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Tis article examines the impact of technological changes to cryptocurrency—known as “forking” that triggers blockchain
splits—on market conditions. Despite the explicit distinction in log return distributions between the two splitting blockchains,
adopting new technology does not result in a disparity in market conditions: no signifcant diference exists in market efciency
and long-term market equilibrium between the two splitting blockchains. Technological changes accompanying market sepa-
ration do not impede the underlying uniformity in market conditions. Te fndings suggest that mutual information fows linked
to market liquidity explain the results between the new and old forks.

1. Introduction

“Te 10,000 altcoins tried all manner laughable physics and
computer science failed things.”—Adam Back (on Twitter),
Forbes, May 16, 2021.

Te cryptocurrency market experiences technological
changes in the form of forking, which is classifed into two
types: soft and hard. Both forks refer to changes to (i) a
protocol of blockchain networks and (ii) data structures. A
soft fork indicates a change that is backward compatible,
whereas a hard fork denotes a change that is not backward
compatible and results in two versions of the same block-
chain. In particular, the fragile nature of consensus in
blockchain technology (e.g., the debate over security issues)
provides the opportunity for technological change, resulting
in blockchain splits caused by a hard fork. Te controversy
about the benefts of and challenges to adopting new
technology triggered the frst hard fork—splitting Bitcoin.
Although hard forks—particularly splitting Bitcoin—were

implemented several times, this article concentrates on
Bitcoin Cash, ranked within the top fve in terms of market
capitalization among all cryptocurrencies. Tis ofshoot of
Bitcoin, called Bitcoin Cash, referred to as the “old” fork,
whereas the change-implemented Bitcoin is called the “new”
fork. A hard fork, generated from the absence of a consensus
or a divergence of beliefs, changes market sentiments and
leads to diverging price movements. By creating multiple
versions of the same blockchain, hard forks contribute to an
increase in technological diversity. Te old and new forks
manifest large price fuctuations after the split: in the frst
fve days, Bitcoin rose by approximately 19.7% and Bitcoin
Cash declined by approximately 43.9%.

As a result, market fundamentals are examined and an
underlying factor causing changes in market conditions is
investigated further. In particular, we estimated the Hurst
exponent (HE) to test the weak-form efcient market hy-
pothesis (EMH) [1] and calculated the entropy to capture
uncertainty and the degree of long-run market equilibrium.
Despite signifcant diferences in descriptive statistics and
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probability density functions, technological divergence does
not result in a disparity in market conditions in terms of
market efciency and long-term market equilibrium. Te
factor driving the main results is explained by mutual in-
formation fows linked to market liquidity via transfer
entropy.

Since the seminal work of Fama [2], prior studies on
market conditions—particularly in economics literatur-
e—have focused on market efciency. However, recent
studies on the Bitcoin market provided mixed evidence:
some studies reported evidence of inefciency [3–10],
whereas others demonstrated that the market is efcient
[11, 12], or at the very least, moves toward efciency with the
launch of Bitcoin futures and liquidity expansion [13–16].
Moreover, although many studies have been conducted on
Bitcoin market’s efciency, studies on the impact of forking
on the cryptocurrency market, particularly with its ef-
ciency, have been extremely limited.

Another strand of literature on Bitcoin’s market con-
ditions studies the uncertainty and randomness of price
series by employing the concept of long-term equilibrium in
the economic context. In this article, the long-run equi-
librium refers to the statistical equilibrium of the balance of
each system [17–19]. Te fndings mostly suggested that the
Bitcoin market was rife with randomness, unpredictability,
and disorder [20, 21]. However, prior studies on long-run
equilibrium are still limited for the cryptocurrency market in
comparison to other fnancial markets, such as stock
[22, 23], energy [19, 24, 25], and real estate [17, 26, 27]. In
particular, to the best of our knowledge, no single study has
been conducted to assess the long-run equilibrium in the
new and old fork markets by using the concept of entropy.

