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In this paper, we put forward a time-delay ecological competition system with food restriction and diffusion terms under
Neumann boundary conditions. For the case without delay, the conditions for local asymptotic stability and Turing
instability are constructed. For the case with delay, the existence of Hopf bifurcation is demonstrated by analyzing the root
distribution of the corresponding characteristic equations. Furthermore, by using the normal form theory and the center
manifold reduction of partial functional differential equations, explicit formulas are obtained to determine the direction of
bifurcations and the stability of bifurcating periodic solutions. Finally, some simulation examples are provided to
substantiate our analysis.

1. Introduction

Based on the diversity of biological populations and eco-
systems, various ecological competition systems have been
established and widely studied (see [1–5]). In ecological
competition systems, the interaction between populations is
usually reflected by functional response functions. Results
have shown that the predation relationship between pop-
ulations greatly affects the dynamic behavior of predator-
prey systems (see [6–8]). In fact, with the development of the
economy, humans will harvest biological populations and
develop related biological resources to obtain economic
benefits, such as fisheries, forestry, and wildlife management
(see [9–11]). In recent years, many scholars have introduced
the harvesting terms into biological systems to study the
system modeling and related dynamic characteristics
[12–15]. May et al. [16] established the following model to
analyse the interaction between populations under different
harvesting strategies:

dU

dt
� r1U 1 −

U

K
􏼒 􏼓 − αUV − H1,

dV

dt
� r2V 1 −

V

βU
􏼠 􏼡 − H2,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1)

where U and V represent the prey and predator densities,
respectively. r1 and r2 indicate the intrinsic growth rates. K

represents the internal growth limit of the population
without predators. α stands for the maximum predation
coefficient of predator. β is the quality standard for mea-
suring prey as food. H1 and H2 represent the impact of
human harvesting for predator and prey populations. On
this basis, scholars have studied the relevant dynamic
characteristics of different harvesting terms in system (1). In
[17], the authors studied the case of H1 � r1h1u and H2 �

r2h2v in system (1), that is, the constant effort harvesting to
both prey and predator population. Particularly, they ana-
lyzed the maximum sustainable yield of another population
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under the condition of limiting the harvest of one pop-
ulation. In [18], the authors discussed the case of H1 � h1
and H2 � r2h2v for system (1), namely constant yield har-
vesting for prey and constant effort harvesting for the
predator population. At the same time, the relevant dynamic
characteristics of the system were analyzed and the effects of
different management strategies on the stability of the
system were compared. Moreover, in [19, 20], the authors
considered the constant yield harvesting of the prey pop-
ulation in system (1), that is, H1 � h1 and H2 � 0. *ey
obtained the conditions of Bogdanov-Takens bifurcation
and supercritical/subcritical Hopf bifurcation of codi-
mension 1.

Based on the research of the appeal literature, it is found
that only the impact of linear capture is taken into account.
However, from the perspective of biology and economics,
the linear harvesting term cannot accurately reflect the real
social activities (harvesting population and developing bi-
ological resources) of humans and their impact on the
predator-prey system. *us, the nonlinear harvesting terms
have been introduced to model the dynamics of predator-
prey systems in recent years (see [21–23]). In [24], a realistic
harvesting functional form was proposed as follows:

H(t) �
qEU(t)

1 + aE
, (2)

where q represents the catchability coefficient and E stands
for the harvesting effort.*e conditions for Hopf bifurcation
were derived and a nonlinear state feedback controller was
designed to control the Hopf bifurcation.

Consider the logistic equation

dN

dt
� rN 1 −

N

C
􏼒 􏼓. (3)

Here, r is the intrinsic growth rate and C represents the
carrying capacity. Meanwhile, we can see from (3) that the
predicted relation of the specific growth rate, dN/N dt, to
mass, N, is a straight line. However, when considering a
measure of the portion of available limiting factors not yet
utilized by the population, the linear average growth rate
cannot accurately describe the growth trend of the pop-
ulation. Research shows the growth and development of
organisms depend on the availability and utilization of food
in the living environment, which implies that different
degrees of food supply rates will affect the stable age
composition of the population and then have an influence
on the average growth rate of the population. *us, when
growth limitations are based on the proportion of available
resources not utilized, Smith [25] established a food-limited
growth function

dM

dt
�

rM(K − M)

K +(r/c)M
, (4)

where c is positive constant and represents the rate of re-
placement of mass in the population at saturation. It follows
from (4) that the predicted relation of the specific growth
rate, dM/Mdt, to mass, M, is not a straight line but a
concave curve.

Considering the growth limit is based on the proportion
of unused available resources and setting H1 � qEu/1 + fE,
H2 � 0, then system (1) becomes

du

dt
�

r1u(K − u)

K + αu
− F(u, v) −

qEu

1 + fE
,

dv

dt
� r2v 1 −

v

p + bu
􏼠 􏼡,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(5)

where F(u, v) represents the functional response function
between populations. p represents that when the density of
prey population is low, the predator population can switch
to other prey for capture. *en, we will analyse the cases on
F(u, v) � βuv and F(u, v) � e1uv/e2 + u in the discussion
that follows, respectively.

In nature, the survival and development of a population
often depend on the amount of food and the living space
available. Importantly, the greater the population density,
the higher the requirements for the living environment. At
the same time, the acquisition of foodmainly depends on the
living environment of the population, which shows that the
change of the population’s living space affects the survival
and development of the population to a great extent.
*erefore, the population will instinctively migrate and
diffuse in space to seek a more suitable environment for
survival and development. It is necessary to consider the
influence of the diffusion effect on population dynamics in
predator-prey systems. Mathematically, the nonlinear sys-
tem with diffusion will show complex dynamic properties
[26–29]. In the reaction-diffusion system proposed by
Turing [30, 31], the spatial heterogeneity caused by the
internal reaction-diffusion characteristics of the system re-
sults in the loss of system symmetry and makes the system
self-organize to produce some spatial patterns. *e process
of pattern formation is called Turing instability (Turing
bifurcation). *e symmetry of the system is broken, leading
to the formation of Turing patterns. *erefore, we call this
phenomenon “Turing instability caused by diffusive reac-
tion” [32].

On the other hand, time delay has become a factor that
cannot be ignored in many biological dynamic systems. A
large number of studies have revealed that time delay has an
important impact on the dynamic characteristics of bio-
logical systems and it is common in predator-prey systems,
mainly including mature time delay, capture time delay, and
pregnancy time delay [33–35]. Local stability of the system
means that if the initial state is adjacent to the equilibrium
state, the system will not vibrate, and its state trajectory will
eventually fall to the equilibrium state. In particular, Hopf
bifurcation is a dynamic bifurcation phenomenon, which
shows that when the parameters change near the critical
value, the stability of the equilibrium point will change and
periodic solutions will be generated in its small neighbor-
hood. Meanwhile, it is found that time delay as a bifurcation
parameter can induce Hopf bifurcation [29, 36, 37].
*erefore, in this paper, we consider the pregnancy delay of
the predator population and analyse the dynamic charac-
teristics of ecological competition systems.
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Based on the discussion above, we introduce the dif-
fusion effect of the population [26–29] and the pregnancy
delay of the predator population [33–35] into system (5) to
explore its impacts on the dynamic characteristics of the
ecological competition system, which can be described by

zu(t, x)

zt
� D1Δu +

r1u(K − u)

K + αu
− F(u, v) −

qEu

1 + fE
,

zv(t, x)

zt
� D2Δv + r2v 1 −

v

p + bu(t − τ)
􏼠 􏼡,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(6)

with Neumann boundary conditions and initial conditions

u(t, x) � u0(t, x)≥ 0, v(t, x)

� v0(t, x)≥ 0, (t, x) ∈ [− τ, 0] ×Ω,

zu(t, x)

zη
�

zv(t, x)

zη

� 0, t> 0, x ∈ zΩ ,

(7)

Here, u(t, x), v(t, x) stand for the population density of
prey and predator at a spatial location x and time t, re-
spectively. D1, D2 > 0 represent the diffusion coefficients
associated to u and v, respectively. Δ denotes the Laplacian
operator in Rn. Suppose Ω � (0, π) is a bounded domain
with a smooth boundary zΩ.

