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,is paper investigates the exponential synchronization of complex dynamical networks based on the sampled-data control
method.,e sampled-data control means that the control input remains unchanged for a long time after each sampling, which can
reduce the sampling number. By using the stability theory of the dynamical systems, this paper provides a novel sampling
controller and estimates the bound of the sampling interval. Finally, a numerical example is given to demonstrate the effectiveness
of the proposed design technique.

1. Introduction

Recently, complex networks have received a great deal of
attention from researchers in several fields such as industrial
networks, financial networks, biology, and power systems
[1–4]. Complex networks are usually composed of lots of
interconnected nodes, in which each node can adjust its
behavior according to the received information from its
neighbor nodes, so complex networks can be used to de-
scribe some complex phenomena in science and engineering
fields. As a result, there are some existing papers [5–8] to
study the complex networks from diverse facets.

Synchronization is one of the important issues con-
cerning complex networks, which means that the collective
behaviour that all the states of the network converge to-
wards a predefined target trajectory along with the time
evolution. In fact, synchronization is a difficult problem
because of the different initial values and various dynamical
structures. ,us, there are many papers [9–15] to inves-
tigate the synchronization of complex networks by using
different theories and methods. Furthermore, many kinds
of synchronization of complex networks have been in-
vestigated, which include asymptotic synchronization [16],
finite-time synchronization [17], and fixed-time synchro-
nization [18].

With the rapid development of computer hardware
technology, sampled-data control has been applied widely
for its convenience and good control efficiency. Sampled-
data control only requires the system states information at
the sampling instants, which can greatly reduce the com-
putation and the number of transmitted information.
,erefore, there are many results reported in the literature
[19–25]. For example, for the periodic sampling case, the
authors presented some sufficient conditions of sampled-
data synchronization criteria for the complex dynamical
networks with time-varying coupling delay by constructing a
suitable augmented Lyapunov function, and with the help of
introduced integral inequalities, and employing the convex
combination technique in [22]. By employing a time-de-
pendent Lyapunov functional and the sampled-data control,
the authors of [23] investigated the synchronization control
problem for chaotic neural networks subject to actuator
saturation and provided a sampled-data controller to re-
gionally synchronize the drive neural networks and response
neural networks. For the stochastic sampling case, the au-
thors of [24] studied the stabilization problem for a class
of sampled-data systems under noisy sampling interval
by introducing a Vandermonde matrix and Kronecker
product operation and provided the corresponding stabi-
lization controller. By using the reciprocally convex matrix
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inequality, proper integral inequalities, and the linear convex
combination method, the authors of [25] investigated the
dissipative analysis and quantized sampled-data control
design issues for T-S fuzzy networked control system under
stochastic cyberattacks and obtained a new quantitative
sample data controller to ensure that the system is as-
ymptotically stable and dissipative.

Motivated by the above discussion, we will consider the
exponential synchronization control problem for complex
dynamical networks in this paper.,emain contributions of
our paper are as follows: (1) we consider the exponential
synchronization of complex networks by using the sampled-
data control; (2) the presented controller is novel; (3) the
upper bound of the sampling interval is estimated.

,e rest of this paper is organized as follows: in Section 2,
the model description and preliminary results are presented.
In Section 3, the sampled-data controller guaranteed the
complex network to be exponential synchronization is de-
rived. In Section 4, a numerical example is provided to il-
lustrate the electiveness of our obtained results. Finally, this
paper is ended with a conclusion in Section 5.

Throughout this paper, the following notations are used.
R+ � (0, +∞) denotes the set of the positive real number. Rn

and Rn×m, respectively, denote the n-dimensional Euclidean
space and the set of n × m real matrices. For a given vector
x � (x1, x2, . . . , xn)T ∈ Rn, ‖x‖ �

������

􏽐
n
i�1 x2

i

􏽱
denotes its

norm. ,e notation X≥Y (respectively, X>Y), where X, Y
are symmetric matrices, means that X≥Y is a symmetric
semidefinite matrix (respectively, positive definite matrix).
For a given matrix A, AT denotes its transpose, and ‖A‖

denotes its norm defined as ‖A‖ �
���������
λmax(ATA)

􏽰
.