Te remainder of this paper is organized as follows.
Section 2 describes the data and methodology. Section 3
presents the results and discussion. Finally, Section 4 pro-
vides the conclusion.

2. Data and Methodology

2.1. Data. Te daily prices of two splitting blockchains, such
as Bitcoin and Bitcoin Cash, are retrieved immediately
following the hard fork: the frst hard fork splitting Bitcoin
occurred on August 1, 2017. All data are in US dollars and
are obtained from CoinMarketCap, which provides trading
data, including the exchange activities of 2,543 crypto-
currencies in 20,295 markets. Our dataset spans the period
from splitting the two blockchains to June 5, 2019, with 674
observations. For further analysis, both price series are
stationarized, converting the price series into log returns.
Table 1 summarizes the descriptive statistics.

Over the sample period, the log returns of Bitcoin Cash
vary more signifcantly than those of Bitcoin, implying
greater market uncertainty. Te return series of old and new
forks are distributed with nonnegative skewness and positive
excess kurtosis. Unlike Bitcoin, which has a skewness close
to zero, Bitcoin Cash has positive skewness, indicating an
asymmetric distribution. Terefore, investors favor a posi-
tive skew and love risk in the old fork market, complying
with the classical expected utility theory [28] and indicating

a smaller downside risk [29].Te old fork also showed larger
excess kurtosis than the new fork, which denotes a fatter tail,
resulting in a more leptokurtic distribution.

2.2. Hurst Exponent. Te HE was used to test the
weak-form EMH. Following Hurst [30, 31] and Man-
delbrot and Wallis [32, 33], we defned the R/S statistic as
follows:

(R/S)n � c × n
HE

, (1)

where n is the length of the subseries, c is a constant, and
(R/S)n is the mean value of the rescaled range for all sub-
series of length n. Te R/S statistics and the estimated
standard deviation Sn are given by the following:
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where t is the number of successive subintervals, rk denotes
the return at time k, and rn indicates the mean value of the
return series.

To confrm the robustness of the results, we estimate the
corrected HE [34] and the classical HE. Specifcally, by
estimating the slope of (R/S − AL)n versus n in a log-log plot,
we defned the corrected HE as follows:

(R/S − AL)n � (R/S)n − E(R/S)n +
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, (3)

where E(R/S)n is approximated by the following:
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where Γ denotes the Euler gamma function.

2.3. Entropy. Entropy is used to measure the long-run
market equilibrium and to capture uncertainty with a small
information loss [22, 35, 36]. In particular, entropymeasures
the dispersion of probability allocation to each state rather
than that of realized outcomes; therefore, it is robust to
extremes other than volatility [37]. Following Shannon [38],

Table 1: Descriptive statistics of daily log returns.

Mean Min. Max. Std. Skewness Kurtosis
Bitcoin 0.00 − 0.21 0.23 0.04 0.01 6.34∗∗∗
Bitcoin Cash 0.00 − 0.45 0.43 0.09 0.65∗∗∗ 9.29∗∗∗

Note: ∗∗∗ denotes signifcance at the 1% level.
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we defne entropy (H) for the discrete random variable X as
follows:

H(X) � − 􏽘
M

i�1
p xi( 􏼁ln p xi( 􏼁, (5)

where p(xi) and M are the probability mass function and
the number of states, respectively.

Tis study uses two key approaches to calculate the
Shannon entropy to ensure the robustness: (i) Shannon en-
tropy through histogram, which has long been demonstrated
to be a rigorous density estimator [39], is relatively simple to
draw. However, the feasibility could be more dependent on
the sample size and thus limited in use [22] and (ii) Shannon
entropy via symbolic time series analysis (STSA), which has
been extensively applied in various felds of study (i.e.,
physics, information theory, and fnance), has been verifed to
be robust to noise [22, 35] and competitive in capturing
uncertainty, particularly with time series data in fnance [25].
Meanwhile, STSA may necessitate a better command of
demanding calculations. First, the histogram-based entropy of
the discrete random variable X is obtained by the following
equation:

H(X) � − 􏽘
N

i�1

􏽢f xi( 􏼁ln 􏽢f xi( 􏼁, (6)

where N refers to the number of intervals and 􏽢f(xi) denotes
a histogram estimate of the underlying probability mass
function when X equals xi [40].