Lemma 1. For any solution of system (6) without delay,

lim sup
t⟶∞

u(t, x)≤
r1K(1 + fE) − qEK

qEα + r1(1 + fE)
,

lim sup
t⟶∞

v(t, x)≤p +
b r1K(1 + fE) − qEK( 􏼁

qEα + r1(1 + fE)
.

(8)

Proof. Let (u(t, x), v(t, x)) be a nonnegative solution of
system (6) without delay. Note that the functional response
F(u, v)> 0. *en,

zu

zt
≤D1Δu +

r1u(K − u)

K + αu
−

qEu

1 + fE
, x ∈ (0, π), t> 0,

ux(t, 0) � ux(t, π)

� 0, t> 0,

zv

zt
≤D2Δv + r2v 1 −

v

p + bu
􏼠 􏼡, x ∈ (0, π), t> 0,

vx(t, 0) � vx(t, π)

� 0, t> 0.

(9)

We can estimate the upper limits of u(t, x) and v(t, x)

due to the standard comparison principle:

u(t, x)≤
r1K(1 + fE) − qEK

qEα + r1(1 + fE)
,

v(t, x)≤p +
b r1K(1 + fE) − qEK( 􏼁

qEα + r1(1 + fE)
.

(10)

In other words, for arbitrary ε1 > 0, ε2 > 0, there exists
positive constants t1, t2 such that

u(t, x)≤
r1K(1 + fE) − qEK

qEα + r1(1 + fE)
+ ε1, (11)

for t≥ t1, x ∈ Ω, and

v(t, x)≤p +
b r1K(1 + fE) − qEK( 􏼁

qEα + r1(1 + fE)
+ ε2, (12)

for t≥ t2, x ∈ Ω. So, the conclusion follows immediately.
Compared with the models proposed in [1–5], model (6)

is a new measure of the population with a nonlinear average
growth rate based on food restriction. At the same time, we
consider the reaction-diffusion factors for system (6) to
study their influence on the dynamic behaviors of systems.
In addition, on the basis of references [16–20], we introduce
the nonlinear harvesting term of the harvesting-effort co-
efficient E into system (6) and study the stability and related
dynamic characteristics of the system under Holling I and
Holling II functional response functions. Importantly, the
addition of pregnancy delay can more accurately reflect the
evolution of the population and make the system showmore
complex dynamic characteristics than the model without
delay, which is also a widely concerned direction in the
research of biological systems.

*e main contributions of this paper can be stated as
follows. In Section 2, the effects of diffusion on the dynamic
behavior of the systems without time delay are investigated
and some conditions for system stability and Turing in-
stability are determined. It is found that the appropriate
diffusion coefficients will lead to Turing instability. In
Section 3, we analyse the stability of equilibrium and Hopf
bifurcation in the predator-prey system with time delay as
the bifurcation parameter. *e condition for Hopf bifur-
cation is constructed and the expression of the bifurcation
threshold is given. In Section 4, we calculated the direction of
the bifurcations to get more information about the bifur-
cations. Section 5 uses some numerical examples to verify
the correctness of the previous derivation. Section 6 gives the
conclusion of this paper. □

2. Equilibrium Stability and Turing
Instability Analysis

Assume that the predator-prey relationship in system (6)
satisfies Holling type I functional response, that is
F(u, v) � βuv, then we make the following nondimensional
scaling transformation [22]:
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􏽥u �
u

K
,

􏽥v �
βv

r1
,

􏽥t � r1t,

􏽦D1 �
D1

r1
,

􏽦D2 �
D2

r2
,

h �
q

r1
,

θ �
r2

r1
,

􏽥b �
r2

bβK
,

􏽥p �
p

bK
,

(13)

Dropping the tildes, system (6) can be rewritten by

zu(t, x)

zt
� D1Δu +

u(1 − u)

1 + αu
− uv −

hEu

1 + fE
,

zv(t, x)

zt
� D2Δv + v θ −

bv

p + u(t − τ)
􏼢 􏼣.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(14)

Consider the case of no time delay in system (9), namely,
τ � 0, then system (9) becomes

zu(t, x)

zt
� D1Δu +

u(1 − u)

1 + αu
− uv −

hEu

1 + fE
,

zv(t, x)

zt
� D2Δv + v θ −

bv

p + u
􏼢 􏼣.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(15)

Considering the practical significance of the ecosystem,
we are interested in the coexisting equilibrium. In order to
obtain the positive equilibrium of system (10), let

u(1 − u)

1 + αu
− uv −

hEu

1 + fE
� 0,

v θ −
bv

p + u
􏼢 􏼣 � 0.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(16)

*en system (10) has a positive equilibrium
E∗ � (u∗, v∗), where v∗ � θ(p + u∗)/b and u∗ satisfies the
following quadratic equation:

A0u
2

+ A1u + A2 � 0, (17)

where

A0 � αn> 0,

A1 � 1 + αnp + n + αS> 0,

A2 � S + np − 1,

n �
θ
b
,

S �
hE

(1 + fE)
.

(18)

Lemma 2. For equation (12), we come to the following
results:

(1) If A2 > 0, then equation (12) has no positive roots.
(2) If A2 < 0, then equation (12) has a unique positive root

u∗ � − A1 +

����������

A2
1 − 4A0A2

􏽱

/2A0.

Hence, when A2 < 0, system (10) has a unique positive
equilibrium E∗ � (u∗, v∗), where v∗ � θ(p + u∗)/b.

Consider system (10) without diffusion

du(t)

dt
�

u(1 − u)

1 + αu
− uv −

hEu

1 + fE
,

dv(t)

dt
� v θ −

bv

p + u
􏼢 􏼣.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(19)

*e Jacobian matrix of (19) at E∗ is a11 a12
a21 a22

􏼢 􏼣, where

a11 �
1 − 2u

∗
− αu
∗2

1 + αu
∗

( 􏼁
2 − v

∗
−

hE

1 + fE
,

a12 � − u
∗ < 0,

a21 �
bv
∗2

p + u
∗

( 􏼁
2 > 0,

a22 � θ −
2bv
∗

p + u
∗ � − θ< 0.

(20)

Lemma 3. When A2 < 0, then we can deduce a11 < 0.

Proof. Notice that
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a11 1 + αu
∗

( 􏼁
2

� 1 − 2u
∗

− 2u
∗2

− v
∗ 1 + αu

∗
( 􏼁

2
− S 1 + αu

∗
( 􏼁

2

� 1 − 2u
∗

− 2u
∗2

− n c + u
∗

( 􏼁 1 + 2αu
∗

+ α2u∗2􏼐 􏼑

− S 1 + 2αu
∗

+ α2u∗2􏼐 􏼑

� − α A0u
∗3

+ A1u
∗2

+ nu
∗2

+
1
α

2A1 − n( 􏼁u
∗

−
A2

α
􏼢 􏼣

� − α − A2u
∗

+
A0u
∗2

α
+
2A1u
∗

α
−

nu
∗

α
−

A2

α
􏼢 􏼣

� − α − A2u
∗

+
A0u
∗2

+ A1u
∗

α
+

A1u
∗

α
−

nu
∗

α
−

A2

α
􏼢 􏼣

� − α − A2u
∗

+
A1u
∗

α
−

nu
∗

α
−
2A2

α
􏼢 􏼣

� − α 1 +
1
α

􏼒 􏼓u
∗

−
2A2

α
􏼢 􏼣.

(21)

*us, we can obtain a11(1 + αu∗)2 < 0 when A2 < 0. As
(1 + αu∗)2 > 0, then we can deduce a11 < 0.

*en from the Jacobian matrix of (13), we get the
characteristic equation

λ2 − B1λ + B2 � 0, (22)

where

B1 � a11 + a22,

B2 � a11a22 − a12a21.
(23)

□

Theorem 1. If A2 < 0, then E∗ of system (13) is locally as-
ymptotically stable.

