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'is paper investigates the event-based consensus problem for the heterogeneous hybrid multiagent system (MAS). First, the
heterogeneous hybrid MAS is proposed which contains continuous and discrete-time subsystems with second-order and first-
order heterogeneous dynamics. Second, the event-triggered protocols are proposed, whichmainly include the event-based control
laws and event-triggered conditions for different kinds of agents.'en, the consensus conclusions of fixed topology and switching
topologies are obtained based on graph theory and nonnegative matrix theory, which include the constraints on control pa-
rameters, coupling gains, and sampling interval to guarantee consensus. Finally, a simulation example is given to verify the
efficiency of the proposed protocols.

1. Introduction

With the popularity of distributed artificial intelligence,
multiagent system (MAS) has been widely researched and
applied to engineering, military, and other fields. It can
accomplish huge and complex tasks in the real world
through the mutual communication and coordination
among individuals. It can also explain some complex phe-
nomena in nature and human society, such as fish schools,
bird flocks [1, 2], and the dynamics of opinion forming in
human society [3]. At present, the research on multiagent
system is mainly about consensus [4–8], flocking [9–11],
formation [12–15], and so on.

Consensus, as one of the most fundamental cooperative
behaviors of MASs, has attracted extensive interest. It means
that the agents can reach the same states from any initial
states by a suitable consensus algorithm or control law. Up to
now, researchers have proposed many consensus algorithms
for MASs through different analysis methods, such as the
analysis based on nonnegative matrix theory [16–19], Lya-
punov function analysis [20, 21], and frequency domain
analysis [22–24]. In 2006, Xiao et al. studied the consensus
problem for discrete-time first-order MASs with fixed

topology and considered the structural decomposition of the
leader-follower model [25]. 'en, Xie et al. and Ren et al.
gave some sufficient conditions for solving the consensus
problem for second-order MASs with fixed and switching
topologies [26, 27]. Shi et al. further considered the
weighted-average consensus problem for second-order
MASs and obtained necessary and sufficient conditions [28].
In recent years, the multiagent networks studied have be-
come more and more complicated with the wide application
of MASs.'e heterogeneous MASs composed of agents with
different dynamics are more suitable for real systems. Taking
the multirobots systems into account, heterogeneous sys-
tems composed of robots with different perceptual capa-
bilities can complete tasks faster [29]. A number of results
about the consensus of heterogeneous MASs have been
obtained, including low-order linear systems [30–32] and
high-order linear systems [33–35]. In addition, the hybrid
MASs including continuous and discrete-time subsystems
have also attracted attention. Examples include the refrig-
eration and heating system. 'e heat-loss dynamics and the
control of air conditioners belong to continuous-time sys-
tems, whereas the thermostat is controlled by a discrete-time
system [36]. Since 2018, Zheng et al. have studied the
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consensus problems of first-order and second-order hybrid
systems and have proposed a game-theoretic approach to
analyze the hybrid systems [37–39]. Su et al. designed an
event-triggered consensus strategy for the second-order
hybrid system [40] in 2019. Other researchers obtained more
results about the hybrid MAS [41, 42].

In addition, interest in the event-based consensus
problem for MASs has grown in the past decade. Compared
with traditional methods, the event-triggered method has
certain advantages in studying practical problems, such as
minimizing the number of control actions and saving energy
by updating the controller only at the trigger time and
avoiding continuous communications. However, it also
brings new theoretical and practical problems.'emain task
is the design of distributed event-triggered protocols, in-
cluding event-triggered control laws and trigger conditions.
In 2012, Dimarogonas et al. proposed effective event-trig-
gered consensus algorithms for the first-order agents under
undirected connected communication topologies [43].'en,
Fan et al. designed a fully distributed event-triggered
strategy for solving the consensus problem of general linear
MASs [44]. In recent years, several event-triggered con-
sensus problems based on state feedback, output feedback,
and leader-follower models were considered in [45–50].

In this paper, we consider the heterogeneous multi-
agent systems with continuous-time and discrete-time
individuals (the heterogeneous hybrid MASs). For exam-
ple, in the complex system of nature and human interac-
tion, the biological signals are continuous signals, whereas
the automated instruments with different functions are
mostly discrete-time systems. Compared with the MASs in
[42], the consensus problem for the heterogeneous hybrid
MASs with a more general form is investigated, and the
event-triggered protocols are proposed. First-order and
second-order dynamic agents coexist in a system. Some of
them belong to the continuous-time system, whereas the
other agents are controlled by the discrete-time system.'e
main contributions of this paper are as follows. First, for
the different dynamic characteristics of first-order and
second-order agents, two kinds of event-triggered control
laws are proposed. 'e event-triggered conditions are
designed, which contain the position of all agents and the
velocity of only second-order agents. Second, the sampled-
data approach is used to solve the consensus problem for
the heterogeneous hybrid MASs. On the one hand, the
continuous-time subsystem and discrete-time subsystem
can be better analyzed by the overall analysis method. On
the other hand, this approach shows that the trigger time
interval exists in a lower bound. Hence, the Zeno behavior
is avoided. Finally, under the assumption that the fixed
topology or the union of switching topologies contains a
spanning tree, several results for solving the consensus
problem are obtained by using graph theory and non-
negative matrix theory. Some selection conditions of
control parameters, as well as the constraints of coupling
gains and sampling interval, are given to guarantee
consensus.

