
Research Article
Comparison of Weighted Lag Adaptive LASSO with
Autometrics for Covariate Selection and Forecasting Using
Time-Series Data

Sara Muhammadullah ,1 Amena Urooj,1 Faridoon Khan,1 Mohammed N Alshahrani,2

Mohammed Alqawba,3 and Sanaa Al-Marzouki4

1Department of Economics and Econometrics, Pakistan Institute of Development Economics, Islamabad, Pakistan
2Department of Mathematics, College of Science and Humanities in Al–Kharj, Prince Sattam University,
Prince Sattam Bin Abdulaziz University, Al–Kharj 11942, Saudi Arabia
3Department of Mathematics, College of Science and Arts, Qassim University, Ar Rass, Saudi Arabia
4Statistics Department, Faculty of Sciences, King AbdulAziz University, Jeddah 21551, Saudi Arabia

Correspondence should be addressed to Sara Muhammadullah; saramuhammadullah@gmail.com

Received 12 November 2021; Revised 11 December 2021; Accepted 23 December 2021; Published 11 January 2022

Academic Editor: Peican Zhu

Copyright © 2022 SaraMuhammadullah et al. 'is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

In order to reduce the dimensionality of parameter space and enhance out-of-sample forecasting performance, this research
compares regularization techniques with Autometrics in time-series modeling. We mainly focus on comparing weighted lag
adaptive LASSO (WLAdaLASSO) with Autometrics, but as a benchmark, we estimate other popular regularization methods
LASSO, AdaLASSO, SCAD, and MCP. For analytical comparison, we implement Monte Carlo simulation and assess the
performance of these techniques in terms of out-of-sample Root Mean Square Error, Gauge, and Potency. 'e comparison is
assessed with varying autocorrelation coefficients and sample sizes. 'e simulation experiment indicates that, compared to
Autometrics and other regularization approaches, the WLAdaLASSO outperforms the others in covariate selection and fore-
casting, especially when there is a greater linear dependency between predictors. In contrast, the computational efficiency of
Autometrics decreases with a strong linear dependency between predictors. However, under the large sample and weak linear
dependency between predictors, the Autometrics potency⟶ 1 and gauge⟶ α. In contrast, LASSO, AdaLASSO, SCAD, and
MCP select more covariates and possess higher RMSE than Autometrics and WLAdaLASSO. To compare the considered
techniques, we made the Generalized Unidentified Model for covariate selection and out-of-sample forecasting for the trade
balance of Pakistan. We train the model on 1985–2015 observations and 2016–2020 observations as test data for the out-of-
sample forecast.

1. Introduction

Since the beginning of time-series analysis, modeling and
forecasting have been the center of attraction. 'e accuracy
of the model in time-series analysis is always unknown. Only
one in a million models can be accurate; ‘‘essentially, all
models are wrong, but some are useful’’ [1]. However, the
massive availability of data in the current era leads us to a
new phase of time-series analysis for model selection and
forecasting. Including many financial and economic

covariates in the time-series model for superior prediction
may yield considerable benefits. However, parsimonious
models in time-series analysis are superior in forecasting.
Failure to decrease dimensionality may lead to poor per-
formance due to cumulative estimation losses from re-
dundant or insignificant variables.

On the other hand, the traditional time-series modeling
for covariates and lag selection in Autoregressive Distributed
Lag (ARDL) modeling uses Akaike Information Criteria
(AIC) and Bayesian Information Criteria (BIC) [2, 3]. 'is
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technique is limited to the number of covariates, and their
lag must not be greater than the number of observations.'e
traditional Ordinary Least Square method fails to estimate
the forthcoming models with huge regressors and limited
observations due to inadequate degrees of freedom. Several
statistical techniques exist in the literature for model se-
lection and forecasting when covariates and their lags are
more than the number of observations. Meanwhile, classical
approach (Autometrics, general-to-specific) and regulari-
zation techniques (Machine Learning) are frequently used in
time-series modeling when covariates exceed the number of
observations. Besides these techniques, complex network
theories provide an efficient and reliable solution for han-
dling time-series issues. In recent years, the complex net-
work has been extensively used in socioeconomic
phenomena [4–6]. However, this study aimed to identify the
true covariate and evaluate the model’s forecasting perfor-
mance, and we only concentrated on regularization tech-
niques and the classical approach.