Second, the dispersion of probability allocation onto the
dynamic rise–fall pattern of consecutive price series was
detected using STSA [22, 41]. Te symbolization of con-
secutive return series is conducted as 1s for the positive
returns and 0s for the others [42]. Subsequently, we de-
termined the size of the rolling window to quantify the
subsequence bundles composed of S binary numbers. Each
subsequence bundle is converted from a binary sequence to a
new decimal number, that is, XS [22]. Ten, the entropy of
the random variable XS is derived as follows:

H X
S

􏼐 􏼑 � − 􏽘
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S
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where M is the number of outcomes in the entire series. In
the end, the normalized Shannon entropy is given by the
following:

h X
S

􏼐 􏼑 �
1
S

H X
S

􏼐 􏼑. (8)

Hereafter, the mention of “Shannon entropy” or simply
“entropy” refers to a normalized one, that is, h(XS).

2.3.1. Transfer Entropy. Transfer entropy detecting the in-
formation fow between the two markets is calculated as a
proxy for the cause–efect relationship. By considering the
attributes of the interactions, transfer entropy quantifes the
amount of information transport in a nonsymmetric
manner. In particular, fnding nonzero rates of information

transmission in both directions implies a dynamic corre-
lation in producing and receiving information between the
two time series [43–45]. Following Schreiber [43], we defne
the transfer entropy from system Y to X as follows:

TEY⟶X � 􏽘 p xn+1, x
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where x(k)
n � (xn, · · · , xn− k+1) and y(l)

n � (yn, · · · , yn− l+1)

are the processes given by the k and l dimensional delay
vectors, respectively. Terefore, TEY⟶X reveals that
asymmetry—the degree of dependence of X on Y—discerns
the driving and responding sources [43].

We also consider the efective transfer entropy (ETE) to
correct the noise caused by the fnite size of the data. Te
ETE is derived as follows [46]:

ETEY⟶X � TEY⟶X(k, l) −
1

M
􏽘

M

i�1
TEY(i)⟶ X(k, l), (10)

where Y(i) indicates the randomly shufed variable Y. Ac-
cordingly, ETE is calculated by subtracting the arithmetic
mean of the randomized transfer entropy values from the
estimated transfer entropy value [47].

3. Results and Discussion

Te Kolmogorov–Smirnov (KS) and Jarque–Bera (JB) tests
are conducted to examine the diference between the two
distributions: the new and old forks. As indicated in Ta-
ble 2, the null hypothesis of the KS test can be rejected for
both splitting blockchains, implying the signifcant dif-
ference between the two log return distributions. Addi-
tionally, the JB test indicates that neither Bitcoin nor
Bitcoin Cash is normally distributed. Figure 1 further
confrms these results: the new and old forks exhibit clearly
diferent distributions, and both are close to the Laplace
rather than the Gaussian distribution, in particular, near
the center and the tail part.

However, two splitting blockchains reveal similar market
conditions in terms of market efciency and long-term
equilibrium. First, HE is estimated to test the weak-form
EMH, which examines price fairness, for the new and old
fork markets. As shown in Table 3, both markets have
relatively high values of classical and corrected HE

(HE> 0.5), indicating a long-range dependence with no
signifcant diference between the two, such as clustering
tendency and delayed response to information fows [48].
Such persistence reinforces the predictability of the market
and provides evidence of market inefciency [49, 50].
However, two price series might move with a diferent trend,
and the market could fuctuate according to diferent vol-
atility clustering. Terefore, the long-term market equilib-
rium could difer between the new and old fork markets,
unlike similar market efciency.