'roughout this paper, assume 0<M<N, IM � 1, 2,{

. . . , M} and IN/IM � M + 1, M + 2, . . . , N{ }.N+ represents
the set of positive integers. Consider a vector or a matrix A,
A ∈ Rn means A is a real column vector of length
N. Similarly, A is an n × p-dimensional real matrix, which is
defined by A ∈ Rn×p. 'e symbol AT and ‖A‖ represent the
transpose and Euclidean norm of A, respectively. 'e cal-
culational symbols ⊗ represent the Kronecker product of
matrices.

2. Preliminaries and Problem Formulation

2.1. Preliminaries. 'e communication topology is de-
scribed by a weighted directed graph G(V,E,A), where
V � v1, . . . , vN  represents the nodes set and E⊆V × V

represents the set of edges between nodes.A � [aij] ∈ RN×N

denotes the related adjacency matrix. If there is a directed
path ϵji ∈ E, indicating that the j th agent can transmit data
to the i th agent, then aij > 0; otherwise, aij � 0. A diagonal
matrix D � diag(d1, d2, . . . , dN) is defined as the degree
matrix of the directed graph G, where di � 

N
j�1 aij. 'e

Laplacian matrix is expressed asL � D − A. For a weighted
directed graph G, it is said to contain a directed spanning
tree, indicating that there is a node, which has directed paths
that can lead to all other nodes.

A nonnegative matrix C ∈ Rn×r is also called a row
stochastic matrix if the sum of its each row is equal to 1.
Furthermore, if it also satisfies limk⟶∞C

k � 1n × vT, where
v ∈ Rn, then it is indecomposable and aperiodic (SIA).

2.2. Problem Formulation. Considering the position and
velocity states of the second-order agents and the position
states of the first-order agents, the dynamic models are
proposed, respectively. Suppose the number of agents in the
entire system is N, where the first M(M<N) agents are
second-order agents, the remaining (N − M) agents are
first-order. 'e second-order dynamic agents are expressed
as follows:
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(1)

where xi ∈ R, vi ∈ R, and ui ∈ R represent the position,
velocity, and control input of the second-order agent i,
respectively. 'e superscripts c and d denote that the agent
belongs to continuous and discrete-time subsystems. h> 0 is
the sampling interval of the discrete-time subsystem. 'e
dynamic model of first-order agents is given by
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Definition 1. 'e heterogeneous hybridMAS is said to reach
consensus if the position of all agents satisfies the following
conditions from any initial state.

lim
t⟶∞

x
c
i (t) � lim

kh⟶∞
x

d
i (kh)

� C, i ∈ IN,

(3)

where C is a constant. To ensure that all agents can keep the
same position state, (3) also indicates that the velocity of the
second-order agents will tend to zero when t⟶∞ or
kh⟶∞.

In order to propose the event-triggered protocols to
solve this consensus problem, we first design the following
event-triggered control laws for second-order agents:
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(4)

where α, β> 0 are control parameters, and (ti
0, . . . , ti

ξ , · · ·)

and (ki
0h, . . . , ki

ξh, · · ·) are the trigger time series. 'e event-
triggered control laws of the first-order agents are designed
as follows:
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Before proposing the event-triggered conditions, the
following definitions of the combined measurement and
combined measurement error are given. 'e combined
measurement is defined as
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'e combined measurement error is defined as
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In this paper, the event-triggered conditions are pre-
sented as follows:

t
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where min lih  is the time interval between two adjacent
trigger times, which lih satisfies the following inequalities for
the continuous and discrete-time agents:
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where c1, c2 > 0 are the threshold parameters, δ > 0 is the
exponential component. And zi is a new definition of hybrid
state quantity for the second-order agent, which is defined as

zi � xi + hvi, i � 1, 2, . . . , M (10)
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According to the event-triggered conditions proposed
above, the Zeno behavior is avoided because there is a lower
bound h> 0 for the event-trigger interval lih, which ensures

that the agent does not trigger infinitely for a limited time.
'en, based on the definitions of (6) and (7), the event-
triggered control laws (4) and (5) can be written as follows:
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Each controller updates only at its own trigger time, so
the energy can be saved. For any t ∈ (ti

