. +ey share 10 categories from 0 to 9.
USPS data set contains 9,298 images with 16×16 pixels, and
MNISTdata set collects 70,000 images with 28× 28 pixels. In
this section, 1800 images from USPS data set and 2000
images from MNIST data set are selected for domain ad-
aptation, and then we construct two domain adaptation
tasks: USPS⟶MNIST, MNIST⟶USPS. Moreover, all
the images are uniformly transformed into grayscale images
with 16×16 pixels, and each image is represented by a 256-
dimensional vector encoding the grayscale values of all pixels.

MSRC+VOC2007 [63]: MSRC and VOC2007 (shown in
Figure 4 and Table 1) are two common object recognition

Input: Data set DS and DT, tradeoff parameters α1, α2, and λ1.
Output: Output layer weight β∗

Step 1: Randomly initialize input weights w and biases b of the hidden layer with L nodes, and set tradeoff parameters α1, α2, and λ1.
Step 2: Transform DS � (xs(i), ys(i))􏽮 􏽯

nS

i�1 and DT � xTj􏽮 􏽯
nT

j�1 to HS and HT using g(wx + b), and set Sb and Sw to zero.
Step 3: Calculate β∗ according to equation (17).
Step 4: Use β∗ to predict DT and get its label Y

∧
T.

Step 5: Solve Sb and Sw by using DS, DT, and Y
∧
T according to equations (12) and (13).

Step 6: Repeat steps 3–5 until Y
∧
T unchanged.

ALGORITHM 1: DELM-CDMA
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image data sets. MSRC has 4,323 images from 18 categories,
and VOC2007 contains 5,011 images from 20 categories.
Both are different but related. In MSRC and VOC2007 data
sets, we, respectively, choose 1269 pictures and 1530 pictures
from 6 shared classes including airplanes, birds, cows, family
cars, sheep, and bicycles, and set two domain adaptation
task: MSRC⟶VOC and VOC⟶MSRC. In this exper-
iment, all the pictures are transformed into 0∼256 gray
pixels, and extract 240 dimensions. All images are rescaled to
be 256 pixels in length, and extract 128-dimensional dense
SIFT (DSIFT) features. A 240-dimensional codebook is
created, where K-means clustering is used to obtain the
codewords.

Office +Caltech [53]: Office +Caltech data set (shown in
Figure 5 and Table 1) released by Gong [51] for visual cross-
domain object recognition. Office data set includes three
sub-data sets: Amazon (A), Webcam (W), and DSLR (D), in
which 4,652 images with31 categories are collected. Caltech-
256 (C) is also a benchmark data set for target recognition, in
which 30,607 images from 256 categories are collected. In
this experiment, we select 10 shared categories in four

domains C (Caltech-256), A (Amazon), W (Webcam), and
D (DSLR) with a total of 2,533 images with 800 SURF
features, shown in Table 1. During the experiment, we can
construct 12 groups of domain adaptation task, such as
C⟶A, C⟶W, C⟶D, . . ., and D⟶W.

Office31 [64]: Office-31 (shown in Table 1) is a standard
benchmark for domain adaptation, which contains 4,652
images with 31 categories and consists of three real-world
object domains: amazon, webcam, and dslr. In this paper, we
use 2,048-dim ResNet-50 [65] features to conduct 6 cross-
domain tasks, that is, amazon vs dslr, amazon vs webcam,
dslr vs amazon, dslr vs webcam, webcam vs amazon,
webcam vs dslr.

Reuters-21578 [66]: Reuters-21578 text data set is
commonly used for text categorization in domain adapta-
tion, in which 21,577 news articles were collected and an-
notated by Reuters and divided into 5 categories: exchanges,
orgs, people, places, and topics. In every text, a corpus
becomes a digital data processing that takes out every word
that appears as a feature. In this section, we adopt articles
from 3 largest classes (shown in Table 2): orgs, people, and

Input: Data set DS and DT, tradeoff parameters αk1, αk2 , and λ2.
Output: Target output Y

∧
T.

Step 1: Map DS � (xs(i), ys(i))􏽮 􏽯
nS

i�1 and DT � xTj􏽮 􏽯
nT

j�1 to KS and KT using Ω(x), and set Sb and Sw to zero.
Step 2: Calculate β∗k according to equation (20).
Step 3: Set KS1� KSβ

∗
k , KT1� KTβ

∗
k , and map KS1 and KT2 to KS2 and KT2 using Ω(x).

Step 4: Predict DT and get its label Y
∧
T according to equation (21).

Step 5: Solve Sb and Sw by using KS, YS􏼈 􏼉, KT,Y
∧
T􏼚 􏼛 and according to equations (12) and (13).

Step 6: Repeat steps 2–5 until Y
∧
T unchanged.

ALGORITHM 2: DKELM-CDMA.