Second, the Shannon entropy is estimated through two
approaches, including histogram- and STSA-based, to de-
termine the distance from the long-termmarket equilibrium
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on both new and old fork markets. As shown in Table 4, the
Shannon entropy demonstrates the balance between the two
markets, implying that the probability allocations onto (i)
each state and (ii) dynamic rise–fall patterns are similar to
high randomness in the two markets. Tis study considers
the Shannon entropy as an optimal measure of long-run
equilibrium, particularly in equilibrium systems [51] and
determines whether each market is close to long-term
market equilibrium. In summary, despite technological

changes, the market conditions of the new and old forks are
equivalent in terms of market efciency and long-run
market equilibrium. Te term “long-term equilibrium” re-
fers to statistical equilibrium, which is widely used in physics
and information theory and is derived by maximizing the
system’s entropy, indicating the system’s most likely state
[18]. To enhance the robustness of the results on the market
conditions, we further apply the power-law exponent (PLE),
one of the most efective and powerful indicators for scaling
behavior [52]. Te results are summarized in the Appendix.

Table 3: Hurst exponent.

Classical Corrected
Bitcoin 0.68 ± 0.00 0.54 ± 0.00
Bitcoin Cash 0.69 ± 0.01 0.55 ± 0.01
Te estimated values of each measure with one standard error are pre-
sented. To validate the robustness, we estimated both the classical and
corrected HE values with a minimum length of the subseries 2. Te
minimum subseries length (n) defnes the length of the subseries when
splitting a time series. Tis paper sets the minimum length of the subseries
as n � 2, . . . , N/2, where N indicates the length of the entire time series.
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Figure 1: Probability density function of log returns in the new and old forks. Following the Freedman–Diaconis rule [39], we plotted the
histograms of both datasets with the optimal bin width of 0.84 × 10− 2 (Bitcoin) and 1.66 × 10− 2 (Bitcoin Cash).Tere are two strands of rules for
determining the optimal bin width: the Scott rule and the Freedman–Diaconis rule. Te former is best suited for data that are close to being
normally distributed, whereas the latter is less sensitive to outliers and thus better suited for data with heavy tails. As Figure 1 indicates, the data do
not match well with the normal distribution; thus, the Freedman–Diaconis rule is used. (a) Bitcoin. (b) Bitcoin Cash.

Table 2: Comparison between the two samples: Bitcoin and Bitcoin Cash.

KS statistic JB statistic
Bitcoin 0.15∗∗∗ 3.07 × 102∗∗∗
Bitcoin Cash 1.10 × 103∗∗∗

TeKolmogorov–Smirnov (KS) statistic reports the outcome of a nonparametric equality test, the null hypothesis of which is that two samples are drawn from
the same distribution. Meanwhile, the Jarque–Bera (JB) statistic documents the results of a normality test based on a Monte Carlo simulation, whose null
hypothesis is that both skewness and excess kurtosis are all zero: the sample follows the normal distribution. ∗∗∗ denotes signifcance at the 1% level.

Table 4: Shannon entropy.

Histogram STSA
Bitcoin 0.75 ± 0.07 0.94 ± 0.02
Bitcoin Cash 0.76 ± 0.06 0.92 ± 0.03
Te estimated values of eachmeasure with one standard error are presented:
the mean and standard deviation of entropy were calculated monthly basis
(STSA: symbolic time series analysis).
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Te preceding results are explained using information
fows related to market liquidity [53, 54]. In particular,
transfer entropy distinguishes the bidirectional information
fows between the new and old forks. As shown in Table 5,
transfer entropy in both directions is statistically signifcant,
implying that the new and old forks interact with each other.
Accordingly, mutual information fows mitigate market
uncertainty and alleviate investors’ distrust. Moreover, the
ETE supports the robustness of our fndings: it is not due to
random noise [46]. Terefore, signifcant mutual informa-
tion fows linked to sufcient liquidity of Bitcoin Cash
contribute to the two splits having similar market condi-
tions. Since August 2017, Bitcoin Cash has been ranked in
the top fve cryptocurrencies in terms of market capitali-
zation. Bitcoin splits other than Bitcoin Cash, such as Bitcoin
Gold and Bitcoin Diamond, have far smaller market capi-
talizations.Tese are approximately 890–1,300 times smaller
than Bitcoin in terms of market capitalization [54].