Proof. By Lemma 3, we know a11 < 0 when A2 < 0. Together
with a12 < 0, a21 > 0 and a22 < 0, we can get B1 < 0 and B2 > 0.
*us, by the Routh-Hurwitz criterion, E∗ of system (13) is
locally asymptotically stable.

It follows from [38] that the Laplacian operator − Δ has
the eigenvalue k2(k ∈ 0, 1, 2, . . .{ }) under the homogeneous
Neumann boundary condition. And the corresponding
eigenfunctions are β1k � (ιk, 0)T, β2k � (0, ιk)T, where
ιk � cos(kx) and β1k, β2k􏽮 􏽯

∞
k�0 construct a basis of the phase

space X and X is defined by

X � v ∈W
2,2

(0, π): v
·

(0) � v
·

(π) � 0􏽮 􏽯, (24)

with the inner product 〈·, ·〉. *us, for system (10), the
characteristic equation at E∗ is

λ2 + C1kλ + C2k � 0, (25)

where

C1k � D1 + D2( 􏼁k
2

− a11 − a22,

C2k � D1D2k
4

− a11D2 + a22D1( 􏼁k
2

+ a11a22 − a12a21.
(26)

Hence,

λ1 + λ2 � − C1k � − D1 + D2( 􏼁k
2

+ a11 + a22,

λ1λ2 � C2k � D1D2k
4

− a11D2 + a22D1( 􏼁k
2

+ a11a22 − a12a21.

(27)

□

Theorem 2. If A2 < 0, then E∗ of system (10) is asymptoti-
cally stable.

Proof. It follows from Lemma 3 that a11 < 0 when A2 < 0.
Notice that a12 < 0, a21 > 0 and a22 < 0. For equation (14), we
obtain

λ1 + λ2 � − C1k � − D1 + D2( 􏼁k
2

+ a11 + a22 < 0,

λ1λ2 � C2k � D1D2k
4

− a11D2 + a22D1( 􏼁k
2

+ a11a22 − a12a21 > 0, k ∈ N0.
(28)
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*us, all roots of (25) have negative real parts for k ∈ N0,
which implies that E∗ of system (10) is asymptotically
stable. □

Remark 1. Assume that there are no time delays and
F(u, v) � βuv for system (6). It can be seen from*eorems 1
and 2 that when A2 < 0, the introduction of diffusion terms
does not change the stability of E∗, which means that Turing
instability does not occur.

Next, we consider the predator-prey relationship among
populations in system (6) satisfying Holling type II func-
tional response, that is F(u, v) � e1uv/e2 + u, where e1
represents the maximum per capita reduction rate of the
prey population and e2 stands for the average saturation rate
[3]. *en we make the following nondimensional scaling
transformation [22]:

􏽥u �
u

K
,

􏽥v �
e1v

r1
,

􏽥t � r1t,

􏽦D1 �
D1

r1
,

􏽦D2 �
D2

r2
,

h �
q

r1
,

θ �
r2
r1

,

􏽥b �
r2

be1K
,

􏽥p �
p

bK
,

􏽥e1 �
1
K

,

􏽥e2 �
e2

K
.

(29)

Dropping the tildes, then system (6) without time delay
turns into

zu(t, x)

zt
� D1Δu +

u(1 − u)

1 + αu
−

e1uv

e2 + u
−

hEu

1 + fE
,

zv(t, x)

zt
� D2Δv + v θ −

bv

p + u
􏼢 􏼣.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(30)

System (15) has a positive equilibrium E∗ � (u∗, v∗),
where v∗ � θ(p + u∗)/b and u∗ satisfies the following qua-
dratic equation:

Y0u
2

+ Y1u + Y2 � 0, (31)

where

Y0 � αm + αS + 1> 0,

Y1 � αmp + m + αe2S + S + e2 − 1,

Y2 � e2S + mp − e2,

m � e1
θ
b
.

(32)

Lemma 4. For equation (16), we have the following results:

(1) If Y1 < 0, Y2
1 − 4Y0Y2 > 0 and Y2 > 0, then equation

(16) has positive roots

u1,2 �
− Y1 ±

����������

Y
2
1 − 4Y0Y2

􏽱

2Y0
. (33)

(2) If Y1 < 0 and Y2
1 − 4Y0Y2 � 0, then equation (16) has

a unique positive root u0 � − Y1/2Y0.
(3) If Y2 < 0, then equation (16) has a unique positive root

u∗ � − Y1 +

����������

Y2
1 − 4Y0Y2

􏽱

/2Y0.

Theorem 3. For system (15), we come to the following results:

(1) If Y1 < 0, Y2
1 − 4Y0Y2 > 0 and Y2 > 0, then system (15)

has two positive equilibrium points E1(u1, v1) and
E2(u2, v2), where v1,2 � θ(p + u1,2)/b.

(2) If Y1 < 0 and Y2
1 − 4Y0Y2 � 0, then system (15) has a

unique positive equilibrium point E0 � (u0, v0),
where v0 � θ(p + u0)/b.

(3) If Y2 < 0, then system (15) has a unique positive
equilibrium point E∗ � (u∗, v∗), where v∗ � θ(p

+ u∗)/b.

*e linearization of system (15) at E∗ can be represented
by

zu

zt

zv

zt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� DΔ

u(t, x)

v(t, x)

⎛⎝ ⎞⎠ + J
u(t, x)

v(t, x)

⎛⎝ ⎞⎠, (34)

where D � diag(D1, D2), J �
b11 b12
b21 b22

􏼠 􏼡, and
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b11 �
1 − 2u

∗
− αu
∗2

1 + αu
∗

( 􏼁
2 −

e1e2v
∗

e2 + u
∗

( 􏼁
2 −

hE

1 + fE
,

b12 � −
e1u
∗

e2 + u
∗,

b21 �
bv
∗2

p + u
∗

( 􏼁
2,

b22 � θ −
2bv
∗

p + u
∗.

(35)

*us, the characteristic equation is

λ2 + C3kλ + C4k � 0, (36)

where

C3k � D1 + D2( 􏼁k
2

− b11 − b22,

C4k � D1D2k
4

− b11D2 + b22D1( 􏼁k
2

+ b11b22 − b12b21.
(37)

Obviously, for (36), we have

λ1 + λ2 � − C3k

� − D1 + D2( 􏼁k
2

+ b11 + b22,

λ1λ2 � C4k

� D1D2k
4

− b11D2 + b22D1( 􏼁k
2

+ b11b22 − b12b21.

(38)

We make the following assumptions:

(H1)b11 + b22 < 0,

(H2)b11b22 − b12b21 > 0,

(H3)b11D2 + b22D1 < 0.

(39)

Theorem 4. If (H1) − (H3) hold and Y2 < 0, then system
(15) is locally asymptotically stable at E∗.

Proof. If (H1) − (H3) and Y2 < 0 hold, for equation (17), we
have

λ1 + λ2 � − C3k

� − D1 + D2( 􏼁k
2

+ b11 + b22 < 0,

λ1λ2 � C4k

� D1D2k
4

− b11D2 + b22D1( 􏼁k
2

+ b11b22 − b12b21 > 0.

(40)

*us, all roots of (36) have negative real parts. By the
Routh-Hurwitz criterion, system (15) is locally asymptoti-
cally stable at E∗.

*en we can describe system (15) without diffusion term
by the following equations:

du(t)

zt
�

u(1 − u)

1 + αu
−

e1uv

e2 + u
−

hEu

1 + fE
,

dv(t)

zt
� v θ −

bv

p + u
􏼢 􏼣.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(41)

*e characteristic equation of system (18) at E∗ is

λ2 − C3λ + C4 � 0, (42)

where

C3 � b11 + b22,

C4 � b11b22 − b12b21.
(43)

□

Lemma 5. If (H1), (H2), and Y2 < 0 are satisfied, then E∗ of
system (18) is locally asymptotically stable.

Let

Φ1(ε) � D1D2ε
4

− b11D2 + b22D1( 􏼁ε2 + b11b22 − b12b21.

(44)

We make the following assumptions:

(H4)b11D2 + b22D1 > 0,

(H5)b11D2 + b22D1 − 2
������������������

D1D2 b11b22 − b12b21( 􏼁

􏽱

> 0.
(45)

Lemma 6. If (H2), (H4), and (H5) hold, then Φ1(ε) � 0
has two positive roots ε1, ε2 .