'e use of sparse modeling has grown widely in time-
series analysis as it can efficiently handle big macroeconomic
data sets and substitute the factor models [7–13]. For the
time being, Medeiros & Mendes [14] find that the adaptive
LASSO (AdaLASSO) consistently chooses the essential
covariates as the number of observations grows (model
selection consistency) even when the errors are non-
Gaussian and conditionally heteroscedastic. Audrino and
Camponovo [15] illustrate the theoretical and empirical
efficiency of AdaLASSO, as it asymptotically selects covariate
with finite-sample in time-series regression models. Cova-
riates and their lag selections are challenging in time-series
modeling, mainly when there is a mixture of serial corre-
lation [16]. To probe this gap, Konzen and Ziegelmann [17]
introduce Weighted Lag adaptive LASSO (WLAdaLASSO),
which applies various weights to each coefficient and pe-
nalizes coefficients of higher-lagged variables. 'e WLA-
daLASSO outperforms LASSO and AdaLASSO in
forecasting and covariate selection, even in a greater linear
dependency between predictors with many candidate lags,
whereas Uematsu and Tanaka [18] use folded concave
penalties for ultra-high-dimensional time-series forecasting
and covariate selection. 'ey verify the oracle inequalities of
folded concave penalties (SCAD and MCP) for macroeco-
nomic time series under appropriate conditions with the
theoretical and empirical contribution.

In the meantime, very few studies exist that utilize the
classical technique (Autometrics) in the context of macro-
economic forecasting [19–22]. In cross-sectional modeling,
Epprecht et al. [23] compare the LASSO and AdaLASSO
estimate with classical technique (Autometrics) in fore-
casting and covariate selection. 'e result indicates that
LASSO and AdaLASSO estimates outperform Autometrics
in prediction. Conversely, for time-series modeling with
dynamic structure, WLAdaLASSO outperforms forecasting
and covariate selection than LASSO and AdaLASSO.
However, we have not come across a work that has com-
pared the computational efficiency of regularization tech-
niques, particularly WLAdaLASSO, SCAD, and MCP, with
classical technique (Autometrics) in dynamic time-series

modeling. For this purpose, we implement an updated
regularization technique for dynamic time-series modeling
to assess their performance with the classical approach
(Autometrics) for covariate selection and forecasting the-
oretically and empirically. Furthermore, we assess the effi-
ciency of these techniques in simulation experiments where
the real data generating process (DGP) has a dynamic
structure. To summarize the entire discussion, our main
contribution is a comparison of WLAdaLASSO and Auto-
metrics for covariate selection and forecasting under dif-
ferent scenarios with various autocorrelation coefficients
(0.1, 0.5, and 0.8) of regressors and T sample sizes (50, 100,
and 500), as well as application to macroeconomic data to
provide a conclusive solution to predictability. 'e com-
putational efficiency of these techniques is assessed in terms
of gauge, potency, and out-of-sample Root Mean Square
Error (RMSE). We constructed a Generalized Unidentified
Model (GUM) and considered all the possible macroeco-
nomic determinants of the trade balance for real data
analysis. 'e techniques are not restricted to the balance of
trade but valid for any time series.

'e rest of the paper is organized as follows: in Section 2,
we will briefly illustrate the model selection techniques.
Section 3 is based on the simulation experiment and results.
Section 4 discusses real data analysis. Finally, Section 5
presents the conclusion and remarks on the efficacy of
considered techniques.

