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,e appearance of nonlinear equations in science, engineering, economics, and medicine cannot be denied. Solving such
equations requires numerical methods having higher-order convergence with cost-effectiveness, for the equations do not have
exact solutions. In the pursuit of efficient numerical methods, an attempt is made to devise a modified strategy for approximating
the solution of nonlinear models in either scalar or vector versions. Two numerical methods of second-and sixth-order con-
vergence are carefully merged to obtain a hybrid multi-step numerical method with twelfth-order convergence while using seven
function evaluations per iteration, resulting in the efficiency index of about 1.4262. ,e convergence is also ascertained the-
oretically, and the asymptotic error constant is computed. Furthermore, various numerical methods of varying orders are used to
compare the numerical results obtained with the proposed hybrid method in approximate solution, number of iterations, absolute
error, absolute functional value, and the machine time measured in seconds. ,e obtained results outperformed the chosen
methods when applied models arising from physical and natural fields were solved. Finally, to observe the convergence
graphically, some complex polynomials are plotted as polynomiographs, wherein the rapid convergence of the proposed method
is guaranteed.

1. Introduction

Computing the approximate zeros of the nonlinear scalar
and vector functions is one of the most important and
interesting research areas in the modern age. ,ere are
many applications of the root-finding methods in dif-
ferent disciplines of science as well as in arts and eco-
nomics. With the help of several mathematical techniques,
a variety of complex problems in different applied sciences
can be modulated in the form of nonlinear equations and
then can be readily solved via different root-finding
techniques. A root-finding method in mathematics and
computer technology is a method for finding zeros,
commonly known as ”roots” of continuous functions. A
zero of a real-valued or a complex-valued function f, is a

value r such that f(r) � 0. Mostly, the root-finding
techniques give approximations to zeros, expressed either
as floating-point integers or as tiny isolating intervals, or
discs for real or complex roots, because the zeros of a
function cannot be calculated accurately with available
analytical techniques.

Most numerical approaches for root-finding rely on the
iteration process, which generates a series of discrete points
that should converge towards the root as a limit. ,ese it-
eration schemes start with one or more estimations of the
root as initial inputs, and every iteration of the process
generates a more accurate estimation of the exact root [1–4].

Since iterations must be ended at some point, these
approaches yield estimation to the root rather than a precise
solution. Many approaches compute successive
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approximations by considering an auxiliary function on the
values that came before them. ,erefore, the limit is a fixed
point of the function f, which is selected to have the solution
of the original equation as fixed points and to converge to
these fixed points quickly. In pursuing accurate and efficient
roof-finding techniques, several techniques have been
proposed in the past and current literature from the Newton
method through the techniques proposed in the ongoing
year.

Perhaps, the most commonly used root-finding method
is the Newton Rahpson method N2 [5] with quadratic
convergence. Its computational step is shown below that
uses two function evaluations: 1 for the function f(x) itself
and 1 for the first-order derivative f′(x):

xi+1 � xi −
f xi( 􏼁

f′ xi( 􏼁
􏼠 􏼡, i � 0, 1, 2, (1)

where f′(xi)≠ 0.
,e researchers in [6] devised a modified version of an

existing algorithm aiming at the removal of first-order
derivatives. ,ey came up with a two-step method with
fourth-order convergence abbreviated by N4. One of the
advantages of the algorithmwas the use of only four function
evaluations per iteration, as depicted in the following
computational scheme:

yi � xi −
f xi( 􏼁

κ xi( 􏼁
,

xi+1 � yi −
f yi( 􏼁

κ yi( 􏼁
−

f
2

yi( 􏼁f xi.yi( 􏼁

2f
3

yi( 􏼁
, i � 0, 1, . . . ,

(2)

where

κ xi( 􏼁 �
f xi + f xi( 􏼁( 􏼁 − f xi( 􏼁

f xi( 􏼁
,

κ yi( 􏼁 �
f yi + f yi( 􏼁( 􏼁 − f yi( 􏼁

f yi( 􏼁
,

f xi, yi( 􏼁 �
κ yi( 􏼁 − κ xi( 􏼁

f yi( 􏼁 − f xi( 􏼁
.

(3)

,e researchers in [7] devised a three-step method
having eighth-order convergence as denoted by W8. Despite
being eighth-order convergent, one of the advantages of the
algorithm was the use of only four function evaluations per
iteration, as depicted in the following computational
scheme:

yi � xi −
f(x)i

f′ xi( 􏼁
,

zi � xi −
f xi( 􏼁

f′ xi( 􏼁

4f xi( 􏼁
2

− 5f xi( 􏼁f yi( 􏼁 − f yi( 􏼁
2

4f xi( 􏼁
2

− 9f xi( 􏼁f yi( 􏼁
, i � 0, 1, 2, . . . ,

xi+1 � zi −
f zi( 􏼁

f′ xi( 􏼁
1 + 4

f zi( 􏼁

f xi( 􏼁
􏼢 􏼣

8f yi( 􏼁

4f xi( 􏼁 − 11f yi( 􏼁
+ 1 +

f zi( 􏼁

f yi( 􏼁
􏼢 􏼣.