2. Problem Formulation and Preliminaries

In this paper, we consider the following complex networks
composed of N identical nodes with linear couplings.,e ith
node is an n-dimensional dynamical system, whose state
equation is

_xi(t) � Axi(t) + Bf xi(t)( 􏼁 + 􏽘
N

j�1
cijΓxj(t) + ui(t),

i � 1, 2, . . . , N,

(1)

where N is the number of coupled nodes.
xi(t) � (xi1(t), xi1(t), . . . , xin(t))T ∈ Rn denotes the state
vector, A ∈ Rn×n and B ∈ Rn×n are known constant real ma-
trices, f(·) ∈ Rn is a continuous differential vector function
with f(0) � 0. C � [cij] ∈ RN×N is the outer-coupling matrix,
where cij is defined as follows: if there exists a connection
between node i with node j, then cij > 0; otherwise, cij � 0. In
addition, the elements of matrix C satisfy

cii � − 􏽘
N

j�1,j≠ i

cij, i � 1, 2, . . . , N, (2)

Γ ∈ Rn×n is the innercoupling matrix, and ui(t) ∈ Rn is the
control input to be designed in the sequel.

Assume that the target node is

_s(t) � As(t) + Bf(s(t)), (3)

where s(t) � (s1(t), s2(t), . . . , sn(t)) ∈ Rn may be an equi-
librium point, a periodic orbit, or a chaotic orbit of dy-
namical systems.

Definition 1. Complex network (1) is said to be exponential
synchronization with target node (3) if there exist scalars
κ≥ 0 and θ> 0 such that

xi(t) − s(t)
����

����≤ κe
− θt

, i � 1, 2, . . . , N, (4)

for t≥ 0 and any initial conditions.
Next, for the node i, we let the sequence of sampling data

instants be t0, t1, t2, . . . and correspond a sequence of control
updates ui(t0), ui(t1), ui(t2), . . .. Between the adjacent
control updates, the value of input ui(t) is held constant in a
zero-order hold fashion. ,at is,

ui(t) � ui tk( 􏼁, ∀t ∈ tk, tk+1􏼂 􏼃. (5)

,us, the controllers are piecewise constant between any
sampling interval [tk, tk+1) for k � 0, 1, 2, . . ..

In order to ensure that complex network (1) exponen-
tially synchronizes with target node (3), we intend to use the
following feedback controller:

ui(t) � − μe
− μ t− tk( ) xi tk( 􏼁 − s tk( 􏼁􏼂 􏼃, t ∈ tk, tk+1􏼂 􏼃, (6)

to control the i th node, where μ> 0 is a scalar to be
determined.

Letting yi(t) � xi(t) − s(t), while t ∈ [tk, tk+1], we ob-
tain the closed-loop system

_yi(t) � Ayi(t) + B f xi(t)( 􏼁 − f(s(t))􏼂 􏼃

+ 􏽘
N

j�1
cijΓyj(t) − μe

− μ t− tk( )yi tk( 􏼁, i � 1, 2, . . . , N.

(7)

Define ei(t) � yi(t) − e− μ(t− tk)yi(tk), then the above
system can be rewritten as

_yi(t) � Ayi(t) + B f xi(t)( 􏼁 − f(s(t))􏼂 􏼃 + 􏽘
N

j�1
cijΓyj(t)

− μyi(t) + μei(t), i � 1, 2, . . . , N, t ∈ tk, tk+1􏼂 􏼃.

