Research Article
Topological Models of Rough Sets and Decision Making of COVID-19

Mostafa A. El-Gayar \(^1\) and Abd El Fattah El Atik \(^2\)

\(^1\)Department of Mathematics, Faculty of Science, Helwan University, Helwan, Egypt
\(^2\)Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt

Correspondence should be addressed to Mostafa A. El-Gayar; m.elgayar@science.helwan.edu.eg

Received 8 April 2021; Revised 13 June 2021; Accepted 31 January 2022; Published 24 June 2022

Academic Editor: Dan Selisteanu

Copyright © 2022 Mostafa A. El-Gayar and Abd El Fattah El Atik. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The basic methodology of rough set theory depends on an equivalence relation induced from the classification of objects. However, the requirements of the equivalence relation restrict the field of applications of this philosophy. To begin, we describe two kinds of closure operators that are based on right and left adhesion neighbourhoods by any binary relation. Furthermore, we illustrate that the suggested techniques are an extension of previous methods that are already available in the literature. As a result of these topological techniques, we propose extended rough sets as an extension of Pawlak’s models. We offer a novel topological strategy for making a topological reduction of an information system for COVID-19 based on these techniques. We provide this medical application to highlight the importance of the offered methodologies in the decision-making process to discover the important component for coronavirus (COVID-19) infection. Furthermore, the findings obtained are congruent with those of the World Health Organization. Finally, we create an algorithm to implement the recommended ways in decision-making.

1. Introduction

General topology [1] has recently been put as a topic in its own right as well as being a significant mathematical instrument with such varied topics as operational research approaches, biochemistry, genetics, and sociology. The construction of topology and its concepts via relations has become a remarkable and hot role in solving many problems such as [2–15]. Closure space has been described by Čech [10] as an extension of classical topology. Pal in [15] defined closure operators through binary relations. Relations represent a mathematical tool that has some real-life data and applications which can be resolved. Moreover, relations are applied in building some topological structures that are used in structure analysis, general view of space-time, biochemistry, biology, dynamics, fuzzy set model, and rough set idea. For more details, see [2–8, 12–14, 16–21]. In the viewpoint of topological structures, topological notions, especially, closure operators with relations, are useful in applications.

In covering-based rough sets, an adhesion-set is introduced [21]. Nawar et al. [22] utilized it to define the \(j\)-adhesion neighbourhood formed by any binary relation, and they proposed different types of covering-based rough sets as a result. Furthermore, Atef et al. [23] provided six rough approximations derived by \(j\)-adhesion neighbourhoods utilizing \(j\)-neighbourhood space [8] which was modified by El-Bably et al. in [5].

In this study, the idea of adhesion neighbourhood is utilized to construct various generalized closure operators via relations. These operators are a generalization of Galton’s [17], Allam’s et al. [18], and El-Bably’s et al. operators [19, 20]. Furthermore, we demonstrated that the new operators are topological properties with no requirements, and we showed some of their features. Rough set theory was established by computer scientist Pawlak [24, 25] based on several difficulties in computer science to overcome this
challenge by a modal approximation of a crisp set in the expressions of a pair of sets called the rough approximations of it. Many writers have focused on generalization rough sets [2, 4, 8, 11, 13, 20, 22, 23, 26–39].

The rough set model's basic subject is the notion of uncertainty areas. It seeks to find the boundary region by expanding the lower approximation and contracting the higher approximation. These approximations were induced by closure operators in this context. The comparison between our techniques with the Yao strategy is studied. Lelis Thivagar and Richard [40] proposed the concept of nano topology. It is mostly based on Pawlak’s preliminary guesses (namely, the lower, upper, and boundary region of a rough set). Nano open sets are the characteristics of a nano topological space.

We construct novel nano topologies from generalized rough approximations using the proposed operators in this research, and we apply them in the decision-making of COVID-19 infection. We reduce the amount of data we collect in order to determine the risk variables for COVID-19 infection. As a result, we assert that remaining at home may reduce the danger. We create an algorithm for decision-making utilizing our ideas towards the conclusion of the article.

2. Basic Concepts and Properties

Some definitions and results from the sequel are provided.

Definition 1 (see [41]). Let R be a binary relation from a nonempty set X to a nonempty set Y. R can be from X to itself and called a relation on X. Consequently, if R is a binary relation from X to Y, we say that $a \in X$ is related to $b \in Y$ if $(a, b) \in R$, sometimes written aRb.