(4)

A ninth-order convergence for a method as denoted by
N9 was proved in [8].,e algorithmmerely needs 5 function
evaluations per iteration, as depicted in the following
computational scheme:

yi � xi −
f xi( 􏼁

f′ xi( 􏼁
,

zi � yi − 1 +
f yi( 􏼁

f xi( 􏼁
􏼠 􏼡

2
⎛⎝ ⎞⎠

f yi( 􏼁

f′ yi( 􏼁
, i � 0, 1, 2, . . . ,

xi+1 � zi − 1 + 2
f yi( 􏼁

f xi( 􏼁
􏼠 􏼡

2

+ 2
f zi( 􏼁

f yi( 􏼁
⎛⎝ ⎞⎠

f zi( 􏼁

f′ yi( 􏼁
.

(5)

Another higher-order three-step iterative method as
denoted byP10 is in [9].,emethod is shown to be three-step
that requires only 6 function evaluations per iteration, as
depicted in the following computational scheme:

yi � xi −
f xi( 􏼁

f′ xi( 􏼁
,

zi � yi −
f yi( 􏼁

f′ yi( 􏼁
,

xx+1 � zi −
f zi( 􏼁f′ zi( 􏼁 + 3f zi( 􏼁f′ yi( 􏼁

5f′ yi( 􏼁f′ zi( 􏼁 − f′
2

yi( 􏼁

⎛⎝ ⎞⎠.

(6)

for
We have also chosen an iterative process with eleventh-

order convergence as denoted by N11 in [10]. ,e process
consists of four steps and requires 7 function evaluations per
iteration, as depicted in the following computational scheme:
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yi � xi −
f xi( 􏼁

f′ xi( 􏼁
,

zi � yi − 1 +
f yi( 􏼁

f xi( 􏼁
􏼠 􏼡

2
⎛⎝ ⎞⎠

f yi( 􏼁

f′ yi( 􏼁
,

wi � zi − 1 + 2
f yi( 􏼁

f xi( 􏼁
􏼠 􏼡

2

+ 2
f zi( 􏼁

f(y)i

⎛⎝ ⎞⎠
f zi( 􏼁

f′ yi( 􏼁
, i � 0, 1, 2, . . . ,

xi+1 � wi −
f wi( 􏼁

f′ wi( 􏼁
.

(7)

Finally, a three-step iterative method with twelfth-order
convergence as denoted by N12 is in [11, 12]. ,e method
consists of 5 function evaluations per iteration, as depicted in
the following computational scheme:

yi � xi −
f xi( 􏼁

f′ xi( 􏼁
,

zi � yi −
xi − yi( 􏼁f yi( 􏼁

f xi( 􏼁 − 2f yi( 􏼁
, i � 0, 1, 2, . . . .,

xi+1 � zi −
f zi( 􏼁f′ zi( 􏼁

1 − 0.5f zi( 􏼁( 􏼁 f′ zi( 􏼁( 􏼁
2.

(8)

2. Formulation of the Proposed Method

It has been observed in the current literature that new
modified root-finding techniques are being proposed be-
cause of increasing the efficiency of the existing ones. In
search of such algorithms, some researchers have merged
two existing iterative methods of convergence order m and n

to obtain a hybrid method with convergence order mn. In
this respect, the convergence order is improved. Nonethe-
less, the computational aspect was ignored, resulting in an
increased number of function evaluations in most newly
modified hybrid approaches. For example, authors in [13]
proposed an iterative third-order method with five function
evaluations required per iteration, including another algo-
rithm presented in the same research work with a fourth-
order three-step method that requires eight function eval-
uations. Likewise, authors in [14,15] have employed an
excessive number of first-order derivatives, leading to high
computational effort and machine time. ,e primary con-
cern of the present work is to propose a hybrid method with
possible higher-order convergence with the minimum
number of function evaluations so that the computational
cost in terms of arithmetic operations and CPU time be
reduced. ,e proposed method comes from Newton’s
method (m � 2) and a three-step method (n � 6) in [16,17],
leading to produce the proposed approach with convergence
order mn � 12 while using just seven function evaluations
per iteration. ,e four-step proposed method results in the

following computational steps, whose flowchart is depicted
in Figure 1:

wi � xi −
f xi( 􏼁

f′ xi( 􏼁
,

yi � wi −
f wi( 􏼁

f′ wi( 􏼁
,

zi � yi −
f yi( 􏼁

f′ yi( 􏼁
,

xi+1 � yi −
f yi( 􏼁 + f zi( 􏼁

f′ yi( 􏼁
􏼢 􏼣.

(9)

for i � 0, 1, 2, . . ..
,e methods as mentioned earlier, including the one

proposed as the four-step hybrid method in the present
article, are compared in Figure 2 with each other based on
efficiency index (p1/n), order of convergence (p), and the
number of function evaluations (n) used by eachmethod per
iteration.

3. Convergence Analysis of the
Proposed Method

,is section has been divided into two sections wherein the
convergence of the proposed four-step hybrid method in
both scalar and vector form has been discussed in detail. It is
noted that the twelfth-order convergence is theoretically
verified in each case with the aid of Taylor’s expansion.

3.1.Convergence/eorywith Scalar Form. In this subsection,
we theoretically prove the local order of convergence for the
proposed method given in (9).