2. Model Selection Techniques

Technically, two broad spectrums of model selection exist in
the literature: regularization techniques and classical ap-
proach (Autometrics, general-to-specific), whenever P re-
gressors are greater than N number of observations. 'e
classical approach (Autometrics, general-to-specific) starts
with a fully saturatedmodel and uses a backward elimination
with the multipath search process, and the selection of the
model mainly depends on the predefined significance level.
However, the regularization technique applies the sparsity
on the p-dimensional parameter vector, which forces many
of its components to be zero. 'is technique combats the
issues posed by high-dimensionality. We describe each of
these techniques in more detail, but we only considered
orthogonal regularization techniques.

2.1. Autometrics Algorithms for Covariate and Lag Selection.
Autometrics is a third-generation algorithm created on
similar concepts of PcGets. Hoover et al. [24] proposed the
general-to-specific model selection technique that aggre-
gates many elements of the “Hendry” methodologies and
“London School of Economics (LSE).” Doornik [25] pro-
posed PcGets as a second-generation method extended by
Krolzig and Hendry [26], prolonging and enlightening
Hoover and Perez’s algorithm [26, 27]. 'e concept of
general-to-specific (gets) modeling is the cornerstone of the
Autometrics approach:

(i) Initially, the GUM includes the overall covariates
and estimates it by the OLS method with expelling
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statistically irrelevant covariates; the reliability of the
reduced model is confirmed at each stage to prove
the congruence with diagnostic tests.

(ii) Autometrics uses a tree-path search with multistep
simplifications along numerous paths. Final models
are calculated using a tree-path search and con-
firmed using diagnostic tests; if the coefficient esti-
mates are statistically insignificant, the model is
discarded. When a large number of terminal models
are identified, Autometrics retests their union. A
new GUM is created when the “surviving” terminal
models are combined, allowing for one more tree-
path search repeat. 'e entire exploration process is
repeated, with the terminal models and their com-
binations being examined once again. If many
models pass the encompassing tests, the final choice
is based on predetermined information criteria.

Diagnostic tests are used to double-check the simplified
models, while comprehensive tests resolve numerous ter-
minal models. For diagnostic tests, Autometrics uses Jarque
and Bera [28] residual normality test, Breusch and Pagan
[29], and Godfrey [30] second-order residual autocorrela-
tion, autocorrelated conditional heteroscedasticity (ARCH)
to second-order [31], and in-sample stability [32]. In some
aspects, Autometrics is a partially black box [23]. However, it
allows the user to choose between “nominal significance
level” and “1-cut and tight significance level” when estab-
lishing modeling approaches. 'e multipath approach
avoids path dependency by using a tree structure and a
similar stepwise backward elimination, a built-in function of
the gets package in R environments [33].

2.2. Regularization Techniques. Regularization techniques
handle saturated models with irrelevant regressors even if
regressors are more than the number of observations and
shrink the irrelevant coefficients equal to zero with some
bias. Several regularization techniques exist in the literature;
we only opt orthogonal regularization techniques for dy-
namic covariate selection and forecasting: LASSO, Ada-
LASSO, WLAdaLASSO, SCAD, and MCP.

2.2.1. LASSO and AdaLASSO Estimate. Due to lower
computation cost, the Least Absolute Shrinkage and Se-
lection Operator (LASSO) is a popular estimation method in
a linear regression framework, introduced by Tibshirani
(1996). 'e LASSOmethod is like ridge regression; however,
it set some coefficients precisely equal to zero with a sub-
stantial bias. 'e resulting model is easy to interpret and
possesses the least forecast error. Consider a linear regres-
sion model, where y� (y1t, y2t, . . . , ynt) are the continuous
response regressors, and xit � (x1t, x1t−1, . . . , xpt−1) are the
covariates with its lag, and cj are the estimated coefficients.
'e equation can be defined as

cj � argminc yit − 
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where pλj
(.) is a penalty function and λj is the

hyperparameter.
'e second term in the above equation is defined as “L1

penalty,” and λ leads to a sparse solution with a shrinking
specific set the coefficients precisely equal to zero with a
certain amount of bias. 'e amount of shrinkage depends
upon the selection of λ, whereas its range is 0< λ<∞.