(8)

Denote by y(t) � (yT
1 (t), yT

2 (t), . . . , yT
N(t))T,e(t) �

(eT
1 (t), eT

2 (t), . . . , eT
N(t))T,ϕi(t) � f(xi(t)) − f(s(t)),

ϕ(t) � (ϕT
1 (t), ϕT

2 (t), . . . , ϕT
N(t))T. Following the above

notations, system (8) can be written as the compact form

_y(t) � IN ⊗A − μInN + C⊗ Γ( 􏼁y(t) + IN ⊗B( 􏼁ϕ(t) + μe(t)

� 􏽥Ay(t) + IN ⊗B( 􏼁ϕ(t) + μe(t),

(9)

for t ∈ [tk, tk+1], where 􏽥A � IN ⊗ (A − μIn) + C⊗Γ
Before presenting our main results, we give the following

assumptions and lemmas.
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Assumption 1. Assume that there exists a constant L≥ 0
such that

f ξ1(t)( 􏼁 − f ξ2(t)( 􏼁
����

����≤ L ξ1(t) − ξ2(t)
����

����, (10)

for any ξ1(t), ξ2(t) ∈ R, and t≥ t0.

Assumption 2. ,e complex network is connection. ,at is,
there does not exist isolated node. Intuitively, it is a nec-
essary condition for the synchronization of complex
network.

Lemma 1. [26]. .e Kronecker product ⊗ has the following
properties:

(1) (A + B)⊗C � A⊗C + B⊗C, C⊗ (A + B) �

C⊗A + C⊗B

(2) (A⊗B)T � AT ⊗BT

(3) (A⊗B)− 1 � A− 1 ⊗B− 1

(4) (A⊗C)(B⊗D) � AB⊗C D

(5) ‖A⊗B‖ � ‖A‖ · ‖B‖

where A, B, C, D are matrices with appropriate dimensions.

Lemma 2. [27]. Consider a differentiable function ](t):

R+⟶ R+ satisfying the following inequality:

_](t)≤ − a](t) + b 􏽚
t

tk

](ϑ)dϑ , ∀t ∈ tk, tk+1􏼂 􏼃, (11)

where 0< tk+1 − tk ≤ τM < +∞, a and b are positive reals
satisfying bτM < a. .en, the function ](t) exponentially
converges to zero; that is,

v(t)≤ v t0( 􏼁e
− θ t− t0( ), (12)

with θ � (a − bτM)e− aτM .

3. Main Results

In this section, we will present several updated conditions of
sampling data such that complex network (1) synchronizes
with the target node (3).

Theorem 1. Suppose that Assumptions 1 and 2 hold. If there
exist a positive definite symmetric matrix P ∈ Rn×n, scalars
α> 0, β> 0 and μ> 0 such that

PB + B
T
P − βIn < 0, (13)

IN ⊗ PA + A
T
P − 2μP + αIn􏼐 􏼑 + C⊗ PΓ + ΓTP􏼐 􏼑< 0,

(14)

and

α> βL, (15)

then complex network (1) exponentially synchronizes with
target node (3) under the action of the controller (6).

Proof. Choose the following Lyapunov functional as

V(t) � y
T
(t) IN ⊗P( 􏼁y(t). (16)

For t ∈ [tk, tk+1], the derivative of V(t) with respect to
the trajectories of system (9) is

_V(t) � 2y
T
(t) IN ⊗P( 􏼁 􏽥Ay(t) + IN ⊗B( 􏼁ϕ(t) + μe(t)􏽨 􏽩

� y
T
(t)􏽥Ay(t) + y

T
(t) IN ⊗ PB + B

T
P􏼐 􏼑􏽨 􏽩ϕ(t)

+ 2μy
T
(t) IN ⊗P( 􏼁e(t),

(17)

where 􏽥A � IN ⊗ (PA + ATP − 2μP) + C⊗ (PΓ + ΓTP). It
follows from Assumption 1 and inequality (13) that

y
T
(t) IN⊗ PB + B

T
P􏼐 􏼑􏽨 􏽩ϕ(t)≤‖y(t)‖ · PB + B

T
P

����
���� · ‖ϕ(t)‖

≤β‖y(t)‖ · ‖ϕ(t)‖≤βL‖y(t)‖
2
.