Theorem 1. Suppose that α ∈ Q be the required simple root
for a sufficiently differentiable function f: Q⊆R⟶ R

within an open real interval Q. /en, the proposed four-step
numerical method (9) possesses twelfth-order convergence
with the error equation given by:
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ζ i+1 � 2
f2

2f1
􏼠 􏼡

11

ζ12i + O ζ13i􏼐 􏼑, (10)

where fi � f(i)(α) and ζ i � xi − α, i � 1, 2, . . .

Proof. Suppose α be a simple root of f(x)i � 0, where xi be
the i th approximation for the root by the proposed method
(9), and ζ i � xi − α be the error term in variable x at the i th

iteration step. Employing the single real variable Taylor’s
series in [9] for f(xi) around α, we obtain

f xi( 􏼁 � f1ζ i +
f2

2!
ζ2i +

f3

3!
ζ3i +

f4

4!
ζ4i + O ζ5i􏼐 􏼑. (11)

Similarly, using the Taylor’s series for 1/f′(xi) around α,
we obtain

1
f′ xi( 􏼁

� f
− 1
1 −

f2ζ i

f
2
1

+
ζ2i
f1

−
f3

2f1
+

f
2
2

f
2
1

􏼠 􏼡 +
ζ3i
f1

−
f4

6f1
+

f2f3

2f
2
1

+
f3f1 − 2f

2
2􏼐 􏼑f2

2f
3
1

⎛⎝ ⎞⎠ + O ζ4i􏼐 􏼑. (12)

Multiplying (11) and (12), we obtain

f (w1)
f '(w1)

y1 = w1 —

|E| = |x1 — x0|

Stop

Define f (x), f ' (x)x0 = x1

Yes

No

Is |E| > ζ

print x1

Read x0, ζ

f (x0)
f ' (x0)

w1 = x0 —

x1 = y1 —
f (y1) + f (z1)

f ' (y1) 

f (y1)
f '(y1)

z1 = y1 —

Start

Figure 1: Flow chart for the proposed four-step hybrid method given in (9).
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f xi( 􏼁

f′ xi( 􏼁
� −

2f4f
2
1 − 7f3f2f1 + 6f

3
2􏼐 􏼑ζ4i

12f
3
1

−
2f3f1 − 3f

2
2􏼐 􏼑ζ3i

6f
2
1

−
ζ2i f2

2f1
+ ζ i. (13)

Substituting (13) in the first step of (9), we obtain

ηi �
2f4f

2
1 − 7f3f2f1 + 6f

3
2􏼐 􏼑ζ4i

12f
3
1

+
2f3f1 − 3f

2
2􏼐 􏼑ζ3i

6f
2
1

+
ζ2i f2

2f1
, (14)

where ηi � wi − α. Using the Taylor’s series for f(wi)

around α, we obtain

f wi( 􏼁 � f1ηi +
f2

2!
η2i +

f3

3!
η3i +

f4

4!
η4i + O η5i􏼐 􏼑. (15)

Similarly, using the Taylor’s series for 1/f′(wi) around α,
we obtain

1
f′ wi( 􏼁

� f
− 1
1 −

f2ηi

f
2
1

+
η2i
f1

−
f3

2f1
+

f
2
2

f
2
1

􏼠 􏼡 +
η3i
f1

−
f4

6f1
+

f2f3

2f
2
1

+
f3f1 − 2f

2
2􏼐 􏼑f2

2f
3
1

⎛⎝ ⎞⎠ + O η4i􏼐 􏼑. (16)

Multiplying (15) and (16), we obtain

f wi( 􏼁

f′ wi( 􏼁
� −

2f4f
2
1 − 7f3f2f1 + 6f

3
2􏼐 􏼑η4i

12f
3
1

−
2f3f1 − 3f

2
2􏼐 􏼑η3i

6f
2
1

−
η2i f2

2f1
+ ηi. (17)

Substituting (17) in the second step of (9), we obtain

]i �
2f4f

2
1 − 7f3f2f1 + 6f

3
2􏼐 􏼑η4i

12f
3
1

+
2f3f1 − 3f

2
2􏼐 􏼑η3i

6f
2
1

+
η2i f2

2f1
. (18)

where ]i � yi − α. Using the Taylor’s series for f(yi) around
α, we obtain

f yi( 􏼁 � f1]i +
f2

2
]2i +

f3

3!
]3i +

f4

4!
]4i + O ]5i􏼐 􏼑. (19)

Similarly, using the Taylor’s series for 1/f′(yi) around α,
we obtain

1
f′ yi( 􏼁

� f
− 1
1 −

f2]i

f
2
1

+
]2i
f1

−
f3

2f1
+

f
2
2

f
2
1

􏼠 􏼡 +
]3i
f1

−
f4

6f1
+

f2f3

2f
2
1

+
f3f1 − 2f

2
2􏼐 􏼑f2

2f
3
1

⎛⎝ ⎞⎠ + O ]4i􏼐 􏼑. (20)

Multiplying (19) and (20), we obtain
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f yi( 􏼁

f′ yi( 􏼁
� −

2f4f
2
1 − 7f3f2f1 + 6f

3
2􏼐 􏼑]4i

12f
3
1

⎛⎝ ⎞⎠ −
2f3f1 − 3f

2
2􏼐 􏼑]3i

6f
2
1

⎛⎝ ⎞⎠ −
]2i f2

2f1
􏼠 􏼡 + ]i. (21)