ξ , ti
ξ+1], ui(t) � ui(ti

ξ)

does not change, and the continuous-time dynamics in (1)
and (2) can be described as
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To analyze the entire MAS with continuous and discrete-
time subsystems by the overall analysis method, the sam-
pled-data method is applied in this paper. Considering the
continuous subsystem in the discrete-time scale, a new

discrete-time scale κh � li′h is defined to describe the entire
MASs. κi

ξh represents the trigger time ti
ξ and ki

ξh. 'e unified
form of the entire MASs can be described as the following
expression:
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Substituting (7) into (13), we get the following
expression:
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In order to obtain the relationship between consensus
achievement and system parameters, the following defini-
tions are given:

xs(kh) � x
T
1 (kh), x

T
2 (kh), . . . , x

T
M(kh) 

T
,

xf(kh) � x
T
M+1(kh), x

T
M+2(kh), . . . , x

T
N(kh) 

T
,

vs(kh) � v
T
1 (kh), v

T
2 (kh), . . . , v

T
M(kh) 

T
,

zs(kh) � z
T
1 (kh), z

T
2 (kh), . . . , z

T
M(kh) 

T
,

Qs(kh) � q
T
1 (kh), q

T
2 (kh), . . . , q

T
M(kh) 

T
,

Qf(kh) � q
T
M+1(kh), q

T
M+2(kh), . . . , q

T
N(kh) 

T
,

Exs(kh) � e
T
x,1(kh), e

T
x,2(kh), . . . , e

T
x,M(kh) 

T
,

Exf(kh) � e
T
x,M+1(kh), e

T
x,M+2(kh), . . . , e

T
x,N(kh) 

T
,

Ev(kh) � e
T
v,1(kh), e

T
v,2(kh), . . . , e

T
v,M(kh) 

T
.

(15)

'en, (14) can be written as

xs(κh + h) �
hβ
2

xs(κh) +
2 − hβ

2
zs(κh) +

h
2α
2

Qs(κh)

−
h
2β
2

Ev(κh) +
h
2α
2

Exs(κh),

zs(κh + h) �
3hβ − 2

2
xs(κh) +

4 − 3hβ
2

zs(κh) +
3h

2α
2

Qs(κh)

−
3h

2β
2

Ev(κh) +
3h

2α
2

Exs(κh),

xf(κh + h) � xf(κh) + hαQf(κh) + hαExf(κh).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

Complexity 5



Considering the communication between different dy-
namics, the Laplacian matrix representing the communi-
cation topology is divided into four parts.
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Y(κh + h) � H(κh)Y(κh) + PE(κh), (20)

where

H(κh) �

hβ
2

IM −
h
2α
2
L1(κh)

2 − hβ
2

IM −
h
2α
2
L2(κh)

3hβ − 2
2

IM −
3h

2α
2

L1(κh)
4 − 3hβ

2
IM −

3h
2α
2

L2(κh)

−hαL3(κh) 0 IN−M − hαL4(κh)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊗ In,

P �

h
2α
2

IM −
h
2β
2

IM 0

3h
2α
2

IM −
3h

2β
2

IM 0

0 0 hαIN−M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊗ In.

(21)

Based on the analysis method in [40], the error system is
further constructed. Define

6 Complexity



ϕs(kh) � x
T
2 (kh) − x

T
1 (kh), . . . , x

T
M(kh) − x

T
1 (kh) 

T
,

ψs(kh) � z
T
2 (kh) − z

T
1 (kh), . . . , z

T
M(kh) − z

T
1 (kh) 

T
,

ϕf(kh) � x
T
M+1(kh) − x

T
1 (kh), . . . , x

T
N(kh) − x

T
1 (kh) 

T
,

L �

l2,2 − l1,2 l2,3 − l1,3 · · · l2,N − l1,N

l3,2 − l1,2 l3,3 − l1,3 · · · l3,N − l1,N

⋮ ⋮ ⋱ ⋮

lN,2 − l1,2 lN,3 − l1,3 · · · lN,N − l1,N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
L1L2

L3L4

⎡⎣ ⎤⎦,

Y(kh) � ϕT
s (kh)ψT

s (kh)ϕT
f(kh) 

T
.

(22)

'en, (18) can be rewritten as

Y(κh + h) � H(κh)Y(κh) + PE(κh), (23)

where

H(κh) �

hβ
2

IM −
h
2α
2
L1(κh)

2 − hβ
2

IM −
h
2α
2
L2(κh)

3hβ − 2
2

IM −
3h

2α
2

L1(κh)
4 − 3hβ

2
IM −

3h
2α
2

L2(κh)

−hαL3(κh) 0 IN−M − hαL4(κh)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊗ In,

P �

h
2α
2

IM −
h
2β
2

IM 0

3h
2α
2

IM −
3h

2β
2

IM 0

0 0 hαIN−M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

−1M−1 IM−1 0 0 0

0 0 −1M−1 IM−1 0

−1N−M 0 0 0 IN−M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⊗ In.

(24)

3. Main Result

3.1. Fixed Communication Topology. Consider the consen-
sus problem of fixed communication topology, which
means the directed graphG(V,E,A) does not change over
time and aij(t) � aij(kh) � aij.