(18)

In view of (14) and (15), we have

_V(t) ≤ y
T
(t) 􏽥A + βL · In􏼐 􏼑y(t) + 2μy

T
(t) IN ⊗P( 􏼁e(t)

≤ (βL − α)y
T
(t)y(t) + 2μ‖y(t)‖ · ‖P‖ · ‖e(t)‖

≤
βL − α
λmax(P)

V(t) + 2μ‖y(t)‖ · ‖P‖ · ‖e(t)‖.

(19)

Since

_e(t) � _y(t) + μe
− μ t− tk( )y tk( 􏼁

� 􏽥Ay(t) + IN ⊗B( 􏼁ϕ(t) + μe(t) + μe
− μ t− tk( )y tk( 􏼁

� 􏽥Ay(t) + IN ⊗B( 􏼁ϕ(t) + μy(t).

(20)

Integrating from tk to t on the above equation and using
e(tk) � 0, one gets

e(t) � 􏽚
t

tk

􏽥Ay(ϑ) + IN ⊗B( 􏼁ϕ(ϑ) + μy(ϑ)􏽨 􏽩dϑ . (21)

,us, we obtain

‖e(t)‖≤ 􏽚
t

tk

􏽥Ay(ϑ) + IN ⊗B( 􏼁ϕ(ϑ) + μy(ϑ)
����

����dϑ

≤ 􏽚
t

tk

[‖􏽥A‖ · ‖y(ϑ)‖ +‖B‖ · ‖ϕ(ϑ)‖ + μ · ‖y(ϑ)‖]dϑ

≤ (‖􏽥A‖ + L‖B‖ + μ) 􏽚
t

tk

‖y(ϑ)‖dϑ .

(22)

Substituting (22) into (19), then
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_V(t) ≤
βL − α
λmax(P)

V(t) + 2μ‖y(t)‖ · ‖P‖

· (‖􏽥A‖ + L‖B‖ + μ) 􏽚
t

tk

‖y(ϑ)‖dϑ

≤
βL − α
λmax(P)

V(t) +
2μ

λmin(P)

����
V(t)

􏽰
· ‖P‖

· (‖􏽥A‖ + L‖B‖ + μ) 􏽚
t

tk

‖V(ϑ)‖dϑ

≤ − 2g1V(t) + 2g2

����
V(t)

􏽰
􏽚

t

tk

‖V(ϑ)‖dϑ,

(23)

where g1 � α − βL/2λmax(P) and g2 � 2μ/λmin(P) · ‖P‖·

(‖􏽥A‖ + L‖B‖ + μ) which leads to

d
����
V(t)

􏽰

dt
≤ − g1

����
V(t)

􏽰
+ g2 􏽚

t

tk

�����
V(ϑ)

􏽰
dϑ. (24)

It follows from Lemma 2 that

V(t)≤V t0( 􏼁e
− 2ρ t− t0( ), (25)

with ρ � (g1 − g2τM)e− g1τM > 0. By the fact λmin(P)‖y(t)‖2 ≤
V(t), we get

‖y(t)‖≤

�������
V t0( 􏼁

λmin(P)

􏽳

e
− ρ t− t0( ), (26)

which shows that complex network (1) exponentially
synchronizes with target node (3) under the action of the
controller (6). ,is completes the proof. □

Remark 1. It follows from ρ � (g1 − g2τM)e− g1τM > 0 that

τM <
g1

g2
�

α − βL

2λmax(P)
·

λmin(P)

μ‖P‖(‖􏽥A‖ + L‖B‖ + μ)

≤
α − βL

2μ‖P‖(‖􏽥A + L‖B‖ + μ‖)
,

(27)

which gives the upper bound of the sampling data interval.
,at is, only if the sampling period is not bigger than the
bound τM, then complex network (1) can exponentially
synchronize with the target node (3) under controller (6).
Moreover, if we take the sampling period T ∈ (0, τM) as a
constant, then it becomes a zero-order hold control with a
fixed sampling period.