Substituting (21) in the first step of (9), we obtain

ρi �
2f4f

2
1 − 7f3f2f1 + 6f

3
2􏼐 􏼑]4i

12f
3
1

+
2f3f1 − 3f

2
2􏼐 􏼑]3i

6f
2
1

+
]2i f2

2f1
, (22)

where ρi � zi − α. Using the Taylor’s series for f(zi) around
α, we obtain

f(z)i � f1ρi +
f2

2!
ρ2i +

f3

3!
ρ3i +

f4

4!
ρ4i + O ρ5i􏼐 􏼑. (23)

Substituting (19), (20), and (23) in the fourth step of (9),
one obtains

ζ i+1 �
]3i f3

3f1
+

f
4
2]

5
i

2f
4
1

+
f
2
3]

5
i

12f
2
1

−
f
2
3ρ

2
i ]

2
i

2f
3
1

+
f
2
4ρ

2
i ]

3
i

2f
4
1

−
]3i f

2
2

2f
2
1

−
f2ρ

2
i

2f1
+
]2i f2

2f1

+
]4i f4

6f1
+
]4i f

3
2

2f
3
1

+
ρi]

3
i f

3
2

f
3
1

+
f
2
2ρ

2
i ]i

2f
2
1

−
ρi]

2
i f

2
2

f
2
1

+
ρi]

3
i f4

6f1
+

f3]
6
i f

3
2

6f
4
1

+
ρif2]i

f1

+
ρi]

2
i f3

2f1
−
2f

2
2]

5
i f3

3f
2
1

+
f3]

6
i f4

36f
2
1

−
f
2
3]

6
i f2

6f
2
1

−
7]4i f2f3

12f
2
1

+
f2]

5
i f4

12f
2
1

+
f2ρ

2
i ]

3
i f4

12f
2
1

+
f2ρ

2
i ]

2
i f3

4f
2
1

−
ρi]

3
i f2f3

f
2
1

−
f
2
2ρ

2
i ]

3
i f3

2f
3
1

− ρi.

(24)

Finally, using , and (14) and (18), (22) for the above
equation, we obtain

ζ i+1 � 2
f2

2f1
􏼠 􏼡

11

ζ12i + O ζ13i􏼐 􏼑. (25)

Hence, the twelfth-order convergence of the proposed
method P12 given by (9) for the nonlinear functions in single
variable (f(x) � 0) is proved. □

3.2. Convergence /eory with Vector Form.

wi � xi − f′ xi( 􏼁
− 1f′ xi( 􏼁,

yi � wi − f′ wi( 􏼁
− 1f′ wi( 􏼁,

zi � yi − f′ yi( 􏼁
− 1f′ yi( 􏼁,

xi+1 � yi − f′ yi( 􏼁
− 1 f yi( 􏼁 + f zi( 􏼁􏼂 􏼃i i � 0, 1, 2, 3 . . . .

(26)

f i � F(i)(α), i � 1, 2, . . ..

Proof. Suppose α be a simple root of f(xi) � 0, where xi be
the i th approximation for the root by the proposed
method (9), and ζ i � xi − α be the error term in variable x
at the i th iteration step. Employing the multi variable
Taylor’s series given in the theorem [9] for f(xi) around α,
we obtain

f xi( 􏼁 � f1ζi +
f2
2!
ζ2i +

f3
3!
ζ3i +

f4
4!
ζ4i + O ζ5i􏼐 􏼑. (27)

Again, using the Taylor’s expansion for the inverted
Jacobian matrix f′(xi)

− 1 around α, we obtain

f′ xi( 􏼁
− 1

� f − 1
1 −

f2ζi

f21
+
ζ2i
f1

−
f3
2f1

+
f22
f21

􏼠 􏼡 +
ζ3i
f1

−
f4
6f1

+
f2f3
2f21

+
f3f1 − 2f2i􏼐 􏼑f2

2f31
⎛⎝ ⎞⎠ + O ζ4i􏼐 􏼑. (28)
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Multiplying (27) and (28), we obtain

f′ xi( 􏼁
− 1f xi( 􏼁 � −

2f4f
2
1 − 7f3f2f1 + 6f32􏼐 􏼑ζ4i

12f31
−

2f3f1 − 3f22􏼐 􏼑ζ3i
6f21

−
ζ2i f2
2f1

+ ζi. (29)

Substituting (29) in the first step of (9), we obtain

ηi �
2f4f

2
1 − 7f3f2f1 + 6f32􏼐 􏼑ζ4i

12f31
+

2f3f1 − 3f22􏼐 􏼑ζ3i
6f21

+
ζ2i f2
2f1

,

(30)

where ηi � wi − α. Using the Taylor’s series for f(wi) around
α, we obtain

f wi( 􏼁 � f1ηi +
f2
2!
η2i +

f3
3!
η3i +

f4
4!
η4i + O, (31)

Again, using the Taylor’s expansion for the inverted Jacobian
matrix f′(wi)

− 1 around α, we obtain

f′ wi( 􏼁
− 1

� f − 1
1 −

f2ηi

f21
+
η2i
f1

−
f3
2f1

+
f22
f21

􏼠 􏼡 +
η3i
f1

−
f4
6f1

+
f2f3
2f21

+
f3f1 − 2f22􏼐 􏼑f2

2f31
⎛⎝ ⎞⎠ + O η4i􏼐 􏼑. (32)