Definition 2 (see [41]). A binary relation R on X is called as

(i) Reflexive if aRa, $\forall a \in X$
(ii) Symmetric if $aRb \iff bRa$, $\forall a, b \in X$
(iii) Transitve if $aRb \wedge bRc \implies aRc$, $\forall a, b, c \in X$
(iv) Equivalence if conditions (i), (ii), and (iii) are satisfied.

Definition 3 (see [41]). Let R be a relation on X. After set and forest of $x \in X$ are $xR = \{y \in X : xRy\}$ and $Rx = \{y \in X : yRx\}$, respectively.

Definition 4 (see [1]). A collection τ of subsets of U is a topology on U if it contains U, \emptyset, finite intersection (resp. arbitrary union) of its elements is closed. (U, τ) is a topological space, each set in τ is open, and its complement w. r. to U is closed. $int(X)$ (resp. $cl(X)$) denotes the interior (resp. closure) of X in (U, τ).

Definition 5 (see [27]). The operator $Cl: P(U) \longrightarrow P(U)$, where $P(U)$ is the power set of U, is called the closure of X, where $Cl(X) \subseteq U$, if satisfies

(i) $Cl(\emptyset) = \emptyset$
(ii) $X \subseteq Cl(X)$, $\forall X \subseteq U$
(iii) $Cl(X \cup Y) = cl(X) \cup cl(Y)$, $\forall X, Y \subseteq U$. The pair (U, Cl) is called a closure space.

Definition 6 (see [17]). Let (U, cl) be a closure space and let $X \subseteq U$. Then,

(i) $Int(X) = (cl(X^c))^c$, where X^c is the complement of X w. r. to U
(ii) X is a neighbourhood of an element $x \in X$ if $x \in Int(X)$
(iii) If $B = Cl(B)$, then B is closed
(iv) If $A = Int(A)$, then A is open.

For each (U, Cl), $Int: P(U) \longrightarrow P(U)$ is called the interior of X [13] and satisfies.

(i) $Int(U) = U$
(ii) $Int(X) \subseteq X$, $\forall X \subseteq U$
(iii) $Int(X \cap Y) = Int(X) \cap Int(Y)$, $\forall X, Y \subseteq U$.

Remark 1. If $Cl(Cl(X)) = Cl(X)$, then the space is called a closure space.

Definition 7 (see [27]). Let R be a relation on X. Then, the closure operator on U by R is $cl_R(X) = X \cup \{y \in U : \exists x \in X : yRx\}$.

Lemma 1 (see [17]). Let R be a transitive relation on a nonempty finite set U. Then, the operator cl_R is a topological closure.

Definition 8 (see [24]). Let U be a universe set and R be an equivalence relation on U. $U/R = \{[x]_R : x \in U\}$ are equivalence classes of R. (U, R) is an approximation space. The lower and upper approximations of X are $R(X) = \{x \in X : [x]_R \subseteq X\}$ and $\overline{R}(X) = \{x \in U : [x]_R \cap \overline{X} \neq \emptyset\}$, respectively, for any $X \subseteq U$. X is rough set if $\overline{R}(X) \neq \overline{R}(X)$.

Proposition 1 (see [24]). If X^c is a complement set of X in U, then \emptyset represents an empty set. The properties of Pawlak’s rough sets are as follows:

(L1) $\overline{R}(X) \subseteq X$ \hspace{1cm} (U1) $X \subseteq \overline{R}(X)$
(L2) $\overline{R}(\emptyset) = \emptyset$ \hspace{1cm} (U2) $\overline{R}(\emptyset) = \emptyset$
(L3) $\overline{R}(U) = U$ \hspace{1cm} (U3) $\overline{R}(U) = U$
(L4) $\overline{R}(X \cap Y) = \overline{R}(X) \cap \overline{R}(Y)$ \hspace{1cm} (U4) $\overline{R}(X \cup Y) = \overline{R}(X) \cup \overline{R}(Y)$
(L5) If $X \subseteq Y$, then $R(X) \subseteq \overline{R}(Y)$ \hspace{1cm} (U5) If $X \subseteq Y$, then $\overline{R}(X) \subseteq \overline{R}(Y)$
(L6) $\overline{R}(X \cup Y) \subseteq R(X \cup Y)$ \hspace{1cm} (U6) $\overline{R}(X) \cap \overline{R}(Y) \supseteq R(X \cap Y)$
(L7) $\overline{R}(X^c) = \overline{R}(X)^c$ \hspace{1cm} (U7) $\overline{R}(X^c) = (\overline{R}(X))^c$
(L8) $\overline{R}(\overline{R}(X)) = \overline{R}(X)$ \hspace{1cm} (U8) $\overline{R}(\overline{R}(X)) = \overline{R}(X)$
(L9) $\overline{R}(\overline{R}(X))^c = (\overline{R}(X))^c$ \hspace{1cm} (U9) $\overline{R}(\overline{R}(X))^c = (\overline{R}(X))^c$
(L10) $\forall K \in U/R \Rightarrow \overline{R}(K) = K$ \hspace{1cm} (U10) $\forall K \in U/R \Rightarrow \overline{R}(K) = K$
Definition 9 (see [26]). For \(A \subseteq U \), the lower and upper approximations of \(A \) w. r. to neighbourhood \(n(x) \) of \(x \) are \(\text{apr}(A) = \{x \in U : n(x) \subseteq A\} \) and \(\overline{\text{apr}}(A) = \{x \in U : n(A) \subseteq \overline{\text{apr}}(A)\} \), respectively. The properties (L3-L9) and (U1, U2, U4-U9) are satisfied, in general, while some Pawlak’s properties are held in \(n(x) \).