Theorem 5. Assume that Y2 < 0 and (H1), (H2), (H4), and
(H5) hold.Cen, diffusion-driven instability occurs for system
(15) at E∗ if there exists a k ∈ N0 such that C4k < 0 for
0< ε1 < k< ε2.

Proof. It follows from Lemmas 5 and 6 that system (18) is
stable at E∗ and Φ1(ε) � 0 has two positive roots ε1, ε2 when
Y2 < 0 and (H1), (H2), (H4), and (H5) hold. *en for the
spatial system (15), the corresponding characteristic equa-
tion (17) has an eigenvalue with positive real part if there
exists a k ∈ N0 such that C4k < 0 for 0< ε1 < k< ε2. *is
implies the spatial system (15) is unstable at E∗ � (u∗, v∗),
that is, the diffusion-driven instability occurs. □

Remark 2. Assume that there are no time delays and
F(u, v) � e1uv/e2 + u for system (6). It can be seen from
*eorem 5 that the introduction of diffusion terms may
change the stability of E∗, resulting in Turing instability.

3. Hopf Bifurcation Analysis

In this section, we consider the effect of time delay on the
dynamics of the system and get the conditions for Hopf
bifurcation of system (9).

Linearizing system (9) at E∗ � (u∗, v∗) [34–36, 39], we
have
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zu

zt

zv

zt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� DΔ

u(t, x)

v(t, x)

⎛⎝ ⎞⎠ + J1

u(t, x)

v(t, x)

⎛⎝ ⎞⎠ + J2

u(t − τ, x)

v(t − τ, x)

⎛⎝ ⎞⎠,

(46)

where D � diag(D1, D2), J1 �
a11 a12
0 a22

􏼠 􏼡, J2 �
0 0

a21 0􏼠 􏼡.

*us, the characteristic equation is

det λI − Dk − J1 − J2e
− λτ

􏼐 􏼑 � 0, (47)

where I stands for 2 × 2 identity matrix and
Dk � − k2diag(D1, D2), k ∈ N0. (47) is equivalent to

λ2 + m1kλ + m2k + m3e
− λτ

� 0, (48)

where

m1k � D1 + D2( 􏼁k
2

− a11 − a22,

m2k � D1D2k
4

− a11D2 + a22D1( 􏼁k
2

+ a11a22,

m3 � − a12a21.

(49)

Remark 3. It should be pointed out that this paper adopts
the linearization method [29, 36, 37, 39,40] to deal with the
dynamics analysis of system (9), including the local stability,
Turing instability, and Hopf bifurcation. It is common
knowledge that Lyapunov’s second method is important to
the stability theory of dynamical systems and control theory.
However, this method is not suitable for investigating the
dynamics of the ecological competitive system with delay
and diffusion proposed in this paper. *e Lyapunov stability
criterion can only give a sufficient condition for the stability
of a system. In this paper, not only the condition of the local
stability is established, but also the boundary of stability (the
onset of Hopf bifurcation) is determined.

Lemma 7. If A2 < 0, then all roots of equation (21) have
negative real parts when τ � 0.

When τ > 0, assume λ � ± iω (ω> 0) is a pair of pure
imaginary roots of (48), ω satisfies the following equation:

− ω2
+ im1kω + m2k + m3e

− iωτ
� 0. (50)

By separating real and imaginary parts, we obtain

− ω2
+ m2k � − m3 cos(ωτ),

m1kω � m3 sin(ωτ).

⎧⎨

⎩ (51)

Add the squares of both sides of equation (23) to get

ω4
+ Pkω

2
+ Qk � 0, (52)

where

Pk � m
2
1k − 2m2k � a11 − D1k

2
􏼐 􏼑

2
+ a22 − D2k

2
􏼐 􏼑

2
> 0,

Qk � m
2
2k − m

2
3 � m2k + m3( 􏼁 m2k − m3( 􏼁.

(53)

Let z � ω2, (52) can be converted to

z
2

+ Pkz + Qk � 0. (54)

*en we make the following assumptions:

(H6)a11a22 + a12a21 > 0,

(H7)a11a22 + a12a21 < 0.
(55)

Theorem 6. If (H6) and A2 < 0 hold, then system (9) is
locally asymptotically stable at E∗ for all τ ≥ 0.

Proof. By *eorem 2, we know m2k + m3 � C2k > 0 when
A2 < 0. If (H6) is satisfied, we obtain

m2k − m3 � D1D2k
4

− a11D2 + a22D1( 􏼁k
2

+ a11a22 + a12a21 > 0.

(56)

*us, (54) has no positive roots, which implies (48) has
no purely imaginary roots. By Lemma 7, we deduce that all
roots of (48) have negative real parts for all τ ≥ 0, that is,
system (9) is locally asymptotically stable at E∗ � (u∗, v∗) for
all τ ≥ 0.

Let

Φ2(ε) � D1D2ε
4

− a11D2 + a22D1( 􏼁ε2 + a11a22 + a12a21.

(57)

It follows that when (H7) and A2 < 0 hold,Φ2(ε) � 0 has
a unique positive root ε0 having the following form:

ε0 �

�����������������������������������������������������

a11D2 + a22D1( 􏼁 +

������������������������������������

a11D2 + a22D1( 􏼁
2

− 4D1D2 a11a22 + a12a21( 􏼁

􏽱

2D1D2

􏽶
􏽴

. (58)

Denote

k
∗

�
ε0􏼂 􏼃, ε0 ∉ N,

ε0 − 1, ε0 ∈ N.
􏼨 (59)

□

Lemma 8. If (H7) and A2 < 0 are satisfied, equation (21) has
a pair of purely imaginary roots ±iωk(0≤ k≤ k∗) at τ � τj

k,
and
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τj

k � τ0k +
2jπ
ωk

, j ∈ N0,

τ0k �
1
ωk

arccos
ω2

k − m2k

m3
,

ωk �

�������������������������������������

2m2k − m
2
1k +

������������������������

m
2
1k − 2m2k􏼐 􏼑

2
− 4 m

2
2k − m

2
3􏼐 􏼑

􏽲

2

􏽶
􏽴

.

(60)

Theorem 7. If (H7) and A2 < 0 hold, we have

τj

k∗ ≥ τ
j

k∗ − 1 ≥ τ
j

k∗− 2 · · · τj
1 ≥ τ

j
0. (61)

Proof. From equation (28), we obtain

ω2
k �

2m2k − m
2
1k +

�������������������������

m
2
1k − 2m2k􏼐 􏼑

2
− 4 m

2
2k − m

2
3􏼐 􏼑

􏽲

2

�
2

m
2
1k − 2m2k/m

2
3 − m

2
2k􏼐 􏼑 +

��������������������������������������

m
2
1k − 2m2k􏼐 􏼑

2
/ m

2
3 − m

2
2k􏼐 􏼑

2
􏼒 􏼓 + 4/m2

3 − m
2
2k􏼐 􏼑

􏽲 .