Lemma 1. [8] If the sum of each row of nonnegative matrix
H � [hij] ∈ R(M+N)×(M+N) is a positive constant μ> 0, then μ
is an eigenvalue of H corresponding to the eigenvector 1N+M.
Furthermore, if the algebraic multiplicity of the eigenvalue μ
of H is 1 and hii > 0, i � 1, 2, . . . , M + N, then, for each ei-
genvalue λ≠ μ, |λ|< μ is satisfied.

Remark 1. In practical applications, the movement of the
agents should be multidimensional. 'is article only con-
siders motion in a single dimension; in other words, In � 1,
because motion in a certain direction can be decomposed

into motion in several independent directions. 'erefore,
the conclusion under a single dimension can also be ex-
tended to a multidimensional scale.

Theorem 1. @e matrix H defined in (18) contains eigen-
value 1, and the remaining eigenvalues satisfy |λ|< 1, and all
the eigenvalues of H defined in (20) satisfy |λ|< 1, if and only
if the fixed communication topology contains a directed
spanning tree and coupling gains, and sampling interval and
control parameters satisfy as follows:

4
3
> hβ>

2
3

+ h
2αmax

i∈IM



N

j�1
aij

⎛⎝ ⎞⎠,

1> hα max
i∈IN/IM



N

j�1
aij

⎛⎝ ⎞⎠.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)
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Proof. Under condition (21), H is a row stochastic matrix
with positive diagonal elements, and λ � 1 is one of the
eigenvalues of H corresponding to eigenvector 1N+M. 'e

column and row transformations of H − IN+M are per-
formed as follows:

H − IN+M �

hβ − 2
2

IM −
h
2α
2
L1

2 − hβ
2

IM −
h
2α
2
L2

3hβ − 2
2

IM −
3h

2α
2

L1
2 − 3hβ

2
IM −

3h
2α
2

L2

−hαL3 0 −hαL4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⟶

L1 0 L2

IM −IM 0

L3 0 L4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⟶

IM 0 0

0 L1 L2

0 L3 L4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(26)

We obtain rank(H − IM+N) � M + rank(L). H has one
eigenvalue λ � 1 with algebraic multiplicity 1, if and only if
rank(L) � N − 1, which is equivalent to the topology con-
taining a directed spanning tree [8]. Based on Lemma 1, we
can obtain that all the other eigenvalues of H satisfy |λ|< 1.

Next, it can be proved that all the nonzero eigenvalues of
L are also the eigenvalues ofL. By observing (18) and (20),
the mapping of the eigenvalues of H andL is the same as the
mapping of the eigenvalues of H and L. 'us, the eigen-
values of H and H are equal if L and L have the same
eigenvalues. Additionally, the eigenvalue of H corre-
sponding to the zero eigenvalue of L is one. 'erefore, all
eigenvalues of H are also eigenvalues of H except for ei-
genvalue 1. In other words, all the eigenvalues of H satisfy
|λ|< 1. □

Lemma 2. [40] If a matrix H satisfies that all its eigenvalues
are inside the unit circle, then the following inequality is
satisfied:

‖H‖
k ≤ a · b

k
, (27)

where a and b are positive constants that satisfy a≥ 1 and
0< b< 1.

Theorem 2. Consider the consensus of the heterogeneous
hybrid MASs (1) and (2) with fixed communication topology

under the event-triggered control laws (4) and (5) and event-
triggered conditions (8), (9), and (10) with c1 ∈ (0, 1),
c2 ∈ (0,∞), and δ ∈ (b, 1). If the fixed communication to-
pology G has a directed spanning tree and conditions (21) in
@eorem 1 are satisfied, the heterogeneous hybrid MASs can
reach the consensus condition (3).

Proof. Firstly, (20) is written in the following form by
iteration.

Y(κh) � H
κ
Y(0) + P 

κ−1

s�0
H

κ− 1− s
E(sh). (28)

By 'eorem 1 and Lemma 2, we have

‖Y(κh)‖ ≤ ab
κ
‖Y(0)‖ + ‖P 

κ−1

s�0
ab

κ− 1− s
‖E(sh)

���������

���������
, (29)

where a≥ 1 and 0< b< 1. According to the designed event-
trigger conditions (9) and (10), ‖E(κh)‖ can be expressed as

‖E(κh)‖ ≤ c1

Qs(κh)

Qf(κh)

zs(κh)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�������������

�������������

+ c2
������
N + M

√
δκ. (30)

Two positive constants C1 and C2 are defined, and then

Qs(κh)

Qf(κh)
⎡⎣ ⎤⎦

���������

���������
≤ ‖L‖ ·

ϕs(κh)

ϕf(κh)
⎡⎣ ⎤⎦

���������

���������
� C1

ϕs(κh)

ϕf(κh)
⎡⎣ ⎤⎦

���������

���������
,
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zs(κh)
����

����≤
1 01×(M−1)

−1(M−1)×1 IM−1
 

��������

��������
·

z1(κh)

ψs(κh)
 

��������

��������

≤
1 01×(M−1)

−1(M−1)×1 IM−1
 

��������

��������
zs(κh)

����
���� + ψs(κh)

����
���� .