Zou [34] demonstrated that the LASSO estimator lacks
the oracle characteristic and introduced the adaptive LASSO,
a simple and effective solution. In contrast, the coefficients in
LASSO are all penalized equally in the ’L1 penalty. However,
in AdaLASSO, each coefficient is given a distinct weight. Zou
[34] showed that the AdaLASSO could have the best results
if the weights are data-dependent and carefully chosen; then,
the AdaLASSO can possess the oracle property.
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wj � 1/c∗τj , τ >0, and c∗j is an initial parameter estimate.
'e weights for zero coefficients diverge (to infinity) as the
sample size expands, and nonzero coefficients converge to a
finite constant. To estimate the c∗j , Zou [34] recommended
the OLS method. However, when the number of candidate
variables exceeds the number of observations, the OLS
method does not work. A ridge estimate can be employed as
an initial estimator in this case.

2.2.2. Weighted Lag Adaptive LASSO (WLAdaLASSO).
'e Weighted Lag Adaptive LASSO (WLAdaLASSO) was
introduced by Konzen and Ziegelmann [17] and established
on the concept of Park and Sakaori [35] work. It is defined as
another type of LASSO estimate specifically for time-series
modeling with lag structure. 'e idea is similar to Ada-
LASSO and built for the time-series ARDL framework, as the
more distant lags have a more negligible effect in predicting
the dependent variable, imposing more enormous penalties
on them.
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Here, wj � (|c
bridge
j |e− αl)−τ , l is the lag length, τ >0, and

α≥ 0 are tuning parameters. Moreover, c∗j is an initial
parameter estimate. τ �1 like in AdaLASSO. To pick α,
Konzen and Ziegelmann (2016) suggest estimating the
model for a given λ using a grid (0; 0 : 5; 1; : : : ; 10) and
choose the one with the lowest BIC and the λ parameter
selected on the same criteria of the lowest BIC.

2.2.3. SCAD and MCP Estimate. Smoothly Clipped Abso-
lute Deviation is unbiased and sparse (i.e., small estimated
coefficients automatically set to zero) and fulfills the con-
dition of continuity proposed by Fan and Li [36]. 'e
smoothly clipped absolute deviation (SCAD) for covariate
selection and its lags are defined as
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(4)

where x is the matrix of covariates and its lag, and the second
term in the above equation is 

d
j�1 pj(|cj|; λ; α), that is, a

penalized term designed to meet all three requirements
(unbiasedness, sparsity, and continuity). 'e SCAD has
proven to be effective in many statistical circumstances, such
as cross-sectional regression and time-series modeling [18].
P(c|λ, α) is a folded concave penalty; unlike LASSO, it
depends on two tuning parameters, and penalties depend on
λ in a nonmultiplicative way, so that P(α|λ)� λP(α). Ad-
ditionally, the tuning parameter α controls the concavity of
the penalty. 'e maximization of the objective function
depends on α and λ, whereas α equals 3.7 and λ is selected via
cross-validation [36].

Zhang [37] introduced the Minimax Concave Penalty
(MCP), a nonconvex penalization strategy that employs
sparse area up to a particular variable selection threshold,
resulting in an unbiased estimate.
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MCP uses 
d
j�1 pj(|cj|; λ; α) regularization path based

on the family of nonconvex penalty function with two tuning
parameters α and λ, where α is fixed, and λ is selected via
cross-validation. 'e tuning parameter λ controls the
amount of shrinkage and α concavity of penalty. MCP
prevents the spares convexity to a greater extent due to
minimizing the maximum concavity [37].'e regularization
parameter tends to larger α coefficient affords less unbiased
and more convexity [37]. SCAD and MCP estimates belong
to a family of folded concave penalties, as P(·) penalty
function is neither convex nor concave.