Table 1: Description of image data sets.

Data set Type of data Number of samples Dimension Class Contains subsets
USPS Digit 1,800 256 10 USPS
MNIST Digit 2,000 256 10 MNIST
MSRC Object 1,269 240 18 MSRC
VOC2007 Object 1,530 240 20 VOC
Caltech-256 Object 1,123 800 10 Caltech

Office-10
AMAZON Object 958 800 10 AMAZON
Webcam Object 295 800 10 Webcam
DSLR Object 157 800 10 DSLR

Office-31
Amazon Object 2,817 2,048 31 Amazon
Webcam Object 795 2,048 31 Webcam
Dslr Object 498 2,048 31 Dslr

Table 2: Description of reuters-21578 data set.

Data set Type of data Number of samples Dimension Class Contains subsets

Reuters-21578:
Orgs Text 1,237 4,771 Binary Orgs
People Text 1,208 4,771 Binary People
Place Text 1,016 4,771 Binary Place

Complexity 9



place, and then construct 6 domain adaptation tasks: orgs vs
people, people vs orgs, orgs vs place, place vs orgs, people vs
place, and place vs people.

4.2. Compared Algorithm and Setting. To investigate our
method, we choose several classification algorithms for
comparison.

4.2.1. Non-Adaptation Domain Classifiers. 1NN: k Nearest
Neighbor classifier; we choose one sample as target nearest
neighbor.

SVM: Support vector machine with linear kernel; we set
SVM penalty parameter belong to 0.1, 0.5, 1, 5, 10, 50, 100{ }.

ELM: Standard extreme learning machine.
SSELM: Semi-Supervised ELM with graph

regularization [24].

4.2.2. Shallow Adaptation Domain Classifiers. TCA1, TCA2:
Classifier combining TCA [57] with 1NN (TCA1) and
classifier combining TCA with SVM (TCA2).

JDA1, JDA2: Classifier combining JDA [53] with 1NN
(JDA1) and classifier combining JDA with SVM (JDA2). We
set parameters in TCA and JDA according to [53].

DAELM_S, DAELM_T [37]: Supervised ELMs for do-
main adaptation.

KMM [67]: Kernel Mean Matching with resampling
weights. Its result in this section is cited from [42].

LMPROJ [68]: A large margin hyperplane classifier
based on SVM. We cite its result from [42].

ARRLS [66]: A general transfer learning framework
referred to adaptation regularization based on transfer
learning using squared loss. We set its parameters according
to [66].

TELM-OWA [39]: Supervised ELM using output weight
alignment for domain adaptation. We set its parameters
referred [39].

CDELM-M, CDELM-C: An unsupervised ELM using
MMD and manifold regularization for domain adaptation.
We cited its result in [42] for comparison.

JUC-SDELM [69]: An unsupervised ELM using MMD
and the scalable factor for domain adaptation. We cited its
result in [69] for comparison.

4.2.3. Deep Domain Adaptation Classifiers. DAN [58]: A
deep domain adaptation network with multi-kernel MMD
for domain adaptation. We cited its result in [59] for
comparison.

(a) (b)

Figure 3: Image samples from (a) MNIST and (b) USPS.

(a) (b)

Figure 4: Image samples from (a) MSRC and (b) VOC2007.

(a) (b) (c) (d)

Figure 5: Image samples from Amazon, Caltech, DSLR, and Webcam. (a) DSLR. (b) Amazon. (c) Webcam. (d) Caltech-256.
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JAN [59]: A deep domain adaptation network for do-
main adaptation by aligning the joint distributions of
multiple domain-specific layers across domains. We cited its
result in [59] for comparison.

DANN [61]: An adversarial domain adaptation network
with domain-invariant feature extractor. We cited its result
in [62] for comparison.

CAN [62]: A adversarial domain adaptation network
adopting collaborative learning and adversarial learning for
domain adaptation. We cited its result in [62] for
comparison.

ELM-CDMA, DELM-CDMA, and DKELM-CDMA are
our methods. ELM-CDMA is a special case of DELM-
CDMA when the LDA term is 0.