(31)

'rough (28), we further obtain

zs(κh)
����

����≤

1 01×(M−1)

−1(M−1)×1 IM−1

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

�����������

�����������

1 −

1 01×(M−1)

−1(M−1)×1 IM−1

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

�����������

�����������

· ψs(κh)
����

���� � C2 · ψs(κh)
����

����. (32)

From (27) and (29), (30) can be converted as follows:

‖E(κh)‖ ≤ c1‖CY(κh)‖ + c2
������
N + M

√
δκ, (33)

where C is a bounded positive constant only related to
communication topology. Letting ρ � ‖P‖ and Z � max
ρac2

������
N + M

√
/(δ − b − ρac1C), a‖Y(0)‖ , ρ andZ are also

bounded positive constants related to communication to-
pology. 'en, the following inequality will be proved by
contradiction:

‖Y(κh)‖≤Zδκ. (34)

Consider that there is a constant k∗ > κ> 0 that makes
inequality (31) invalid. 'us,

Y k
∗
h( 

����
����>Zδk∗

. (35)

According to (25) and (30), one has

Zδk∗ < Y k
∗
h( 

����
����

≤ ab
k∗

‖Y(0)‖ + ρ 

k∗−1

s�0
ab

k∗− 1− s
c1CZ + c2

������
N + M

√
 δs

≤ ab
k∗

‖Y(0)‖ + ρa c1CZ + c2
������
N + M

√
 

b
k∗

− δk∗

b − δ

� a‖Y(0)‖ +
ρa c1CZ + c2

������
N + M

√
 

b − δ
⎡⎣ ⎤⎦b

k∗

+
ρa c1CZ + c2

������
N + M

√
 

δ − b
δk∗

.

(36)

Next, (31) can be proved in three cases. □

Case 1.

Z � ρac2

������
N + M

√

δ − b − ρac1C( 
, (37)

which indicates that

ρa c1CZ + c2
������
N + M

√
 

(δ − b)
� Z (38)

ρa c1CZ + c2
������
N + M

√
 

(δ − b)
> a‖Y(0)‖. (39)

According to (33), we have

Zδk∗ < a‖Y(0)‖ +
ρa c1CZ + c2

������
N + M

√
 

b − δ
⎡⎣ ⎤⎦b

k∗

+
ρa c1CZ + c2

������
N + M

√
 

δ − b
δk∗

<
ρa c1CZ + c2

������
N + M

√
 

δ − b
δk∗

� Zδk∗
.

(40)

Case 2. Z � a‖Y(0)‖ and ρac2
������
N + M

√
/(δ − b − ρac1

C)> 0, which indicates δ > b. According to (33), we can
obtain that

Zδk∗ < a‖Y(0)‖ +
ρa c1CZ + c2

������
N + M

√
 

b − δ
⎡⎣ ⎤⎦δk∗

+
ρa c1CZ + c2

������
N + M

√
 

δ − b
δk∗

� a‖Y(0)‖δk∗
� Zδk∗

.

(41)

Case 3. Z � a‖Y(0)‖ and ρac2
������
N + M

√
/(δ − b − ρac1

C)> 0, which indicates a‖Y(0)‖< ρa(c1CZ+

c2
������
N + M

√
)/(δ − b). 'e proof is similar to case 1 that

Zδk∗ <
ρa c1CZ + c2

������
N + M

√
 

δ − b
δk∗ <Zδk∗

. (42)
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Combining the three cases, the inequality (31) holds,
from which we can obtain that

lim
κh⟶∞

ϕs(kh)

ψs(kh)

ϕf(kh)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

��������������

��������������

� 0. (43)

'en, we further consider the consensus of the con-
tinuous-time agents in real time. 'e following inequality is
established:

v
c
i (t) − v

c
j(t)

�����

�����≤ v
c
i (t) − v

c
i (kh)

����
���� + v

c
i (kh) − v

c
j(kh)

�����

�����

+ v
c
j(kh) − v

c
j(t)

�����

�����, i ∈ IM,

x
c
i (t) − x

c
j(t)

�����

�����≤ x
c
i (t) − x

c
i (kh)

����
���� + x

c
i (kh) − x

c
j(kh)

�����

�����

+ x
c
i (kh) − x

c
j(t)

�����

�����, i ∈ IN.