2.3. Selection of Tuning Parameters for Regularization
Techniques. 'e selection of λ tuning parameter is crucial as
it governs the complexity of the selected model. 'e choice
of the optimal tuning parameter provides a parsimonious
model with a precise prediction performance. In practice,
the tuning parameter is frequently selected using a cross-
validation approach to achieve prediction optimality. Such
prediction optimality is frequently at odds with covariates

selection; however, the objective is to recover the underlying
set of sparse variables: frequently, a bigger penalty parameter
is required for covariate selection than the optimal pre-
diction [38]. However, the BIC criterion is superior to cross-
validation for covariate selection, but it has no theoretical
explanation. Meanwhile, WLAdaLASSO with BIC-based
tuning parameter outperforms others in covariate selection
and out-of-sample forecast [17]. Hence, we use BIC-based
tuning parameters for covariate selection and out-of-sample
forecast in simulation exercises and real data analysis.

2.4. =eoretical Comparison. To compare these techniques,
we use Gauge, Potency, and out-of-sample RMSE. Gauge is the
empirical null retention frequency of how irrelevant covariates
are retained, whereas potency is known as correct covariate
identifications. 'e comparison of regularization techniques
and Autometrics assessed via a correct zero identification
interpreted as potency, and incorrect zero identification is
referred to as Gauge [39]. We use RMSE for out-of-sample
forecasting to evaluate the performance of concerned tech-
niques in a simulation study and real data analysis. If the
approaches correctly identify the accurate model, the estima-
tions of the following parameters should be expected:

(1) Gauge approaches to nominal significance level α or
tight significance level (0.01 or 0.001).

E
krel

krel
 ⟶ α. (6)

(2) Potency approaches 1 if considered estimation
techniques efficiently estimate the accurate model.

E
krel

krel
 ⟶ 1. (7)

3. Simulation Experiments and Results

'e simulation study has been performed in R-free statistical
software; for Autometrics, we used the gets package of R,
which is freely available, and for regularization techniques,
we use the glmnet for LASSO, AdaLASSO, and WLAda-
LASSO as for SCAD and MCP, the ncvreg package. 'e
performance of Autometrics for covariate selection and
forecasting is assessed with two levels of significance 0.05
and 0.01.
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3.1. Data Generating Process (DGP). We use Konzen and
Ziegelmann [17] DGP for statistical comparison. Regarding
covariate and lag selection performance, our goal is to
compare the gauge (“size”) and potency (“power”) of the
model. We also emphasize the out-of-sample forecasting
performance of considered techniques. To illustrate our
purpose, we chose Konzen and Ziegelmann [17] DGP with
10 independent time-series covariates that follow AR(1) as
xi,t � ϕxi,t-1+ μi,t where μi,t∼N(0, 1) and i� 1, 2, . . ., 10. We
assess the performance of considered techniques under
different scenarios based on the same linear model with
varying autocorrelation coefficients AR(1) ϕ equal to 0.1, 0.5,
and 0.8 and T number of observations equal to 50, 100, and
500.

'e considered DGP is as follows:

yt � 0.8yt−1 + 0.6x1,t−1 + 0.3x1,t−2 − 0.5x2,t−1 − 0.2x2,t−2

+ 0.4x3,t−1 + 0.3x3,t−2 + 0.4x4,t−1 − 0.3x5,t−1

+ 0.2x6,t−1 + εt,

εt ∼ N(0, 1) t � 1, 2, . . . . . . , T.