Multiplying (31) and (32), we obtain

f′ wi( 􏼁
− 1f wi( 􏼁 � −

2f4f
2
1 − 7f3f2f1 + 6f3i􏼐 􏼑η4i

12f31
−

2f3f1 − 3f22􏼐 􏼑η3i
6f21

−
η2i f2
2f1

+ ηi. (33)

Substituting (33) in the second step of (9), we obtain

νi �
2f4f

2
1 − 7f3f2f1 + 6f22􏼐 􏼑η4i

12f31
+

2f3f1 − 3f22􏼐 􏼑η3i
6f21

+
η2i f2
2f1

,

(34)

where ]i � yi − α. Using the Taylor’s expansion for f(yi)

around α, we obtain

f yi( 􏼁 � f1νi +
f2
2
ν2i +

f3
3!
ν3i +

f4
4!
ν4i + O ν5i􏼐 􏼑. (35)

Again, using the Taylor’s expansion for the inverted
Jacobian matrix f′(yi)

− 1 around α, we obtain

f′ yi( 􏼁
− 1

� f − 1
1 −

f2νi

f21
+
ν2i
f1

−
f3
2f1

+
f22
f21

􏼠 􏼡 +
ν3i
f1

−
f4
6f1

+
f2f3
2f21

+
f3f1 − 2f22􏼐 􏼑f2

2f31
⎛⎝ ⎞⎠ + O ν4i􏼐 􏼑. (36)

Multiplying (35) and (36), we obtain

f′ yi( 􏼁
− 1f yi( 􏼁 � −

2f4f
2
1 − 7f3f2f1 + 6f32􏼐 􏼑ν4i

12f31
−

2f3f1 − 3f22􏼐 􏼑ν3i
6f21

−
ν2i f2
2f1

+ νi. (37)

Substituting (37) in the first step of (9), we obtain ρi �
2f4f

2
1 − 7f3f2f1 + 6f32􏼐 􏼑ν4i

12f31
+

2f3f1 − 3f22􏼐 􏼑ν3i
6f21

+
ν2i f2
2f1

.

(38)
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where ρi � zi − α. Using the Taylor’s series for f(zi) around
α, we obtain

f zi( 􏼁 � f1ρi +
f2
2!
ρ2i +

f3
3!
ρ3i +

f4
4!
ρ4i + O ρ5i􏼐 􏼑. (39)

Substituting (35), (36), and (39) in the fourth step of (9),
one obtains

ζi+1 �
ν3i f3
3f1

+
f42ν

5
i

2f41
+
f23ν

5
i

12f21
−
f23ρ

2
i ν

2
i

2f31
+
f42ρ

2
i ν

3
i

2f41
−
ν3i f

2
2

2f21
−
f2ρ

2
i

2f1
+
ν2i f2
2f1

+
ν4i f4
6f1

+
ν4i f

3
2

2f31
+
ρiν

3
i f

3
2

f31
+
f22ρ

2
i νi

2f21
−
ρiν

2
i f

2
2

f21
+
ρiν

3
i f4

6f1
+
f3ν

6
i f

3
2

6f41
+
ρif2νi

f1

+
ρiν

2
i f3

2f1
−
2f22ν

5
i f3

3f31
+
f3ν

6
i f4

36f21
−
f32ν

6
i f2

6f31
−
7ν4i f2f3
12f21

+
f2ν

5
i f4

12f21
+
f2ρ

2
i ν

3
i f4

12f21

+
f2ρ

2
i ν

2
i f3

4f21
−
ρiν

3
i f2f3
f21

−
f22ρ

2
i ν

3
i f3

2f31
− ρi

(40)

Finally, using , and (30) and (34), (38) for the above
equation, we obtain

ζi+1 � 2
f2
2f1

􏼠 􏼡

11

ζ12i + O ζ13i􏼐 􏼑. (41)

Hence, the twelfth-order convergence of the proposed
multi-step (four-step) hybrid method P12 mentioned by (9)
for the nonlinear functions in multi-variable (f(x) � 0) case
is proved. □ □

4. Polynomiography

Polynomiography is a process that integrates mathematics
and art to create a new type of visual art. ,e produced
graphics result from algorithmic visualization of iterative
approaches for solving a polynomial equation. ,is term
was first introduced by Dr. Bahman Kalantari at the start
of the 21st century [18]. Dr. Bahman Kalantari’s study on
polynomial root-finding, which is an old and traditional
discipline that continues to find new implications with
each generation of mathematicians and scientists, in-
spired the concepts of Polynomiography. Dr. Kalantari
invented the term ”polynomiography,” which is a mixture
of the word ”polynomial” with the suffix ”graphy.” A
”polynomiograph” is a separately produced picture
resulting from Polynomiography. It is defined as ”An
iterative procedure for producing two-dimensional col-
ored pictures (polynomiographs) that represent
polynomials.”