Remark 2. Although inequalities (13) ∼ (15) are nonlinear
on variables, if we take μ beforehand, then these inequalities
are linear matrix inequalities. Furthermore, by solving

min μ,

subject to(9), (10), (11),
(28)

one can obtain the most optical μ.
In this paper, the graph of the considered complex

network is undirect, so the out-coupling matrix C is real
symmetric. According to the properties of a real symmetric
matrix, there must exist an orthogonal matrix U such that
UTCU � diag λ1, λ2, . . . , λN􏼈 􏼉, where λi(1≤ i≤N) are the
eigenvalues of matrix C. By this fact, we have the following
results.

Theorem 2. Suppose that Assumptions 1 and 2 hold and the
graph is undirect. If there exist a positive definite symmetric
matrix P ∈ Rn×n, scalars α> 0, β> 0, and μ> 0 such that

PB + B
T
P − βIn<0,

PA + A
T
P − 2μP +αIn +λi PΓ+ΓTP􏼐 􏼑<0, i � 1,2, . . . ,N,

(29)

and

α> βL, (30)

then complex network (1) exponentially synchronizes with
target node (3) under the action of controller (6).

Proof. Lift multiply UT ⊗ In and right multiply UT ⊗ In on
both sides of inequality (14), one can obtain inequality (29).
,e proof is completed.

It is noticed that we also can use controller (6) to control
a part of nodes in complex network (1), which is called the
pining control and has been usually used to investigate the
synchronization of complex networks in the literature such
as [28–30]. Without loss of generality, we only control the
former l(1≤ l≤N) nodes with index i � 1, 2, . . . , l. Other-
wise, we can rearrange the index of nodes. □

Theorem 3. Suppose that Assumptions 1 and 2 hold. If there
exist a positive definite symmetric matrix P ∈ Rn×n, scalars
α> 0, β> 0 and μ> 0 such that

PB + B
T
P − βIn < 0,

IN ⊗ PA + A
T
P + αIn􏼐 􏼑 − 2μ⊗P + C⊗ PΓ + ΓTP􏼐 􏼑< 0,

(31)

and

α> βL, (32)

then complex network (1) exponentially synchronizes with
target node (3) under the pinning controller

ui(t) � − μe
− μ t− tk( ) xi tk( 􏼁 − s tk( 􏼁􏼂 􏼃,

t ∈ tk, tk+1􏼂 􏼃, 1≤ i≤ l≤N,
(33)

where μ � diag μ, . . . , μ
􏽼√√√􏽻􏽺√√√􏽽

l

, 0, . . . , 0􏽼√√√􏽻􏽺√√√􏽽
N− l

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.
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Proof. Substituting (33) into (1), we yield

_y(t) � IN ⊗A − μ⊗ In + C⊗ Γ( 􏼁y(t)

+ In ⊗B( 􏼁ϕ(t) + μ⊗ Ine(t)

� 􏽥Ay(t) + IN ⊗B( 􏼁ϕ(t) + μ⊗ Ine(t),

(34)

where A � IN ⊗A − μ⊗ In + C⊗ Γ. Similar to the proof of
,eorem 1, we can obtain the above results. ,is completes
the proof. □

Remark 3. It is similar to Remark 1, we obtain the length of
the sampling interval

τM ≤
α − βL

2μ‖P‖(‖A‖ + L‖B‖ + μ)
. (35)

In addition, (14) holds if (32) holds because of 􏽢μ⊗P> 0,

where 􏽢μ � diag 0, . . . , 0􏽼√√√􏽻􏽺√√√􏽽
l

, μ, . . . , μ
􏽼√√√􏽻􏽺√√√􏽽

N− l

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
But the converse does

not hold, which shows that the complex network can achieve
synchronization by using the pinning control, then it can
achieve synchronization by controlling all the nodes.