(8)

We employ WLAdaLASSO, Autometrics, and other
regularization techniques to estimate the model. 'e lag
length of dependent and independent regressors is equal to 5
throughout the simulation study with varying Tobservations
and ϕ parameter of independent regressors. We eliminate
the last ten observations of the simulated series to implement
the out-of-sample RMSE. 'e RMSE of the out-of-sample
forecast is reported in the below figures, and simulation is
repeated 1000 times.

3.2. Simulation Results. Tables 1–3 illustrate the simulation
findings of considered techniques in terms of average gauge
and potency. 'e simulated result of out-of-sample RMSE is
presented in the figures. 'e above indicates that, among all
concerned techniques, WLAdaLASSO outperforms others
in potency equal to 63.6%, with T being equal to 50, whereas
Autometrics with a 0.01 level of significance retains the least
potency of 16.1% on average. As the sample size increases,
the performance of considered techniques is improved in
average potency (increases) and average gauge (decreases).
Table 1 indicates that Autometrics retains its average gauge
around its nominal significance level (0.05) and 0.01 at the
cost of least average potency. However, with an increase in
sample Tequal to 500, the Autometrics with 0.05 significance
performs near WLAdaLASSO both in potency and gauge.
Among regularization techniques, LASSO, AdaLASSO,
SCAD, and MCP perform inferior to WLAdaLASSO in
gauge and potency.

Tables 2 and 3 illustrate the simulated result with ϕ
(autocorrelation coefficients) of regressors equal to 0.5 and
0.8.'eWLAdaLASSO estimate outperforms others with an
average potency of 64.5%, ϕ equal to 0.5, and T equal to 50.
As the T sample of WLAdaLASSO increases, the average
gauge approaches nominal significance level, and average
potency approaches 1. 'e simulation result indicates that

the WLAdaLASSO estimate is not sensitive to autocorre-
lation coefficients as with ϕ equal to 0.1 and Tequal to 50; the
average retains potency equal to 63.6% and 64.5% with ϕ
being equal to 0.5. However, the Autometrics performs
poorly as the autocorrelation coefficient increases from 0.1 to
0.5.

Meanwhile, Autometrics with ϕ equal to 0.8 and Tequal
to 50 possess 11.5% gauge, which is higher than the 5%
significance level. 'e performance of Autometrics does
not get enhanced (gauge⟶α, and potency⟶1) as the
sample size increases with ϕ being equal to 0.8. However,
WLAdaLASSO performs superior in average potency and
gauge compared to all other techniques. 'e simulation
experiment indicates that WLAdaLASSO performs robust
even with a stronger linear dependence between predictors.
With increasing sample, the performance of Autometrics,
LASSO, AdaLASSO, SCAD, and MCP does not get
enhanced as that of WLAdaLASSO. 'e WLAdaLASSO
performs superior to other considered regularization
techniques and to Autometrics as well in average gauge and
potency even with higher and weak linear dependency
between predictors and small sample size.

Figures 1–3 illustrate the RMSE of considered techniques
with Tsamples being equal to 50, 100, and 500 and ϕ equal to
0.1, 0.5, and 0.8. 'e result shows that the WLAdaLASSO
outperforms other techniques in out-of-sample forecasting.
'eWLAdaLASSO estimate is insensitive to autocorrelation
coefficients, as the forecast performance and average potency
have not decreased because ϕ equals 0.8 even with a small
sample. However, with ϕ being equal to 0.8, all other
techniques perform poorly in out-of-sample forecasting,
whereas WLAdaLASSO possesses the least RMSE. Auto-
metrics with autocorrelation coefficient equals 0.1, and T
equal to 50 performs poorly in RMSE compared to WLA-
daLASSO, but with sample size increment, the RMSE de-
creases because the average potency increases. However,
Autometrics with a ϕ being equal to 0.8 and T equal to 50
performs the worst among all other techniques. 'e overall
simulation result indicates that WLAdaLASSO outperforms
Autometrics and other regularization techniques in potency
and out-of-sample forecasting.