In recent years, researchers worked in the field of Pol-
ynomiography along with its implementations in other
fields. In [19], the authors introduced a new mathematical
art with the help of Newton–Ellipsoid method. Gdawiec
et al. in [20], presented the visual analysis of Newton’s
method with fractional-order derivatives. ,e authors
employed the techniques of coloring by roots and coloring

via iterations to study the convergence and dynamical as-
pects of the processes visualized by polynomiographs.

Naseem et al. in [21] presented some new graphical art
with the help of newly suggested ninth-order iteration
schemes. Scot et al. in [22], presented the basin of attraction
for several methods and examined its dependence on their
convergence orders. In [23], the authors introduced a new
family of eighth-order methods and then drew their basins
of attractions by assuming different polynomials. Finally, in
[24], the authors generated some new fractal patterns by
combing two root-finding methods. ,e obtained fractal
patterns were diverse and had many applications in the
textile and ceramic industries.

We use a rectangle R ∈ C along with the dimension
[− 2, 2] × [− 2, 2], accuracy ε � 1 × 10− 3 and the max. no. of
iterations T � 20 to create the polynomiographs over the
complex plane C through the computer software by taking
multiple complex polynomials. ,e color black is allocated
to the spots where the method failed to converge. ,e
partitioning of R determines the pixel density of the created
visual representations; for example, if we partition the
rectangle R into a grid of 2000 × 2000, the plotting poly-
nomiographs will then have better resolution.

For drawing graphical objects in the complex plane, we
use the four complex polynomials listed below:

q1(t) � t
3

− 1, q2(t) � 3t
3

+ 2t
2

− t + 1,

q3(t) � t
4

− 1, q4(t) � t
2

+ 1􏼐 􏼑 t
2

− 2􏼐 􏼑.
(42)

For coloring the iterations, we employ the colormap
given in Figure 3.

Problem 1. Polynomiographs for the Polynomial q1(t)

,rough Various Methods
In this example, we investigate and compare the dy-

namical results obtained through different iteration schemes
with our presented method by considering the cubic
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polynomial t3 − 1 which possesses three distinct simple
zeros:1, − (1/2) − (

�
3

√
/2)i, − (1/2) + (

�
3

√
/2)i. We executed

all the methods to achieve the simple zeros of the considered
polynomials and the results can be visualized in Figure 4.

Problem 2. Polynomiographs for the Polynomial q2(t)

,rough Various Methods
In this example, we investigate and compare the dy-

namical results obtained through different iteration schemes
with our presented method by considering the 3rd-degree
polynomial 3t3 + 2t2 − t + 1 which possesses three distinct
simple zeros:

−
2003
1690

,
867
3344
±
1504
3251

i. (43)

We executed all methods to achieve the simple zeros of
the considered polynomials and the results can be seen in
Figure 5.

Problem 3. Polynomiographs for the Polynomial q3(t)

,rough Various Methods
In this example, we investigate and compare the dy-

namical results obtained through different methods with our
presented method by considering the 4th-degree polynomial
t4 − 1 which possesses the following simple zeros:1, − 1, i, and
− i. We executed all the methods to achieve the simple zeros
of the considered polynomials and the results are given in
Figure 6.

Problem 4. Polynomiographs for the Polynomial q4(t)

,rough Various Methods
In this example, we investigate and compare the dy-

namical results obtained through different iterationmethods
with our presented method by considering 4th-degree
polynomial (t2 − 1)(t2 − 2) which possesses the simple
zeros:1, − 1, 2, and − 2. We executed all methods to achieve
the simple zeros of the considered polynomials and the
results can be visualized in Figure 7.

In all given examples, a detailed graphical analysis of the
designed algorithm has been provided via polynomigraphs.
For plotting polynomiographs on the complex plane, we take
two cubic-degree polynomials namely: q1(t), and q2(t) and
two quatric-degree polynomials represented by q3(t), and
q4(t) respectively. ,e plotted graphs tell us about the
convergence speed and the iterations performed by the
method for drawing these objects. ,e second characteristic
is the dynamics of the iteration scheme. In each poly-
nomiographs, the individual root has been denoted by the
blue colored dot. ,e black colored zones denote the di-
vergence area or deficiency of the method through which the
polynomiographs has been plotted. ,e darker or brighter
zones in the provided polynomiographs showing less iter-
ations performed to approximate the solution. One can
easily observe the superiority of the proposed method over

the others by examining themore darker or brighter zones of
the polynomiographs drawn by the suggested method.

5. Numerical Simulations: Real-
world Scenarios

,is section of the paper discusses the real-life applications
by applying the newly proposed hybrid method. We also
present a numerical comparison with other existing most
frequently used methods: N2, N4, W8, N9, P10, N11, and
N12, whose computational steps are shown in the intro-
ductory section above. In each applied model, we set the
tolerance to be ε � 10− 100 as the stopping criterion of the
iterative process of every method under consideration:
|xN − xe|< ε. Two additional methods with fifth- and sixth-
order of convergence are also included for the simulations of
a six-dimensional model chosen from the field of neuro-
physiology based on the reason that some of the methods
under discussion in the above introductory section did not
prove to be valuable candidates when it comes to the
simulations of the nonlinear models presented in the system
or vector form.