(62)

By Lemma 3, we know that a11 < 0 when A2 < 0. Together
with a12 < 0, a21 > 0 and a22 < 0, we can get that
a11D2 + a22D1 < 0, m2

2k − 2m2k is increasing and m2
3 − m2

2k is
decreasing in k ∈ [0, k∗] when (H7) hold. *us,

ωk∗ ≤ωk∗− 1 ≤ωk∗− 2 ≤ · · · ω1 ≤ω0. (63)

Notice that m3 � − a12a21 > 0 and m2k is increasing in
k ∈ [0, k∗] with a11D2 + a22D1 < 0. We can deduce that ω2

k −

m2k/m3 is decreasing in k ∈ [0, k∗]. Hence,
τj

k � 1/ωkarccosω2
k − m2k/m3 + 2jπ/ωk is increasing in

k ∈ [0, k∗].
As τj+1

k > τ
j

k, we obtain

τ00 � min τj

k􏽮 􏽯, 0≤ k≤ k
∗
, j ∈ N0. (64)

Let λ(τ) � ρ(τ) + iσ(τ) be the root of (48) satisfying
ρ(τj

k) � 0 and σ(τj

k) � ωk. □

Theorem 8. For k ∈ 0, 1, · · ·k∗{ }, we have

Re
dλ
dτ

􏼠 􏼡􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌τ�τj

k

> 0. (65)

Proof. By derivation of equation (21) with respect to the
delay τ, we have

2λ + m1k − m3τe
− λτ

􏼐 􏼑
dλ
dτ

� λm3e
− λτ

, (66)

then

dλ
dτ

􏼠 􏼡

− 1

�
2λ + m1k( 􏼁e

λτ
− m3τ

m3λ
. (67)

It follows from (50) and (51) that

Re
dλ
dτ

􏼠 􏼡

− 1

|τ�τj

k

� Re
2iωk + m1k( 􏼁e

iωkτ
j

k − m3τ
j

k

iωkm3

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

�
2ωk cos ωkτ

j

k􏼐 􏼑 + m1k sin ωkτ
j

k􏼐 􏼑

ωkm3

�
2ω2

k + m
2
1k − 2m2k

m
2
3

.

(68)

Noticing m2
1k − 2m2k � Pk > 0, we obtain

Re
dλ
dτ

􏼠 􏼡

− 1
⎡⎣ ⎤⎦

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌τ�τj

k

�
2ω2

k + m
2
1k − 2m2k

m
2
3

�
2ω2

k + Pk

m
2
3
> 0.

(69)

*erefore, the transversality condition holds. □

Theorem 9. Suppose that (H7) and A2 < 0 hold. Ce fol-
lowing statements are valid:

(1) System (9) is locally asymptotically stable at E∗ when
τ ∈ [0, τ00] and unstable for τ > τ00.

(2) System (9) undergoes a Hopf bifurcations at E∗ when
τ � τ00.

4. Direction and Stability of Hopf Bifurcation

*e previous analysis has shown that system (9) admits a
series of periodic solutions bifurcating from the trivial
uniform steady state E∗ at some critical values. *en, in this
section, we are concerned with the direction of Hopf bi-
furcations and the stability of bifurcating periodic solution.

Denote τj

k(j ∈ N0, 0≤ k≤ k∗) by 􏽥τ and introduce the
new parameter σ � τ − 􏽥τ. Normalizing the delay τ by the
timing-scaling t⟶ t/τ, then system (9) can be transformed
in the phase space ϑ∗ � C([− 1, 0],X)
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_V � 􏽥τDΔV + L(􏽥τ) Vt( 􏼁 + G Vt, σ( 􏼁, (70)

where V � (u(·, t))v(·, t)T, L: ϑ∗ ⟶ R2 and G: ϑ∗ × R+

⟶ R2 are given, respectively, by

L(􏽥τ)(ζ) � 􏽥τ
a11ζ1(0) + a12ζ2(0)

a21ζ1(− 1) + a22ζ2(0)
􏼠 􏼡, (71)

G(ζ , σ) � σDΔ ζ + L(σ)(ζ) + g(ζ , σ), (72)

with g(ζ , σ) � (􏽥τ + σ)G1(ζ, σ)G2(ζ, σ)T, and

G1(ζ, σ) �
ζ1(0) + u

∗
( 􏼁 1 − ζ1(0) − u

∗
( 􏼁

1 + α ζ1(0) + u
∗

( 􏼁
− ζ1(0) + u

∗
( 􏼁 ζ2(0) + v

∗
( 􏼁

−
h ζ1(0) + u

∗
( 􏼁

1 + fE
− a11ζ1(0) − a12ζ2(0),

G2(ζ, σ) � θ ζ2(0) + v
∗

( 􏼁 −
b ζ2(0) + v

∗
( 􏼁

2

p + ζ1(− 1) + u
∗ − a21ζ1(− 1) − a22ζ2(0),

(73)

for ζ � (ζ1ζ2)
T ∈ ϑ∗.

From the previous discussions, we know that
Λk � iωk􏽥τ, − iωk􏽥τ􏼈 􏼉 are a pair of simple purely imaginary
eigenvalues of the linear equation

_V(t) � − 􏽥τDΔV(t) + L(􏽥τ) Vt( 􏼁. (74)

By the Riesz representation theorem, there exists a 2 × 2
matrix function η(δ, τ, k)(− 1≤ δ ≤ 0) such that

− 􏽥τDk
2ζ(0) + L(􏽥τ)(ζ) � 􏽚

0

− 1
[dη(δ, 􏽥τ, k)]ζ(δ). (75)

Actually, we can take

η(δ, 􏽥τ, k) �

􏽥τ
a11 − D1k

2
a12

0 a22 − D2k
2

⎛⎝ ⎞⎠, δ � 0,

0, δ ∈ (− 1, 0),

− 􏽥τ
0 0

a21 0
⎛⎝ ⎞⎠, δ � − 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(76)

Let Q(􏽥τ) denote the infinitesimal generator of the
semigroup and Q∗ be the formal adjoint of Q(􏽥τ) under the
bilinear pairing

(ς(δ), ξ(s)) � ς(0)ξ(0) − 􏽚
0

− 1
􏽚

s

ε�0
ς(ε − s)dη(s)ξ(ε) dε

� ς(0)ξ(0) + 􏽥τ 􏽚
0

− 1
ς(s + 1)

0 0

a21 0
⎛⎝ ⎞⎠ξ(s) ds ,

(77)

for ξ ∈ C, ς ∈ C∗ � C([0, 1], R2). *en, we can give the
definition of Q(􏽥τ) is

Q(􏽥τ) � 􏽥τ
a11 − D1k

2
a12

a21e
− λ

a22 − D2k
2

⎛⎝ ⎞⎠. (78)

From the above analysis, we get that Q(􏽥τ) has a pair of
simple purely imaginary eigenvalues ±iωk􏽥τ. Supposing that
p1(δ) � eiωk􏽥τδ(1M)T, q1(s) � (1N)e− iωk􏽥τs, then we can cal-
culate the eigenfunction p1(δ) of Q(􏽥τ) corresponding to
iωk􏽥τ and the eigenfunction q1(s) of Q∗ corresponding to
− iωk􏽥τ. From (78), we derive

(λI − Q(􏽥τ))p1(0) � 0|λ�iωk􏽥τ
, (79)

λI − Q∗( 􏼁q1(0)
T

� 0|λ�− iωk􏽥τ
. (80)

*en, we obtain

M �
iωk + D1k

2
− a11

a12
,

N � −
a12

a22 + iωk − D2k
2.

(81)

Let ς � (ς1, ς2), ξ � (ξ1, ξ2)
T, where

ς1(δ) �
p1(δ) + p1(δ)

2

�

Re e
iωk􏽥τδ􏼒 􏼓

Re Me
iωk􏽥τδ􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

ς2(δ) �
p1(δ) − p1(δ)

2i

�

Im e
iωk􏽥τδ􏼒 􏼓

Im Me
iωk􏽥τδ􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(82)

for δ ∈ (− 1, 0), and

10 Complexity



ξ1(s) �
q1(s) + q1(s)

2

�

Re e
− iωkτ∗s􏼐 􏼑

Re Ne
− iωkδτs

􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠,

ξ2(s) �
q1(s) − q1(s)

2i

�

Im e
− iωkτ∗s􏼐 􏼑

Im Ne
− iωk􏽥τs

􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

(83)

for s ∈ (0, 1). Let a1k � a11 − D1k
2, a2k � a22 − D2k

2, then by
(77), we can calculate

ξ1, ς1( 􏼁 � 1 +
a1ka2k

a
2
2k + ω2

k

+
􏽥τB3a21 sin ωk􏽥τ( 􏼁

2
− 􏽥τB4a21

cos ωk􏽥τ( 􏼁

2
+
sin ωk􏽥τ( 􏼁

2ωk􏽥τ
􏼠 􏼡,

ξ1, ς2( 􏼁 � −
a2kωk

a
2
2k + ω2

k

+ 􏽥τB3a21
cos ωk􏽥τ( 􏼁

2
−
sin ωkτ

∗
( 􏼁

2ωkτ
∗􏼠 􏼡 +

􏽥τB4a21 sin ωk􏽥τ( 􏼁

2
,

ξ1, ς1( 􏼁 � −
a1kωk

a
2
2k + ω2

k

+ 􏽥τB3a21
cos ωk􏽥τ( 􏼁

2
+
sin ωk􏽥τ( 􏼁

2ωk􏽥τ
􏼠 􏼡 +

􏽥τB4a21 sin ωk􏽥τ( 􏼁

2
,

ξ1, ς2( 􏼁 �
ω2

k

a
2
2k + ω2

k

−
􏽥τB3a21 sin ωk􏽥τ( 􏼁

2
+ 􏽥τB4a21

cos ωk􏽥τ( 􏼁

2
−
sin ωk􏽥τ( 􏼁

2ωk􏽥τ
􏼠 􏼡,

(84)

where

B3 �
a12ωk

a
2
2k + ω2

k

,

B4 �
a12a2k

a
2
2k + ω2

k

.