(44)

When κh⟶∞, we can get vc,d
i (ki

ξh)⟶ 0, qc,d
i

(ki
ξh)⟶ 0. Combined with (4), (5), (6), and (12), when

t ∈ (kh, kh + h], the following inequalities are obtained:

lim
t,kh⟶∞

v
c
i (t) − v

c
i (kh)

����
����≤ lim

t,kh⟶∞
h −βv

c,d
i k

i
ξh  + αq

c,d
i k

i
ξh  , i ∈ IM,

lim
t,kh⟶∞

� x
c
i (t) − x

c
i (kh)

����
����≤ lim

t,kh⟶∞
hv

c,d
i k

i
ξh 

+
t − k

i
ξh 

2
− kh − k

i
ξh 

2

2
−βv

c,d
i k

i
ξh  + αq

c,d
i k

i
ξh  , i ∈ IM,

lim
t,kh⟶∞

‖θ‖≤ lim
t,kh⟶∞

hαq
c,d
l k

l
ξh , l ∈ IN/IM.

(45)

'en,

lim
t,kh⟶∞

x
c
i (t) − x

c
i (kh)

����
���� � 0, i ∈ IM,

lim
t,kh⟶∞

x
c
i (t) − x

c
i (kh)

����
���� � 0, l ∈

IN

IM

.

(46)

From (44) and (46), continuous-time individuals can
also achieve consensus on continuous-time scales. Com-
bined with (43), the consensus conditions (3) are satisfied.

3.2. Switching Communication Topologies. According to the
above conclusions with the fixed topology, the consensus of
the heterogeneous hybrid MASs with switching commu-
nication topologies is considered. 'e system description
(18) is rewritten as

Y kp+1h  � Ω kp  kph  + QE kp , p � 1, 2, . . . ,∞, (47)

where kp ∈ κ is the p th event-triggering instant of an agent
from its initial state, Ω(kp) � 

kp+1−1
s�kp

H(sh) is the matrix
product of H, corresponding to all switching communica-
tion topologies during each interval [kph, kp+1h), and

QE kp  � PE kp+1 − 1 h  + P 

kp+1−2

s�kp

E(sh) · 

kp+1−1

d�s+1
H(dh) (48)

is the accumulation of errors. Similarly, the error system
description (20) can also be rewritten as

Y kp+1h  � Ω kp Y kph  + QE kp , p � 1, 2, . . . ,∞, (49)

where

Ω kp  � 

kp+1−1

s�kp

H(sh), (50)

QE kp  � PE kp+1 − 1 h  + P 

kp+1−2

s�kp

E(sh) · 

kp+1−1

d�s+1
H(dh).

(51)

Remark 2. To simplify subsequent proofs, it is assumed that
kp+1 − kp > 1 in the subsection on switching communication
topologies, which means there are at least two different
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communication topologies in the period [kp, kp+1). Other-
wise, it can be regarded as a fixed communication topology
in a short period of time, and the convergence will not be
destroyed according to the existing conclusions.

Theorem 3. @e matrix product Ω(kp) is SIA, and all the
eigenvalues of Ω(kp) satisfy |λΩ|< 1 if the union of com-
munication topologies G[kph], G[(kp + 1)h], . . . , G[(kp+1

−1)h]} of each interval [kph, kp+1h) contains a spanning tree
and the coupling gains, and sampling interval and control
parameters satisfy conditions (21) in @eorem 1.

Proof. Define L � 
kp+1−1
s�kp

L(sh)/(kp+1 − kp) as the Lap-
lacian matrix of the union of directed graphs during time
interval [kph, kp+1h), and L is the matrix obtained by L

through the same transformation as L in (19).

H � 

kp+1−1

s�kp

H(sh)

kp+1 − kp 
(52)

still satisfies the sum of each row is 1. 'en, we can get
rank( H − IN+M) � M + rank( L) by taking the elements
column and row transforms as follows:

H − IN+M �

hβ − 2
2

IM −
h
2α
2

L1
2 − hβ

2
IM −

h
2α
2

L2

3hβ − 2
2

IM −
3h

2α
2

L1
2 − 3hβ

2
IM −

3h
2α
2

L2

−hαL3 0 −hαL4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⟶
IM 0

0 L

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (53)

'us, H has eigenvalue λ � 1 with algebraic multiplicity
1, if and only if rank( L) � N − 1, which means that the
union of topologies contains a spanning tree. According to
Lemma 3.1 in [18], we can get that



kp+1−1

s�kp

H(sh)> 

kp+1−1

s�kp

H(sh)/ kp+1 − kp , (54)

which indicates that the graph of the matrix product Ω(kp)

also contains a spanning tree. Besides, Ω(kp) is a stochastic
matrix with positive diagonal elements if conditions (21) are
satisfied, because the matrix multiplication among stochastic
matrixes with positive diagonal elements is closed. In other
words, Ω(kp) is SIA.

Similar to the proof of'eorem 1, for the error system, it
can be proved that all eigenvalues of Ω(kp) except eigen-
value 1 are also eigenvalues of Ω(kp). □

Theorem 4. Consider the consensus of the heterogeneous
hybrid MASs (1) and (2) with switching communication
topologies under the event-triggered control laws (4) and (5)
and event-triggered conditions (8), (9), and (10) with
c1 ∈ (0, 1), c2 ∈ (0,∞), and δ ∈ (b, 1). If the union of
switching topologies G[kph], G[(kp + 1)h], . . . , G[(kp+1

−1)h]} of each interval [kph, kp+1h) has a directed spanning
tree and conditions (21) in @eorem 1 are satisfied, the

heterogeneous hybrid MASs can reach the consensus condi-
tion (3).