Problem 5. ,e Plank’s radiation law in physics explains the
spectral density of radiation emitted by a black body in
thermal equilibrium at the temperature T and the condition
that there must not be a flow of energy between the body and
its surroundings. In other words, the law is introduced to
determine the amount of energy density in a black body
based on isothermal properties. Moreover, it is sometimes
used to estimate the maximal radiation’s wavelength. As
described in [25], the maximal wavelength of the radiation
may be written in the form of the following nonlinear
equation in scalar version:

f1(x) � exp(− x) +
x

5
− 1, (44)

where x stands for the maximal wavelength. ,e exact so-
lution of the above equation is as follows: 0.0.

,e Plank’s radiation model described in (44) is simu-
lated with several numerical algorithms while assuming two
different initial guesses. ,e maximum number of iterations
in each case is set to be N � 4. It can be observed in Table 1
that the accuracy is maximum for P12 at the cost of a slightly
higher amount of CPU time, regardless of the initial esti-
mate’s location. ,e eleventh-order method N11 did not
converge with the initial estimate taken to be x0 � 0.49 while
it converges second to P12 when the initial guess x0 � 0.75 is
taken. With this second initial guess, the CPU time con-
sumption also slightly increases for N4 and N11.

Problem 6. Fraction Conversion of Nitrogen-Hydrogen to
Ammonia [26]. ,is nonlinear scalar problem depicts the
fractional conversion of nitrogen-hydrogen to ammonia and
has appeared in several research works conducted in the past
and recent literature. In this experiment, we set the pressure
value to be 250 atmospheric pressure while the temperature
is set to 500 degrees Celsius. In terms of a nonlinear function,

Figure 3: ,e colormap for drawing polynomiographs.
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the model mentioned above has the following polynomial
form:

f2(x) � x
4

− 7.79075x
3

+ 14.744x
2

+ 2.511x − 1.674.

(45)

It has been identified in the recent work [27] that one of
its positive real roots lies in the open unit interval (0, 1)

which is estimated to be 0.2777595428.
For this nonlinear model, the numerical simulations

are shown in Table 2 while the number of iterations for
each method under consideration is set to be 7. Two
different initial guesses, that is, x0 � 0.5 (near to the exact
solution) and x0 � 0.95 (away from the exact solution), are
chosen. It is seen that the fourth-order method N4

converges towards some other solution for the first initial
guess while the method abbreviated as N11 failed after
three iterations while the same is the case for the W8
method, but the method W8 produced the correct ap-
proximate solution till four iterations and failed after that.
,e Newton method N2 has the comparatively most
significant absolute error at the fourth iteration compared
to other methods. Nonetheless, the proposed hybrid
method, in addition to a few more methods, always
converged towards the required solution. More so, the
proposed method has achieved the minor error tolerance
with a reasonable amount of time. Hence, it can be
concluded that the initial location of the estimate does not
matter much when it comes to the proposed hybrid
method devised in this article.

(a) (b) (c)

(d) (e) (f )

(g) (h)

Figure 4: Polynomiographs for q1(t) using different methods.
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Problem 7. Application of mechanical engineering [28]:
,ere are several fields wherein the use of thermody-
namics is extensively required. ,e particular areas in-
clude mechanical, civil, mechatronics, electronic,

chemical engineering, and many others. ,e fourth-order
polynomial is used to show a relation between the zero-
pressure specific heat of dry air cp (kJ/kgK) to temper-
ature x:

f3(x) � 1.9520 × 10− 14
x
4

− 9.5838 × 10− 11
x
3

+ 9.721510− 8
x
2

+ 1.671 × 10− 4
x − 0.99403 − 1.2, (46)

where cp � 1.2 is used.
As described in [28], the above nonlinear model given in

terms of fourth-order polynomial has two real distinct roots
given as: r1 � 1126.009751 and r2 � − 1289.950382. It can be
observed in Table 3 that each method converges for the

initial guesses chosen to determine the approximate solution
of the above model. ,e eleventh-order method N11 per-
formed better from an accuracy viewpoint, followed by the
proposed hybrid method. Looking at the CPU values, it is
clear that the methods N11 and P12 take the same amount of

(a) (b) (c)

(d) (e) (f )

(g) (h)

Figure 5: Polynomiographs for q2(t) using different methods.
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time, thereby being equally time-efficient for this particular
fourth-order polynomial. Moreover, the absolute functional
values are identical for both methods, including others such
as N9 and P10.

Problem 8. Neurophysiology Application: As a final ex-
periment, we consider a six-dimensional nonlinear system
first proposed in [29] and later was used by several re-
searchers for the simulation purpose of their newly devel-
oped algorithms. See, for example, [30], and some cited
references therein. ,e nonlinear model consists of the
following six equations:

x
2
1 + x

2
3 � 1,

x
2
2 + x

2
4 � 1,

x5x
3
3 + x6x

3
4 � c1,

x5x
3
1 + x6x

3
2 � c2,

x5x1x
2
3 + x6x

2
4x2 � c3,

x5x
2
1x3 + x6x

2
2x4 � c4.

(47)

,e constants ci in the above model can be randomly
chosen. In our experiment, we considered ci � 0, i � 1, . . . , 4.

(a) (b) (c)

(d) (e) (f )

(g) (h)

Figure 6: Polynomiograph for q3(t) using different methods.
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(a) (b) (c)

(d) (e) (f )

(g) (h)

Figure 7: Polynomiograph for q4(t) using different methods.