(85)

Next, we define (ξ, ς) � (ξi, ςj)(i, j � 1, 2) and construct
a new basis

Φ � Φ1,Φ2( 􏼁
T

� (ξ, ς)− 1ξ. (86)

*en, we obtain (Φ, ς) � I2. Denote fk � (β1k, β2k) and
a · fk � a1β

1
k + a2β

2
k, where a � (a1, a2)

T ∈ ϑ∗. *us, the
center space of the (74) is given by PCNϑ∗ having the fol-
lowing form:

PCNψ � ς Φ, <ψ, fk >( 􏼁 · fk, ψ ∈ ϑ∗, (87)

where
〈ψ, fk〉 � 〈ψ, β1k〉, 〈ψ, β2k〉􏼐 􏼑

T
,

〈a, b〉 �
􏽒
π
0 a1b1 + a2b2􏼐 􏼑dx

π
,

(88)

for a � a1 a2( 􏼁
T
, b � b1 b2( 􏼁

T.

Let Q(􏽥τ) be the infinitesimal generator induced by the
solution of (74), then system (9) can be rewritten by

_V(t) � Q(􏽥τ)Vt + Y0G Vt, σ( 􏼁, (89)

where

Y0(δ) �
0, − 1≤ δ < 0,

I, δ � 0.
􏼨 (90)

From the decomposition ϑ∗ � PCNϑ∗⊕PSϑ∗ and (38),
where PSϑ∗ denotes the complement subspace of PCNϑ∗ in ϑ

∗,
the solutions of system (39) can be written as

V(t) � ς
c1

c2
􏼠 􏼡 · fk + h c1, c2, σ( 􏼁, (91)

where
c1

c2
􏼠 􏼡 � Φ, <Vt, fk >( 􏼁. (92)

*e bifurcation direction of this part is based on σ � 0,
so the solution of system (31) on the centermanifold is given by

V
∗
t � ς

c1

c2
􏼠 􏼡 · fk + h c1, c2, 0( 􏼁. (93)
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Let x � c1 − ic2 and notice p1 � ς1 + iς2, then (93)
becomes

V
∗
t �

1
2
ς

x + x

i(x − x)

⎛⎝ ⎞⎠ · fk + W(x, x)

�
1
2

p1x + p1x( 􏼁 · fk + W(x, x),

(94)

where

W(x, x) � h
x + x

2
, −

x − x

2i
, 0􏼒 􏼓. (95)

By [40], it is easy to know x satisfies

x
.

� iωk􏽥τx + g(x, x) (96)

with

g(x, x) � Φ1(0) − iΦ2(0)( 􏼁<G V
∗
t , 0( 􏼁, fk > . (97)

By Taylor expansion of W(x, x) and g(x, x), we get

W(x, x) � w20
x
2

2
+ w11xx + w02

x
2

2
+ · · ·,

g(x, x) � g20
x
2

2
+ g11xx + g02

x
2

2
+ g21

x
2
x

2
+ · · ·.

(98)

From (94) and (98), we obtain

ut(0) �
1
2

(x, x)ιk + w
(1)
20 (0)

x
2

2
+ w

(1)
11 (0)xx + w

(1)
02 (0)

x
2

2
+ · · ·,

vt(0) �
1
2

(Mx + Mx)ιk + w
(2)
20 (0)

x
2

2
+ w

(2)
11 (0)xx + w

(2)
02 (0)

x
2

2
+ · · ·,

ut(− 1) �
1
2

xe
− iωk􏽥τ + xe

− iωk􏽥τ􏼒 􏼓ιk + w
(1)
20 (− 1)

x
2

2
+ w

(1)
11 (− 1)xx

+ w
(1)
02 (− 1)

x
2

2
+ · · ·,

vt(− 1) �
1
2

Mxe
− iωk􏽥τ + Mxe

− iωk􏽥τ􏼒 􏼓ιk + w
(2)
20 (− 1)

x
2

2
+ w

(2)
11 (− 1)xx

+ w
(2)
02 (− 1)

x
2

2
+ · · ·,

(99)

G1 V
∗
t , 0( 􏼁 �

G1
􏽥τ

�

fuu

2
u
2
t (0) + fuvut(0)vt(0) +

fvv

2
v
2
t (0) +

fuuu

6
u
3
t (0)

+
fuuv

2
u
2
t (0)vt(0) +

fuvv

2
v
2
t (0)ut(0) +

fvvv

6
v
3
t (0) + · · ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

G2 V
∗
t , 0( 􏼁 �

G2
􏽥τ

�

guu

2
u
2
t (− 1) + guvut(− 1)vt(0) +

gvv

2
v
2
t (0) +

guuu

6
u
3
t (− 1)

+
guuv

2
u
2
t (− 1)vt(0) +

guvv

2
v
2
t (0)ut(− 1) +

gvvv

6
v
3
t (0) + · · ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(100)

where
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fuu � −
2 + 2α
1 + αu

∗
( 􏼁

3,

fuuu �
6α + 6α2

1 + αu
∗

( 􏼁
4,

fuv � − 1,

fvv � fvvv � fuvv � fuuv � 0,

guu � −
2b v

∗
( 􏼁

2
􏼐

p + u
∗

( 􏼁
3,

guv �
2bv
∗

p + u
∗

( 􏼁
2,

gvv � −
2b

p + u
∗,

guuu �
6b v
∗

( 􏼁
2

p + u
∗

( 􏼁
4,

guuv � −
4bv
∗

p + u
∗

( 􏼁
3,

guvv �
2b

p + u
∗

( 􏼁
2,

gvvv � 0.

(101)

*us, we can get

G1 V
∗
t , 0( 􏼁 �

x
2

2
Ψ20 + xxΨ11 +

x
2

2
Ψ20􏼠 􏼡ι2k +

x
2
x

2
Ψ1ιk + Ψ2ι

3
k􏼐 􏼑 . . . ,

G2 V
∗
t , 0( 􏼁 �

x
2

2
]20 + xx]11 +

x
2

2
]20􏼠 􏼡ι2k +

x
2
x

2
]1ιk + ]2ι

3
k􏼐 􏼑 . . . ,

(102)

〈G V
∗
t , 0( 􏼁, fk〉 � 􏽥τ〈G V

∗
t , 0( 􏼁, fk〉

� 􏽥τ G1 V
∗
t , 0( 􏼁β1k + G2 V

∗
t , 0( 􏼁β2k􏼐 􏼑

�
x
2

2
􏽥τ
Ψ20
v20

􏼠 􏼡Γ + xx􏽥τ
Ψ11
v11

􏼠 􏼡Γ

+
x
2

2
􏽥τ
Ψ20
v20

􏼠 􏼡Γ +
x
2
x

2
􏽥τ

μ1
μ2

􏼠 􏼡 + · · ·,

(103)

with
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Γ �
1
π

􏽚
π

0
ι3k(x)dx,

μ1 �
1
π

􏽚
π

0
Ψ1ι

2
k(x) + Ψ2ι

4
k(x)􏼐 􏼑dx,

μ2 �
1
π

􏽚
π

0
]1ι

2
k(x) + ]2ι

4
k(x)􏼐 􏼑dx,

(104)

where

Ψ20 �
1
4

fuu + 2Mfuv + M
2
fvv􏼐 􏼑,

Ψ11 �
1
4

fuu + Mfuv + Mfuv + MMfvv( 􏼁,

Ψ1 � w
(1)
20 (0)

fuu + Mfuv

2
􏼠 􏼡 + w

(1)
11 (0) fuu + Mfuv( 􏼁

+ w
(2)
20 (0)

fuv + Mfvv

2
􏼠 􏼡 + w

(2)
11 (0) fuv + Mfvv( 􏼁,

Ψ2 �
1
8
fuuu +(2M + M)fuuv + M

2
+ 2MM􏼐 􏼑fuvv + M

2
Mfvvv,

and,

(105)