Proof. 'rough iteration, the error system description (39)
with switching communication topologies can be expressed
as

Y kph  � Ω k0( Ω k1(  · · ·Ω kp−1 Y(0)

+Ω k1( Ω k2(  · · ·Ω kp−1 QE k0( 

+ · · ·

+Ω kp−1 QE kp−2 

+ QE kp−1 .

(55)

Let

Ω∗ � max Ω k0( 
����

����, Ω k1( 
����

����, . . . , Ω kp−1 
�����

����� . (56)

Combined with Lemma 2, we have

Y kph 
�����

�����≤Ω
∗p

‖Y(0)‖ + 

p−1

s�0
Ω∗p− 1− s

QE ks( 
����

����

≤ a′Bp
‖Y(0)‖ + 

p−1

s�0
a′Bp− 1− s

QE ks( 
����

����,

(57)
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: CTS0; : DTS0; : CTF0; : DTF0;

(a) Topology 1 (b) Topology 2
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Figure 1: Switching topologies.
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Figure 2: Position of the dynamic agents.
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Figure 3: Velocity of the second-order dynamic agents.
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where 0<B< 1 and a′ > 1 are positive constants. Next, the
norm of QE(ks) is considered as follows:

QE ks( 
����

����≤ ρ H ks + 1( h 
����

���� H ks + 2( h 
����

���� · · · H ks+1 − 1( h 
����

���� E ksh( 
����

����

+ · · ·

+ ρ H ks+1 − 1( h 
����

���� H ks+1 − 2( h 
����

����

+ ρ H ks+1 − 1( h 
����

����

< ρηs 

ks+1−1

τ�ks

‖E(τh)‖,

(58)

where
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Figure 4: Control inputs of the dynamic agents.
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Figure 5: Event-triggered instants of the agents.
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ηs � max H ks + 1( h  · · · H ks + 1( h 
����

����, . . . ,

H ks + 1( h 
����

����, 1,
(59)

is a positive constant. In addition, there are bp and bp
′ that

satisfy b
kp+1−kp

p � B and b
′kp+1−kp−1
p � B for each interval

[kph, kp+1h). Letting η � max ηs , b′ � max bp, bp
′ , we can

get b′ < 1 and (42) can be converted into

B Y kph 
�����

�����< a′b′
kp

B‖Y(0)‖

+ a′ρηb′
kp− 1

E k0( 
����

���� + E k0 + 1( 
����

���� + · · · + E k1 − 1( 
����

����  + · · ·

+ a′ρηb′
k0− 1

E kp−1 
�����

����� + E kp−1 + 1 
�����

����� + · · · + E kp − 1 
�����

����� 

< a′b′
kp

B‖Y(0)‖ + a′ρη 

kp−1

s�0
b′

kp− 1− s
‖E(sh)‖.

(60)

'us, let

ρ′ �
a′pη

B
, (61)

Y kph 
�����

�����< a′b′
kp ‖Y(0)‖ + ρ′ 

kp−1

s�0
b′

kp− 1− s
‖E(sh)‖, (62)

which has a similar form to (25). 'e subsequent proof of
this theorem is the same as 'eorem 2. □

Remark 3. 'e parameters of switching communication
topologies, such as the switching rate and the dwell time,
have certain impacts on the convergence rate. It mainly
depends on the structure of each switching communication
topology. In a period of time, more different agents com-
municating can improve the convergence efficiency. If there
are different edges in the switching topologies, increasing the
switching rate can reduce the time for the system to reach
consensus.

4. Simulation Examples

A heterogeneous hybrid MAS is assumed to consist of four
second-order (SO) agents and four first-order (FO) agents.
'ey both contain two continuous-time (CT) individuals
and two discrete-time (DT) individuals, respectively. Let
[xs(0), xf(0)]T � [7, 5, 3, 1, −1, −3, −5, −7]T and v(0)T �

[4, 3, 2, −1]T.
Consider the consensus of heterogeneous hybrid MASs

with switching topologies.'e communication topology can
be switched between topology 1 and topology 2 in Figure 1
every step. 'e union of topology 1 and topology 2 has a
spanning tree. Suppose the coupling gains of each edge in
topology 1 and topology 2 are 1 and α � 1.6, β � 1.2. By
calculating, we choose h � 0.6< 0.625 to satisfy conditions
(21) in'eorem 1.'en, choosing c1 � 0.2 and c2 � 0.01, we
can obtain the simulation graphics as follows. 'e position
and velocity are shown in Figures 2 and 3.'e control inputs

are shown in Figure 4. And the triggered instants of each
agent are shown in Figure 5.