Table 1: Comparison of several methods with the same number of iterations (N � 4) for the Plank’s radiation model given in Problem 5.

Method |xN − xe|
|f1(xN)|

Time |xN − xe|
|f1(xN)|

Timef1(x), x0 � 0.49 f1(x), x0 � 0.75

N2 3.80e-04 7.24e-08 4.70e-02 1.91e-02 1.85e-04 4.70e-02
N4 6.34e-52 1.25e-01 1.25e-01 9.98e-35 6.19e-139 9.40e-02
W8 4.32e-254 1.24e-2030 3.10e-02 2.98e-112 6.44e-896 6.30e-02
N9 1.67e-208 7.90e-1872 1.60e-02 2.82e-35 9.01e-313 4.60e-02
P10 7.38e-458 1.00e-3000 3.20e-02 2.18e-247 2.78e-2469 4.70e-02
N11 divergence – – 1.18e-305 1.00e-3000 4.70e-02
N12 5.05e-317 9.90e-2534 7.80e-02 1.12e-210 5.92e-1683 9.40e-02
P12 3.71e-737 0.00e+00 9.30e-02 1.34e-375 2.00e-3000 9.30e-02
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,e simulations for the above neurophysiology appli-
cation system are shown in Table 4 wherein the two columns
represent the absolute error at the last iteration and the CPU
time consumption. Two more methods, including fifth-or-
der Halley’s (HM5) in [6] and a sixth-order Hameer-Muj-
taba method (HM6) in [17], is used for the simulations of the
above system. It is evident from Table 4 that the accuracy is
much higher for the proposed approach in comparison to
other competitive methods, while the CPU time is also
reasonable.

6. Concluding Remarks and Future Directions

A new four-step nonlinear method for solving f(x) � 0
type models is introduced in this research work with
twelfth-order convergence, and seven function evalua-
tions are required per iteration. ,e theoretical order of
convergence for the proposed hybrid method is proved
under both scalar and vector cases, along with an as-
ymptotic error constant. Comparison with various
existing numerical methods discloses the better perfor-
mance of the proposed approach when the absolute errors,

the absolute functional value computed at the last itera-
tion, and the time of machine in seconds are taken into
consideration. ,e proposed method brings out the
slightest absolute error regardless of initial conditions
chosen for the simulations of the nonlinear models that
belong to real-world scenarios from science and engi-
neering. ,e rapid convergence of the proposed hybrid
method is confirmed with the aid of polynomiography
when the method is applied to some complex-valued
polynomials.
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Table 2: Comparison of several methods with the same number of iterations (N � 4) for the Problem 6.

Method |xN − xe|
|f2(xN)|

Time |xN − xe|
|f2(xN)|

Timef2(x), x0 � 0.5 f2(x), x0 � 0.95

N2 2.75e-07 6.60e-13 1.60e-02 1.51e-06 1.99e-11 1.60e-02
N4 other sol. – – 1.29e-02 3.53e-04 9.30e-02
W8 5.37e-333 5.04e-2657 6.20e-02 9.41e-209 4.51e-1663 9.40e-02
N9 1.86e-488 0.00e+00 1.60e-02 7.91e-407 0.00e+00 3.10e-02
P10 3.21e-783 0.00e+00 3.10e-02 4.19e-691 0.00e+00 3.10e-02
N11 failed – – failed – –
N12 8.40e-334 2.10e-2663 1.60e-02 2.04e-224 2.51e-1788 4.60e-02
P12 2.18e-1373 0.00e+00 1.50e-02 1.16e-1213 0.00e+00 7.80e-02

Table 3: Comparison of several methods with the same number of iterations (N � 3) for the Problem 7.

Method |xN − xe|
|f3(xN)|

Time |xN − xe|
|f3(xN)|

Timef3(x), x0 � 1126.0 f3(x), x0 � − 1286

N2 1.83e-18 2.61e-43 3.20e-02 1.84e-07 2.25e-20 3.10e-02
N4 2.44e-47 6.07e-194 7.80e-02 2.10e-07 8.04e-34 1.57e-01
W8 3.41e-331 9.35e-2671 6.30e-02 1.53e-172 7.94e-1402 7.80e-02
N9 2.22e-412 1.00e-3000 3.10e-02 3.22e-188 7.03e-1715 4.60e-02
P10 2.80e-519 1.00e-3000 3.10e-02 2.57e-241 4.58e-2437 3.20e-02
N11 5.53e-1659 1.00e-3000 1.60e-02 2.56e-761 3.00e-3000 4.70e-02
N12 2.42e-331 5.66e-2672 3.10e-02 3.37e-159 1.69e-1293 3.20e-02
P12 1.72e-748 1.00e-3000 1.60e-02 1.06e-345 3.00e-3000 4.70e-02

Table 4: Comparison of several methods with the same number of
iterations (N � 5) while the initial guess is set to be
F(x10, x20, x30, x40, x50, x60) � (1.8, 2.6, 3.5, 1.3, 1.0, 1.1) for the
Problem 8.

Method ε � |xN − xe| Time

N2 8.77e-02 4.70e-02
HM5 8.22e-94 2.34e-01
HM6 1.56e-242 1.57e-01
P10 2.37e-1667 2.03e-01
P12 5.02e-2823 1.57e-01
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