Definition 10 (see [40]). In \((U, R) \), \(R = \{U, R(X), \overline{R}(X), B(X)\} \) is a nano topology on \(U \) w. r. to \(X \) with a base \(\mathcal{B} = \{U, R(X), B(X)\} \).

3. A New Closure Operator and Its Equivalences

Throughout this section, some different sorts of closure operators in terms of relations are introduced, and comparisons between them are discussed.

Definition 11 (see [5, 22, 23]). Let \(R \) be any relation on \(U \). The right adhesion and left adhesion of each set \(y \in U \) are defined, respectively, as follows:

(i) \(r \text{-adhesion: } A_r(x) = \{y \in U : yR \subseteq xR\} \)

(ii) \(l \text{-adhesion: } A_l(x) = \{y \in U : yR \supseteq xR\} \)

It is simple to demonstrate the following lemma, so we omit the proof.

Lemma 2. Let \(R \) be any relation on \(U \). Then, \(\forall j \in \{r, l\} \),

(i) \(A_j(x) \neq \emptyset \)

(ii) \(x \in A_j(x) \)

(iii) \(A_j(U) = \{A_j(x) : x \in U\} \) is a partition on \(U \).

Lemma 3. For all \(j \in \{r, l\} \), \(y \in A_j(x) \) if \(A_j(y) = A_j(x) \), for any \(R \) on \(U \).

Proof. It is sufficient to prove this lemma for \(j = r \) and the others similarly. Firstly, if \(\in E A_r(y) \Rightarrow yR = xR \). Now, it is sufficient to prove \(A_j(y) \subseteq A_j(x) \). Let \(z \in A_j(y) \), then \(zR = yR \). Hence, \(xR = xR \), and this implies \(x \in A_j(x) \). Thus, \(A_j(y) \subseteq A_j(x) \). Also, \(A_j(y) \supseteq A_j(x) \) is proved similarly.

Proposition 2. For a reflexive relation \(R \) on \(U \) and \(x \in U \), we get

(i) \(A_r(x) \subseteq xR \)

(ii) \(A_l(x) \subseteq Rx \).

Proof. (i) Let \(y \in A_r(x) \), then \(yR = xR \). But \(R \) is a reflexive relation on \(U \), thus \(x \in xR \), \(\forall x \in U \). Hence, \(y \in xR \), and this implies \(A_r(x) \subseteq xR \), \(\forall x \in U \). (ii) is proved similarly.

Remark 2. The equality of Proposition 5 is not held, in general, as illustrated in Example 1.

Example 1. Let \(U = \{a, b, c, d\} \) and \(R = \{(a, a), (a, b), (b, b), (c, c), (c, a), (d, d)\} \). Then, we get the following:

\(aR = \{a\}, bR = \{b\}, cR = \{c\} \), and \(dR = \{d\} \). It is clear that \(A_r(a) = \{a\}, A_r(b) = \{b\}, A_r(c) = \{c\} \), and \(A_r(d) = \{d\} \).

Definition 12. For any relation \(R \) on \(U \) and \(X \subseteq U \), \(Cl_j : P(U) \rightarrow P(U) \) is \(Cl_j(X) = \{x \in U : A_j(x) \cap X \neq \emptyset\} \), \(\forall j \in \{r, l\} \).

The following proposition proves that \(Cl_j \) represents a closure operator.