4. Real Data Analysis

For the real data analysis, we aim to probe the determinants
of the trade balance for Pakistan and implement the con-
sidered techniques and assess their performance. Trade has
played an important role in developing countries as a growth
engine in various eras. 'e trade deficit or surplus is a term
used to describe trade imbalances. Since independence,
Pakistan has been in a trade deficit, except for three years:
1947–1948, 1950–1951, and 1972–1973 [40]. According to
economic literature, a variety of factors are thought to be
responsible for long-term trade deficits in various econo-
mies, including ineffective public policies, shocks in major
trading countries, oil price hikes if the economy is heavily
reliant on oil imports, residents’ socioeconomic conditions,
and increased urbanization [41, 42]. 'e existing studies in
the case of Pakistan considered only a few macroeconomic
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variables as like GDP, exchange rate, broad money supply,
inflation, and Foreign Direct Investment [40, 43–47]. 'is
study intakes the Generalized Unidentified Model (GUM)
that includes each and every possible determinant of trade
balance with 11 regressors, namely, Domestic Investment
(log), Domestic Consumption (log), FDI (log), GDP (log),
Inflation (log), Budget Deficit (log), Remittances (log),

Exchange Rate (log), Population (log), Urban population
(log), and Government expenditure (log).

We use annual frequency data from 1980 to 2020. 'e
data has been compiled from World Data Indicator. 'e
model contains 11 regressors (with a difference) and in-
cludes 5 lags of each covariates and the lags of the dependent
variable. 'e GUM includes 71 covariates; due to

Table 1: Simulated result with ϕ equal to 0.1.

T� 50 T�100 T� 500
WLAdaLASSO Gauge 0.268 0.055 0.014

Potency 0.636 0.708 0.954
Autometrics (0.05) Gauge 0.069 0.037 0.009

Potency 0.256 0.375 0.960
Autometrics (0.01) Gauge 0.028 0.016 0.001

Potency 0.161 0.257 0.892
LASSO Gauge 0.465 0.186 0.134

Potency 0.619 0.612 0.713
AdaLASSO Gauge 0.197 0.092 0.080

Potency 0.389 0.523 0.681
SCAD Gauge 0.176 0.174 0.098

Potency 0.380 0.584 0.700
MCP Gauge 0.178 0.155 0.083

Potency 0.360 0.553 0.694

Table 2: Simulated result with ϕ equal to 0.5.

T� 50 T�100 T� 500
WLAdaLASSO Gauge 0.210 0.055 0.013

Potency 0.649 0.830 0.997
Autometrics (0.05) Gauge 0.065 0.042 0.033

Potency 0.280 0.407 0.807
Autometrics (0.01) Gauge 0.034 0.018 0.025

Potency 0.243 0.306 0.704
LASSO Gauge 0.510 0.199 0.125

Potency 0.692 0.660 0.717
AdaLASSO Gauge 0.251 0.097 0.076

Potency 0.460 0.520 0.691
SCAD Gauge 0.210 0.175 0.093

Potency 0.351 0.581 0.699
MCP Gauge 0.221 0.148 0.079

Potency 0.350 0.556 0.691

Table 3: Simulated result with ϕ equal to 0.8.

T� 50 T�100 T� 500
WLAdaLASSO Gauge 0.220 0.056 0.011

Potency 0.696 0.707 0.992
Autometrics (0.05) Gauge 0.115 0.050 0.075

Potency 0.282 0.471 0.601
Autometrics (0.01) Gauge 0.083 0.027 0.066

Potency 0.206 0.437 0.522
LASSO Gauge 0.298 0.231 0.157

Potency 0.587 0.683 0.719
AdaLASSO Gauge 0.112 0.108 0.078

Potency 0.327 0.516 0.683
SCAD Gauge 0.078 0.177 0.091

Potency 0.339 0.537 0.675
MCP Gauge 0.071 0.150 0.083

Potency 0.291 0.528 0.680
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differencing data and including 5 lags of covariates, we have
a total of 35 observations. We train the model on 30 ob-
servations from 1985 to 2015 as the last 5 observations
2016–2020 have been discarded for test data. 'roughout
simulation experiment and real data analysis, we use BIC-
based tuning parameter for regularization techniques, while,
for Autometrics, we select the model with 0.01 and 0.05
significance levels.