4. A Numerical Example

In this section, we provide the following example to show the
effectiveness of our proposed method.

It is well known that Chua’s dynamical system is de-
scribed by

_s1(t) � 10 s2(t) − s1(t) − f1 s1(t)( 􏼁􏼂 􏼃,

_s2(t) � s1(t) − s2(t) + s3(t),

_s3(t) � − 15s2(t) − 0.0385s3(t),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

(36)

where
f1(s1(t)) � bs1(t) + 0.5(a − b)(|s1(t) + 1| − |s1(t) − 1|), a

and b are two constants. Furthermore, it has been shown that
system (36) possesses a chaotic behavior if a and b are
appropriately chosen. In this example, we choose a � − 1.14
and b � − 0.714, then the phase diagram of this system is
shown in Figure 1 with the initial condition s(0) �

(− 500, 400, − 300)T.
On the other hand, this system can be rewritten as

_s(t) � As(t) + Bf(s(t)), (37)

where

s(t) � (s1(t), s2(t), s3(t))T, A �

− 10 10 0
1 − 1 1
0 − 15 − 0.0385

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦, B �

I3, f(s(t)) � (− 10f1(s1(t)), 0, 0)T.

Since

‖f(s(t)) − f(􏽢s(t))‖ � 10 f1 s1(t)( 􏼁 − f1(􏽢s(t))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ 10(|b| +|a − b|) · s1(t) − 􏽢s(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ 10(|b| +|a − b|) · |s(t) − 􏽢s(t)|,

(38)

for any s(t), 􏽢s(t) ∈ R3, f(s(t)) satisfies Assumption 1 as
L � 11.4.

3
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s 3
 (t
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4
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0 -1
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-0.5 -2-1
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Figure 1: State trajectories of the Chua’s system with the given initial condition s(0).
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Figure 2: Continued.
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Consider complex network (1) with five nodes (N � 5)

and take Chua’s dynamical system (37) as the target node.
Assume that the outer-coupling matrix is

C �

− 5 2 0 1 2

2 − 6 1 0 3

0 1 − 3 0 2

1 0 0 − 2 1

2 3 2 1 − 8

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (39)

and the inner-coupling matrix is Γ � diag 0.2, 0.5, 0.7{ }, re-
spectively. By the LMI toolbox inMatlab, we obtain the
feasible solutions of inequalities (13)–(15) as follows:

α � 5.0296,

β � 0.4101,

P �

0.1055 0.0252 − 0.0143

0.0252 0.1284 − 0.0386

− 0.0143 − 0.0386 0.1574

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(40)

According to,eorem 1, we know that complex network
(1) can synchronize with target node _s(t) � As(t) + f(s(t))

under the action of controller (6). Taking the initial
condition

y(0) � ( − 20, 30, − 40, − 40, − 40, − 80, 100, 70,

− 40, 50, − 50, − 75, − 30, − 60, − 140􏼁
T
,

(41)

the state trajectories of the error system (9) with the given
parameters are shown in Figure 2, which shows that all the
nodes synchronize well with each other, and our proposed
method is effective.

5. Conclusions

,is paper has investigated the exponential synchronization
of complex network based on sampled-data control. By
constructing a novel sampling-data controller, the complex
networks can exponentially synchronize with the target
node. Moreover, we have estimated the bound of the
sampling intervals. A numerical example has shown that our
method is effective. In the future, we will continue to study
the synchronization of complex networks with multiple
influencing factors, find out the quantity relationship of the
synchronization with the complex network parameters, and
provide some more effective synchronization controllers.
Specially, we will consider how to apply the existing results
and methods of complex networks to solve practical
problems.
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Figure 2: ,e error trajectories of system (9) with each node being the Chua’s system (i � 1, 2, . . . , 5).
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