It is noteworthy that we set the penalty parameter
λ(1) ∈ [10−3, 10−1] in ELM, SSELM, DAELM_S, DAELM_T,
TELM-OWA, ELM-CDMA, and DELM-CDMA. In ELM-
CDMA and DELM-CDMA, we set α1 ∈ [10−2, 102],
α2 ∈ [10−4, 10−2], and L � 2000 on Office +Caltech and
offfice31 data sets, L � 3000 on USPS +MNIST and
MSRC+VOC2007 data sets, L � 3000 on Reuters-21578
data set. We evaluate DAELM_S, DAELM_T, and TELM-
OWA in unsupervised domain adaptation task by selecting
0.5% labeled target samples on USPS +MNIST,
MSRC+VOC2007, and Reuters-21578 data sets and 1%
labeled target samples on Office +Caltech data set to train
model. For DKELM-CDMA, we set balance coefficient
αk1 ∈ [10−1, 101] on USPS +MNIST, Reuters-21578, Offi-
ce +Caltech and offfice31 data sets, αk1 � 10−4 on
MSRC+VOC2007 data set, and set αk2 ∈ [10−2, 101], pen-
alty coefficient λ2 ∈ [10−1, 103] and kernel parameter
σ1 ∈ [10− 1, 103] on 5 data sets at feature extraction stage. We
let λ3 ∈ [101, 103] and kernel parameter σ2 ∈ [101, 104] on 5
data sets at classification stage.

4.3. Results and Analysis. We present the accuracy of all
algorithms in Tables 3–5 and Figures 6–10 and find that

(1) DKELM-CDMA achieves best average result in
Tables 3 and 4 with help of CDMA and LDA. Es-
pecially in Table 3, the average result is 56.7%, much
higher than other methods, which indicate that
CDMA could efficiently reduce the distribution
discrepancy of output-layer data from source and
target domains and significantly promote the
knowledge transfer capability of ELM in unsuper-
vised domain adaptation. DKELM-CDMA could
further mine shared features across domains, so it
achieves better accuracy than DELM-CDMA.

(2) DELM-CDMA and ELM-CDMA perform better
than other methods on most tasks in total average,
which shows again that CDMA is efficient for un-
supervised domain adaptation. It extends ELM in
wide application scope and scene. DELM-CDMA
outperform ELM-CDMA on most tasks with the

help of LDA, showing that LDA also improves
discrimination of ELM for domain adaptation.

(3) Compared with DKELM-CDMA, DELM-CDMA,
and ELM-CDMA, TELM-OWA and DAELM_T get
bad results, because they are supervised classifiers
requiring a few labeled samples on target domain.
Moreover, the traditional classifiers, such as 1NN,
SVM, and ELM, are unsuccessful because of inability
in knowledge transfer. ELM gains slightly better
performance than 1NN and SVM due to its good
generation. SSELM has better performance than
ELM by mining manifold structure information of
data.

(4) Although ARRLS, CDELM-M(C), JUC-SDELM,
KMM, and LMPROJ also can gain better results with
the help of statistical adaptation mechanism like
MMD, (D)ELM-CDMA are more successful duo to
CDMA is more efficient than MMD. TCA1 (2) and
JDA1 (2) have higher accuracy than 1NN and SVM,
depending on cross-domain shared feature
extraction.

(5) In Table 5 and Figure 10, we run 1NN, SVM, ELM,
SSELM, DAELM_S, DAELM_T, ARRLS, TELM-
OWA, ELM-CDMA, DELM-CDMA, and DKELM-
CDMA on the Office-31 data set with ResNet-50
features comparing with deep adaptation domain
methods DAN, DANN, JAN, and CAN. As a ma-
chine learning classification model with shallow
network structure, DELM-CDMA, although not
extracting shared high-level features, performs well
on more complex data sets combined with deep
feature extraction networks. It clearly demonstrates
that DELM-CDMA equipped with deep generic
features could further reduce the cross-domain
discrepancy and achieve the best adaptation per-
formance, which demonstrates the potential of our
method. However, DKELM-CDMA does not work
well on data office31. A possible explanation is that
its feature extraction process hurts the quality of
features already extracted by ResNet-50.

We carry out experiment onMNIST⟶USPS data set to
compare the running-time in 1NN,SVM, ELM,S-
SELM,TCA1(2), JDA1(2), DAELM_S, DAELM_T, ARRLS,
DELM-CDMA, and DKELM-CDMA, and the results are
shown in Table 6. It can be seen: (1) ELM has least running-
time because of fast learning speed, and the algorithm based
on ELM also spend less time cost than ones based on 1NN
and SVM, such as TCA1(2) and JDA1(2). (2) DELM-CDMA
spends more running-time than DAELM_S and DAELM_T
because of the additional calculation generated by CDMA
and LDA, but its time cost is lower than ARRLS in which
MMD matrix and graph regulation term are required to
construct. (3) TELM-OWA and DKELM-CDMA have
similar time consumption more time than ELM, SSELM,
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DAELM_S, and DAELM_T, because they all need to solve
the output weights twice during training. (4) SSELM needs
more time than ELM because of manifold regulation. (5)
JDA2 has most running time because it need to construct the
marginal and conditional MMD matrix, and SVM has a
complex solving process.

+rough the above analysis, it can be seen that compared
with other methods, DKELM-CDMA and DELM-CDMA
do not require more time consumption while achieving
higher accuracy.