]20 �
1
4

guue
− 2iωk􏽥τ + 2Mguve

− iωk􏽥τ + M
2
gvv􏼒 􏼓,

]11 �
1
4

guu + Me
iωk􏽥τ + Me

− iωk􏽥τ􏼒 􏼓guv + MMgvv􏼒 􏼓,

]1 � w
(1)
20 (− 1)

guue
iωk􏽥τ + Mguv

2
⎛⎝ ⎞⎠ + w

(1)
11 (− 1) guue

− iωk􏽥τ + Mguv􏼒 􏼓

+ w
(2)
20 (0)

e
iωk􏽥τguv + Mgvv

2
⎛⎝ ⎞⎠ + w

(2)
11 (0) guve

− iωk􏽥τ + Mgvv􏼒 􏼓,

]2 �
1
8
guuue

− iωk􏽥τ +
1
8

2M + Me
− 2iωk􏽥τ􏼒 􏼓guuv +

1
8
M

2
Mgvvv

+
1
8

M
2
e

iωk􏽥τ + 2MMe
− iωk􏽥τ􏼒 􏼓guvv.

(106)

Denote

Φ1(0) − iΦ2(0) � χ1χ2( 􏼁, (107)

and notice that
1
π

􏽚
π

0
ι3k(x)dx �

1
π

􏽚
π

0
cos3(kx)dx

� 0, k � 1, 2, 3 · · · .

(108)

*en we deduce

g(x, x) � Φ1(0) − iΦ2(0)( 􏼁<G V
∗
t , 0( 􏼁, fk >

�
x
2

2
Ψ20χ1 + ]20χ2( 􏼁Γ􏽥τ + xx Ψ11χ1 + ]11χ2( 􏼁Γ􏽥τ

+
x
2

2
Ψ20χ1 + ]20χ2( 􏼁Γ􏽥τ +

x
2
x

2
μ1χ1 + μ2χ2( 􏼁􏽥τ + · · ·.

(109)

*us, by equations (43), (45), and (46), we have g20 �

g02 � g11 � 0 for k � 1, 2, . . .. If k � 0, we get
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g20 � Ψ20χ1 + ]20χ2( 􏼁􏽥τ,

g11 � Ψ11χ1 + ]11χ2( 􏼁􏽥τ,

g02 � Ψ20χ1 + ]20χ2( 􏼁􏽥τ.

(110)

Also, for k � N0, we can get

g21 � μ1χ1 + μ2χ2( 􏼁􏽥τ. (111)

So far, we have given the expressions of g20, g11, g02.
It follows from (98) that

W(x, x) � w20xx
·

+ w11( z
·

x + xx
·

) + w02xx
·

+ · · ·,

and,

(112)

Q(􏽥τ)W(x, x) � Q(􏽥τ)w20
x
2

2
+ Q(􏽥τ)w11xx + Q(􏽥τ)w02

x
2

2
+ · · ·. (113)

By [40], we know W(x, x) satisfies

W
·

� Q(􏽥τ)W + Z(x, x), (114)

where

Z(x, x) � Z20
x
2

2
+ Z11xx + Z02

x
2

2
+ · · ·

� Y0(δ)G V
∗
t , 0( 􏼁 − ς Φ, <Y0(δ)G V

∗
t , 0( 􏼁, fk >( 􏼁 · fk.

(115)

Substituting (96) into the derivative of (98) and com-
paring the coefficients with (114) and (115), we have

2iωk􏽥τ − Q(􏽥τ)􏼂 􏼃w20(δ) � Z20(δ), (116)

Q(􏽥τ)w11(δ) � − Z11(δ). (117)

From (115), we have that for θ ∈ [− 1, 0),

Z(x, x, δ) � − ς(δ)Φ(0)<G V
∗
t , 0( 􏼁, fk > · fk

� −
p1(δ) + p1(δ)

2
,
p1(δ) − p1(δ)

2i
􏼠 􏼡 Φ1(0),Φ2(0)( 􏼁

T

· <G V
∗
t , 0( 􏼁, fk > · fk

� −
1
2

g20p1(δ) + g02p1(δ)􏽨 􏽩
x
2

2
· fk

−
1
2

g11p1(δ) + g11p1(δ)􏽨 􏽩xx · fk + · · · .

(118)

Hence, for δ ∈ [− 1, 0),

Z20(δ) �

0, k ∈ N,

−
1
2

g20p1(δ) + g02p1(δ)􏽨 􏽩 · fk, k � 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Z20(δ) �

0, k ∈ N,

−
1
2

g20p1(δ) + g11p1(δ)􏽨 􏽩 · fk, k � 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(119)

Z(x, x)(0) � G V
∗
t , 0( 􏼁 − ς Φ, <G V

∗
t , 0( 􏼁, fk >( 􏼁 · fk, (120)

where
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Z20(0) �

􏽥τ
Ψ20

]20

⎛⎜⎜⎝ ⎞⎟⎟⎠cos2 kxk ∈ N,

􏽥τ
Ψ20

]20

⎛⎜⎜⎝ ⎞⎟⎟⎠ −
1
2

g20p1(0) + g02p1(0)􏽨 􏽩 · fkk � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z11(0) �

􏽥τ
Ψ11

]11

⎛⎜⎜⎝ ⎞⎟⎟⎠cos2 kxk ∈ N,

􏽥τ
Ψ11

]11

⎛⎜⎜⎝ ⎞⎟⎟⎠ −
1
2

g11p1(0) + g11p1(0)􏽨 􏽩 · fkk � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(121)

*us, we can get from (78) and (116) that

w20
·

(δ) � 2iωk􏽥τw20(δ) +
1
2

g20p1(δ) + g02p1(δ)􏽨 􏽩 · fk,

w11
·

(δ) � −
i

2ωk􏽥τ
g11p1(δ) + g11p1(δ)􏽨 􏽩fk,

(122)

for − 1≤ δ < 0. *at is,

w20(δ) �
i

2ωk􏽥τ
g20p1(δ) +

g02

3
p1(δ)􏼔 􏼕 · fk + E1e

2iωk􏽥τδ,

w11(δ) �
i

2ωk􏽥τ
g11p1(δ) − g11p1(δ)􏽨 􏽩 · fk + E2,

(123)

where − 1≤ δ < 0 and E1, E2 ∈ R2 are constant vectors. From
the above discussion and (116), we have

2iωkE1 − Q(􏽥τ) − L(􏽥τ)E1e
2iωk􏽥τ � 􏽥τ

Ψ20
]20

􏼠 􏼡cos2 kx,

− Q(􏽥τ)E2 − L(􏽥τ)E2 � 􏽥τ
Ψ11
]11

􏼠 􏼡cos2 kx.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(124)

*en, we obtain

E1 � 􏽥τ
2iωk + D1k

2 − a11 − a12

− a21e
− 2iωk􏽥τ 2iωk + D2k

2 − a22

⎛⎝ ⎞⎠

− 1
Ψ20
]20

􏼠 􏼡ι2k,

E2 � 􏽥τ
D1k

2 − a11 − a12

− a21 D2k
2 − a22

􏼠 􏼡

− 1 Ψ11
]11

􏼠 􏼡ι2k.