All agents can achieve consensus, and the controllers are
triggered a limited number of times within a finite time,
which indicates that the event-triggered protocols algorithm
is effective.

5. Conclusion

In this paper, the event-triggered consensus was studied for
the heterogeneous hybrid MASs, consisting of continuous
and discrete-time subsystems with second-order and first-
order heterogeneous dynamics. We designed the effective
event-triggered protocols, including the event-triggered
control laws for the first-order and second-order agents,
respectively, and the event-triggered conditions, which can
make the controllers only update at their own trigger time
and ensure all agents meet consensus. Some criteria were
obtained for solving the consensus problems of the het-
erogeneous hybrid MASs with fixed topology and switching
topologies. 'e main results showed that the MASs can
reach consensus if the control parameter, coupling gains,
and sampling interval meet certain conditions, and the fixed
topology or the union of switching topologies contain a
directed spanning tree. Future work may consider the
consensus of the heterogeneous hybrid MASs with time
delay or communication noise.
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and F. Allgöwer, “On robust synchronization of heteroge-
neous linear multi-agent systems with static couplings,”
Automatica, vol. 53, pp. 392–399, 2015.

[35] Y.-P. Tian and Y. Zhang, “High-order consensus of hetero-
geneous multi-agent systems with unknown communication
delays,” Automatica, vol. 48, no. 6, pp. 1205–1212, 2012.

[36] P. J. Antsaklis, J. A. Stiver, and M. Lemmon, “Hybrid system
modeling and autonomous control systems,” in Hybrid Sys-
tems, pp. 366–392, Springer, Berlin, Germany, 1992.

Complexity 15



[37] Y. Zheng, J. Ma, and L. Wang, “Consensus of hybrid multi-
agent systems,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 29, pp. 1359–1365, 2017.

[38] Y. Zheng, Q. Zhao, J. Ma, and L. Wang, “Second-order
consensus of hybrid multi-agent systems,” Systems & Control
Letters, vol. 125, pp. 51–58, 2019.

[39] J. Ma, M. Ye, Y. Zheng, and Y. Zhu, “Consensus analysis of
hybrid multiagent systems: a game-theoretic approach,” In-
ternational Journal of Robust and Nonlinear Control, vol. 29,
no. 6, pp. 1840–1853, 2019.

[40] H. Su, X. Wang, and Z. Zeng, “Consensus of second-order
hybrid multiagent systems by event-triggered strategy,” IEEE
Transactions on Cybernetics, vol. 50, pp. 4648–4657, 2019.

[41] Y. Shang, “Consensus of hybrid multi-agent systems with
malicious nodes,” IEEE Transactions on Circuits and Systems
II: Express Briefs, vol. 67, pp. 685–689, 2019.

[42] Q. Zhao, Y. Zheng, and Y. Zhu, “Consensus of hybrid multi-
agent systems with heterogeneous dynamics,” International
Journal of Control, vol. 93, no. 12, pp. 2848–2858, 2020.

[43] D. V. Dimarogonas, E. Frazzoli, and K. Johansson, “Dis-
tributed event-triggered control for multi-agent systems,”
IEEE Transactions on Automatic Control, vol. 57, pp. 1291–
1297, 2011.

[44] Y. Fan, G. Feng, Y. Wang, and C. Song, “Distributed event-
triggered control of multi-agent systems with combinational
measurements,” Automatica, vol. 49, no. 2, pp. 671–675, 2013.

[45] D. Yang, W. Ren, X. Liu, and W. Chen, “Decentralized
event-triggered consensus for linear multi-agent systems
under general directed graphs,” Automatica, vol. 69,
pp. 242–249, 2016.

[46] H. Zhang, G. Feng, H. Yan, and Q. Chen, “Observer-based
output feedback event-triggered control for consensus of
multi-agent systems,” IEEE Transactions on Industrial Elec-
tronics, vol. 61, pp. 4885–4894, 2013.

[47] W. Zhu, Z.-P. Jiang, and G. Feng, “Event-based consensus of
multi-agent systems with general linear models,” Automatica,
vol. 50, no. 2, pp. 552–558, 2014.

[48] G. Guo, L. Ding, and Q.-L. Han, “A distributed event-trig-
gered transmission strategy for sampled-data consensus of
multi-agent systems,” Automatica, vol. 50, no. 5,
pp. 1489–1496, 2014.

[49] Y. Cheng and V. Ugrinovskii, “Event-triggered leader-fol-
lowing tracking control for multivariable multi-agent sys-
tems,” Automatica, vol. 70, pp. 204–210, 2016.

[50] T.-H. Cheng, Z. Kan, J. R. Klotz, J. M. Shea, and W. E. Dixon,
“Event-triggered control of multiagent systems for fixed and
time-varying network topologies,” IEEE Transactions on
Automatic Control, vol. 62, no. 10, pp. 5365–5371, 2017.

16 Complexity