4. Conclusion

Using price series data, this study examines the market
conditions for the two splitting blockchains, identifying
commonalities and diferences in the supporting technol-
ogies. Te hard forks in cryptocurrency provide a novel
setting for examining how technological advancements re-
sult in underlying market conditions that difer between the
old and the new. Te two splitting cryptocurrencies are
clearly coupled in terms of market conditions, such as
market efciency and long-term equilibrium, despite the
disparity in technology adoption. Tis study hypothesizes
and fnds supporting evidence that information fows linked
to market liquidity can be attributed to similar market
conditions of splitting blockchains.

As the cryptocurrency market is based on consensus-
building systems, technological issues, such as hard forks,
are likely to arise frequently. Our fnding, signifcant

bidirectional information fows between Bitcoin and Bitcoin
Cash, suggests that the two cryptocurrencies could be used
as hedging tools for one another. Moreover, monitoring
information fows in conjunction with market liquidity
could help policymakers and investors better understand
and respond to future technological changes.

Appendix

As a signature for the collective phenomenon, PLE (􏽢ξ) for
the tail of the normalized return distribution is estimated
based on the ordinary least squares (OLS) method [55, 56]:

1 − F(x) � P(X>x) ∼ x
− ξ

, (A.1)

where F(x) denotes the cumulative density function. Taking
the logarithm on both sides, we obtain the PLE as the slope
of the estimated regression line from the following linear
relationship [57, 58]:

ln P(X> x) � c − ξ ln x + ϵ, (A.2)

where c is a constant and ϵ is an identically and indepen-
dently distributed error term following a normal
distribution.

Table 6 summarizes the PLEs for Bitcoin and Bitcoin
Cash. Te authors choose the top and bottom 5% as critical
values for estimating the PLEs of the positive and negative
tails separately [59–61]. As shown in Table 6, the values of
PLEs of Bitcoin and Bitcoin Cash exhibit the evidence of
scaling behavior. All the PLEs summarized in Table 6 exhibit
no signifcant diference between Bitcoin and Bitcoin Cash.
In more detail, the two splitting blockchains follow the
inverse cubic law, commonly found in the tails of stock
returns [55, 60, 62], suggesting that both returns manifest a
heavier tail as stocks do. Tese results further support the
fact that market conditions between the two splitting
blockchains are reached on par.

Data Availability

Te daily prices of two splitting blockchains, such as Bitcoin
and Bitcoin Cash, are retrieved immediately after the hard fork:
the frst hard fork splitting Bitcoin occurred on August 1, 2017.
All data are in US dollars and are provided by CoinMarketCap,
which provides trading data, including the exchange activities
of 2,543 cyrptocurrencies in 20,295 markets.
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Table 6: Power-law exponent.

Top 5% Bottom 5%
Bitcoin 3.90 ± 0.98 3.25 ± 0.80
Bitcoin Cash 2.44 ± 0.61 2.53 ± 0.62
We estimate the power-law exponents (PLEs) based on the ordinary least
squaremethod in the positive and the negative tails of the normalized return
distributions. Because the ranking process allows the residuals to be pos-
itively autocorrelated, the standard error (SE) could be incorrect. In this
paper, the SE of the PLE is calculated from 􏽢ξ(n/2)− (1/2), asymptotic SE of
PLE 􏽢ξ [55].

Table 5: Transfer entropy by quantile-based estimation.

Transfer entropy Efective transfer entropy
Bitcoin⟶Bitcoin
Cash 0.03∗∗∗ Bitcoin⟶Bitcoin

Cash 0.02

Bitcoin
Cash⟶Bitcoin 0.02∗∗ Bitcoin

Cash⟶Bitcoin 0.01

Te directional link shown with the arrow represents the information fows
between the new and old forks. For transfer entropy, ∗∗ and ∗∗∗ indicate
signifcance at the 5% and 1% levels, respectively.
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