(125)

*erefore, each g20, g11, g02, g21 can be determined
and we can evaluate the following values determining the
direction and stability of bifurcating periodic orbits:

C1(0) �
i

2ωk􏽥τ
g11g20 − 2 g11

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

−
1
3

g02
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏼒 􏼓 +
1
2
g21,

κ2 � −
Re C1(0)􏼂 􏼃

Re λ′(􏽥τ)􏼂 􏼃
,

β2 � 2Re C1(0)􏼂 􏼃,

T2 � −
Im C1(0)􏼂 􏼃 + c2Im λ′(􏽥τ)􏼂 􏼃

ωk􏽥τ
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(126)

Theorem 10. For any critical value τj

k, we have

(1) When κ2 > 0(κ2 < 0), the Hopf bifurcation is super-
critical (subcritical), that is, the bifurcating periodic
solutions exist for τ > τj

k(τ < τj

k).
(2) When β2 > 0(β2 < 0), the bifurcating periodic solu-

tions on the center manifold are orbitally asymptot-
ically unstable (stable).

(3) When T2 > 0(T2 < 0), the period of bifurcating peri-
odic solutions increases (decreases).

5. Numerical Simulations

In the following, we will carry out numerical simulations of
three impacts of diffusion, time delay, and harvesting effort
to illustrate our theoretical findings in the previous sections.

5.1. Ce Impact of Diffusion. We confirm that system (13)
has a unique equilibrium E∗ � (0.1877, 0.5158) with the
parameters α � 0.6, b � 0.4, h � 0.375, f � 0.5, E � 0.8, p

� 0.5, θ � 0.3. By a simple verification, we can see that A2 < 0
is satisfied. By *eorem 1, we deduce that system (13) is
locally asymptotically stable at E∗. Meanwhile, it is revealed
from *eorem 2 that system (10) is still stable at E∗, which
implies Turing instability will not occur in system (10) (see
Figures 1–3).

16 Complexity



Next, we consider system (15) and set α � 0.5, e1 � 0.2,

e2 � 0.32, h � 0.3, f � 0.6, E � 0.6, p � 0.52, b � 0.15 , θ
� 0.36. When D1 � D2 � 0, system (15) can be transformed
into the nondiffusion system (18). By calculation, we get
E∗ � (0.1196, 1.5350), and (H1), (H2) and Y2 < 0 are sat-
isfied. *us, from Lemma 5, system (18) is asymptotically
stable at E∗(u∗, v∗) � (0.1196, 1.5350). *en we set D1 �

0.1, D1 � 0.8 and other variables are the same as above.

Clearly, (H1) − (H3) and Y2 < 0 are reached. It follows from
*eorem 4 that system (15) is still stable at E∗(u∗, v∗) �

(0.1196, 1.5350) (see Figure 4). When D1 � 0.02, D2 � 5
and other variables are the same as above. By a simple
calculation, we can see that Y2 < 0, (H1), (H2), (H4), and
(H5) are satisfied. By *eorem 5, the diffusion-driven in-
stability occurs for system (15) at E∗(u∗, v∗), which is shown
in Figures 5 and 6.
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Figure 2: Spatiotemporal evolution behaviors of prey and predator of system (10) with D1 � 0.2, D2 � 2 and the initial condition
u(0, x) � 0.187 + 0.1 cos x, v(0, x) � 0.515 + 0.3 cos x.
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Figure 1: *e graph of each node and space x in system (10) when time t � 100 and D1, D2 > 0.
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Figure 3: Spatiotemporal evolution behaviors of prey and predator of system (10) with D1 � 0.5, D2 � 2 and the initial condition
u(0, x) � 0.187 + 0.1 cos x, v(0, x) � 0.515 + 0.4 cos x.
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Figure 5: Spatiotemporal evolution behaviors of prey and predator of system (15) with D1 � 0.02, D2 � 5 and the initial condition
u(0, x) � 0.119 + 0.1 cos x, v (0, x) � 1.535 + 0.5 cos x.
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Figure 4: Spatiotemporal evolution behaviors of prey and predator of system (15) with D1 � 0.1, D2 � 0.8 and the initial condition
u(0, x) � 0.119 + 0.1 cos x, v(0, x) � 1.535 + 0.5 cos x.
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Figure 6: Turing patterns of prey and predator when Turing instability occurs.
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Figure 7: *e evolution process of node u(t) and v(t) in system (9) when D1 � 0.1, D2 � 0.1, τ � 20.
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Figure 10: *e evolution process of node u(t) and v(t) in system (9) when D1 � 0.1, D2 � 0.1 and τ � 23< τ00 � 26.0037.
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5.2. Ce Impact of Time Delay. For system (9), we take α �

0.7, b � 0.4, h � 0.25, f � 0.5, E � 0.8, p � 0.45, θ � 0.6, D1
� 0.1, D2 � 0.1. By calculation, we get E∗(u∗, v∗) � (0.05813,

0.7622). In the meantime, A2 < 0 and (H6) are satisfied. By
*eorem 6, system (9) is asymptotically stable at E∗(u∗, v∗) �

(0.05813, 0.7622) for all τ ≥ 0, as displayed in Figures 7 and 8.
Next, we set α � 0.6, b � 0.4, h � 0.134, f � 0.8, E � 1.5,

p � 0.3, θ � 0.6, D1 � 0.1, D2 � 0.1 for system (9), which has
a unique positive equilibrium E∗(u∗, v∗) � (0.1549, 0.6823).
It is verified that A2 < 0 and (H7) are satisfied. Meanwhile,
we get ω0 � 0.0975, τ00 � 26.0037, λ′(τ00) � 0.021 − 0.0307i,
implying that the cross-section condition holds. By*eorem
9, system (9) is locally asymptotically stable at E∗(u∗, v∗) �

(0.1549, 0.6823) when τ ∈ [0, τ00) (see Figures 9 and 10) and
the Hopf bifurcation occurs when τ crosses the critical value
τ00 (see Figures 11 and 12).

Furthermore, from formula (125), we obtain C1(0) �

− 8.36984 − 2.3355i, κ2 � 398.56381> 0, β2 � − 16.73968< 0,

T2 � 2.3552> 0. It follows from *eorem 10 that the di-
rection of the bifurcation in system (9) at τ00 is forward, the
bifurcating period solutions are stable, and the period of
bifurcating periodic solutions is increasing.

5.3. Ce Impact of Harvesting Effort. Considering the impact
of harvesting efforts, we fix α � 0.6, b � 0.4, h � 0.134, f �

0.8, p � 0.3, θ � 0.6, D1 � 0.1, D2 � 0.1 and let E vary in

[0.5, 5]. *e stability and instability regions for system (9) are
depicted by mapping the nonlinear harvesting E to the critical
value τ00 in Figure 13. Obviously, the critical value τ00 of bi-
furcation increases with the increase of E, that is, the stable
region of system (9) is expanded with the increase of E.

6. Conclusion

We investigate the spatiotemporal dynamic evolution of a
time-delay ecological competition system with food re-
striction and diffusion terms under Neumann boundary
conditions. *e conditions of asymptotic stability and
Turing instability at the positive equilibrium of delay-free
systems are obtained under different functional response
functions. Compared with the classical population growth
model described by the logistic equation, the model with
food restriction studied in this paper is more in line with
actual biological competition systems. *e results show that
the diffusion phenomenon caused by the change of pop-
ulation position in space will seriously affect the stability of
biological competition systems, eventually resulting in the
appearance of Turing instability. *en, by selecting the time
delay as the bifurcation parameter, we reveal that the delay
can cause very complex dynamic phenomena. When the
delay is less than the bifurcation critical value, the system
maintains asymptotic stability at the positive equilibrium
point, while the system becomes unstable and produces a
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Hopf bifurcation when the delay is greater than the bifur-
cation critical value. Meanwhile, by using the central
manifold method, we derive the conditions for determining
the bifurcation direction and the stability of the bifurcation
periodic solution.*e harvesting effort has a major influence
on the stability and Hopf bifurcation. As the harvesting
effort increases in the appropriate range, the bifurcation
critical value increases; that is, the stable region of the system
is expanded.*erefore, we can conclude that the appropriate
harvesting of biological populations and the rational de-
velopment of biological resources can not only meet human
economic needs but also play a beneficial role in biological
systems.
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