'e real data analysis illustrated in Figure 4 verifies our
simulation findings as WLAdaLASSO outperforms all other
techniques with the least out-of-sample RMSE being equal to
0.0069 followed by Autometrics (0.01) with RMSE of 0.018.
Autometrics with 0.05 possesses a higher RMSE equal to
0.111 than Autometrics with a 0.01 significance level. 'e
finding is aligned with the simulation experiment as

Autometrics with a 0.05 level of significance possesses a
slightly higher average gauge with higher RMSE than a 0.01
level of significance. SCAD, MCP, LASSO, and AdaLASSO
estimate higher RMSE as the model selects more irrelevant
covariates and lag than WLAdaLASSO and Autometrics.
WLAdaLASSO selects three covariates, namely, difference of
urban population (dupop), difference of log GDP lag 1
(dlnGDP(−1)), and difference of log population lag 4
(dpop(−4)). Autometrics with a 0.05 significance level selects
five covariates and their lag, and with 0.01 significance level,
it selects three covariates. dlnGDP(−1) is a common co-
variate between WLAdaLASSO and Autometrics with 0.05
and 0.01 significance levels. SCAD, MCP, and LASSO select
too many covariates and their lag, due to which these
techniques possess higher RMSE compared to
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Figure 1: Simulated result of RMSE with ϕ equal to 0.1.
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Figure 2: Simulated result of RMSE with ϕ equal to 0.5.

Complexity 7



WLAdaLASSO. However, AdaLASSO selects three cova-
riates and their lag with RMSE being equal to 0.16, which is
higher than that of WLAdaLASSO and Autometrics.

5. Conclusion

Regularization techniques have become extremely popular
in time-series modeling in recent years due to availability of
massive data. 'is study aims to analyze the performance of
the WLAdaLASSO with Autometrics for covariate selection
and forecasting. 'e simulation study illustrates that the
WLAdaLASSOwith the stronger linear dependency between
predictors outperforms Autometrics and other regulariza-
tion techniques. However, Autometrics with ϕ being equal
0.1, the performance of gauge⟶ α (0.05 or 0.01 level of

significance), potency⟶ 1, and the Average RMSE also
decrease, with sample size increment. On the contrary, the
situation is limited to ϕ equal to 0.1; however, ϕ equal to 0.8
and increasing sample size does not significantly enhance the
performance of Autometrics compared to WLAdaLASSO.
Autometrics with 0.05 significances level includes irreverent
covariates that increase the RMSE compared to 0.01 sig-
nificance, and the finding is aligned with real data analysis.
However, other than the WLAdaLASSO, all considered
regularization techniques perform poorly in covariate se-
lection and forecasting even with ϕ being equal to 0.1 and T
equal to 50, whereas the performance of considered tech-
niques is improved with an increase in sample size; still,
WLAdaLASSO outperformed others among all simulation
experiments. 'e simulation experiment and real data
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Figure 3: Simulated result of RMSE with ϕ equal to 0.8.
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Figure 4: Real data analysis.
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analysis are evidence that the WLAdaLASSO is a more
robust technique than all other considered regularization
techniques and Autometrics as well in out-of-sample fore-
casting and covariate selection even with the stronger linear
dependence between predictors and small sample size.

5.1. Limitations. One of the study’s constraints is that it only
considers linear models and annual data. 'ese simulation
experiments are limited to Gaussian distributed errors.

Data Availability

Coding of the simulation study, coding of the real data
analysis, and data used for analysis can be obtained from the
corresponding author upon request.
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