4.4. Parameter Sensitivity Analysis. To evaluate the sensi-
tivity of DELM-CDMA to parameters α1, α2, λ1 and number
of hidden layer nodes(L) and its convergence, we run ex-
periments on org vs people, MSRC vs VOC, MNIST vs
USPS, A vs D and amazon vs dslr data sets, and the results
are shown in Figures 11(a)–11(e). We can see that: (1) the
accuracy increases first and then little decreases with α1, α2,
λ1 growing, and DELM-CDMA achieve optimal results
when α1 ∈ [10−2, 100], α2 ∈ [10−3, 10−1], and
λ1 ∈ [10−3, 10−2], respectively. Because α1, α2, and λ1 adjust
CDMA, LDA, and output weight regularization terms, re-
sults in Figures 11(a)–11(c) show that CDMA, LDA, and
output weight regularization term, adjusted the appropriate
range, can improve the knowledge transfer ability and
discrimination of ELM and avoidmodel from overfitting. (2)
From Figure 11(d), we can see that the accuracy of DELM-
CDMA increases first and then slightly decreases with L

growing on most data sets. Wider hidden layer as soon as
possible can improve the approximation ability of the

function, but it will weaken the ELM performance of domain
adaptation by damaging cross-domain metric performance
of CDMA. (3) As shown in Figure 11(e), by observing the
variation of accuracy with the increase of iterations, we find
that finally converge after several iterations, which shows
that DELM-CDMA has good robustness.

Similar to DELM-CDMA, we carry out some exper-
iments on org vs people, MSRC vs VOC, MNIST vs USPS,
A vs D data set, and amazon vs dslr data sets to observe
influence of parameter αk1, αk2, and λ2 on the accuracy of
DKELM-CDMA, its convergence, and CDMA distance.
We record results in Figure 12 and can see that: (1)
Generally, the sensitivity of parameter αk1, αk2, and λ2 are
different for various data sets, but DKELM-CDMAmainly
achieves good performance when αk1 ∈ [10− 2, 100],
αk2 ∈ [10− 3, 10− 1], and λ2 ∈ [10− 3, 100], respectively,
shown in Figures 12(a)–12(c). (2) From Figure 12(d), we
can see that the accuracy is increasing iteratively, and
finally converges after several iterations, so the robustness
of DKELM-CDMA is strong. (3) We investigate CDMA
distance with iteration growing, and the result is shown in
Figure 12(f ). We can see that: with the increase of iter-
ation number, the CDMA distance becomes small, and the
accuracy becomes high, which indicate that DKELM-
CDMA could extract effective shared feature represen-
tation across domains relying on CDMA to reduce
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Figure 6: Classification accuracy of different algorithms on
USPS +MNIST data set.
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Figure 8: Classification accuracy of different algorithms on MSRC+VOC data set.
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Table 6: Comparison of running time on MNIST⟶USPS.

Algorithm 1NN SVM ELM SSELM TCA1 TCA2 JDA1 JDA2 DAELM_S DAELM_T ARRLS TELM-
OWA

DELM-
CDMA

DKELM-
CDMA

Time(s) 0.6 8.8 0.4 3.5 4.7 5.5 48.3 53.6 0.8 0.6 2.1 3.7 1.9 3.7
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Figure 11: Continued.
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Figure 11: Effect of iteration, number of hidden layer nodes, and parameters α1, α2, and λ1 on the accuracy of DELM-CDMA.
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differences in marginal and conditional distributions
between domains, and facilitate the cross-domain transfer
of knowledge.

5. Conclusion

In this paper, we propose a novel ELM model called
Discriminative Extreme Learning Machine with Cross-
Domain Mean Approximation for Unsupervised Domain
Adaptation. Based on traditional ELM, it introduces
Cross-Domain Mean Approximation to jointly minimize
the marginal and conditional distribution from the data
of output layers between source and target domains
which enhance the ability of ELM to transfer knowledge.
We also add Linear Discriminant Analysis to further

improve the discrimination which improves the accuracy
of ELM. In addition, in order to overcome the sensitivity
of DELM-CDMA to the initialization of hidden layer
parameters, we further propose DKELM-CDMA as the
kernel version of DELM-CDMA, which further facilitates
the fitting for nonlinear data. Finally, we run DELM-
CDMA and DKELM-CDMA on many experiments for
unsupervised domain adaptation, and the results show
that the proposed approach can effectively enhance the
efficiency of cross-domain knowledge transfer in ELM.
Although DELM-CDMA and DKELM-CDMA work well
in domain adaptation, they cannot fully utilize high-level
semantic features representation because of their own
shallow network structure. +erefore, we design a
DKELM-CDMA with deep learning for feature extrac-
tion in future.
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Figure 12: CDMA distance and Effect of iteration and parameter αk1, αk2, and λ2 on the accuracy of DKELM-CDMA.
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