Proposition 3. If \(R \) is an arbitrary binary relation on \(U \), then, \(\forall j \in \{r, l\} \), and the pair \((U, Cl_j) \) is a closure space.

Proof.

(i) Clearly, \(Cl_j(\emptyset) = \emptyset \).

(ii) According to Lemma 3, Definition 10, and by contradiction, assume that \(X \in Cl_j(X) \), then there exists at least \(x \in X \) such that \(x \notin Cl_j(X) \). Thus, \(x \in X \) such that \(A_j(x) \cap X = \emptyset \). But \(x \in A_j(x) \), \(\forall x \in U \), thus, \(A_j(x) \cap X \neq \emptyset \), and this is a contradiction to the assumption that \(x \notin Cl_j(X) \).

Thus, \(X \subseteq Cl_j(X) \).

We call the pair \((U, Cl_j) \) in Proposition 3, a \(j \)-closure space.

Definition 13. Suppose that \((U, Cl_j) \) is a \(j \)-closure space. Then, \(\forall j \in \{r, l\} \),

(i) \(X \subseteq U \) is \(j \)-closed if \(X = Cl_j(X) \)

(ii) \(\Gamma_j = \{X \subseteq U : X = Cl_j(X)\} \) is the collection of all \(j \)-closed in \(U \)

(iii) The complement of \(j \)-closed is called \(j \)-open

Proposition 4. Let \((U, Cl_j) \) be a \(j \)-closure space. Then, \(\forall j \in \{r, l\} \), and the \(j \)-closure \(Cl_j \) is a closure operator in a viewpoint of topology.

Proof. It is sufficient to prove \(Cl_j \) is a topological closure, and \(Cl_j \) is so.

It is clear that \(Cl_j(X) \subseteq Cl_j(Cl_j(X)) \). Thus, we only prove that \(Cl_j(Cl_j(X)) \subseteq Cl_j(X) \). Let \(x \in Cl_j(Cl_j(X)) \).

Then, \(A_j(x) \cap Cl_j(X) \neq \emptyset \) which implies \(\exists y \in A_j(x) \) and \(y \in Cl_j(X) \). Thus, \(A_j(y) = A_j(x) \) and \(A_j(y) \cap X \neq \emptyset \). Then, \(A_j(x) \cap X \neq \emptyset \) which implies \(x \in Cl_j(X) \).

Theorem 1. Every \(j \)-closure space \((U, Cl_j) \), \(\forall j \in \{r, l\} \), is topological space.

Proof. Directly by Proposition 4.

Remark 3. According to Theorem 1, we notice that the closure operator \(Cl_j \), for each \(j \in \{r, l\} \), represents a generalization of Galton [17] approach (Definition 7), Allam et al. [18], and El-Bably et al. [19, 20].
Proposition 5. For a reflexive relation R on U and $X \subseteq U$, $Cl_j(X) \subseteq d_R(X)$, $\forall j \in \{r, l\}$.

Proof. From Lemma 4, we have $A_r(x) \subseteq xR$. Thus, if $x \in Cl_j(X)$, then $A_r(x) \cap X \neq \emptyset$, and this implies $xR \cap X \neq \emptyset$. Hence, by Definition 3, $x \in d_R(X)$. \square

Remark 4. The equality of Proposition 5 is not held, in general, as shown in Example 2.

Example 2. Using Example 1, we take $X = \{a, b, d\}$. Then, $Cl_j(X) = \{a, b, d\} = X$, but $d_R(X) = U$.

Now, we also define the interior operation from the j-closure operation, which represents a topological interior of the topological space (U, Cl_j).

Definition 14. If (U, Cl_j) is a j-closure space and $\forall j \in \{r, l\}$, then for each $X \subseteq U$, the operator $Int_j : P(U) \rightarrow P(U)$ is $Int_j(X) = \{x \in U : A_r(x) \subseteq X\}$.

In the following lemmas, we prove that the j-interior operator (Abbriv. Int_j) is an interior operator on U. Also, we prove that Cl_j and Int_j are dual.

Lemma 4. Let (U, Cl_j) be a j-closure space and $\forall j \in \{r, l\}$. Then, $Int_j(X) = [Cl_j(X)]^c$, where X^c denotes the complement of X.

Proof. $[Cl_j(X^c)]^c = \{x \in U : A_r(x) \cap X^c \neq \emptyset\}^c = \{x \in U : A_r(x) \cap X^c = \emptyset\} = \{x \in U : A_r(x) \subseteq X\}$.

Lemma 5. Let (U, Cl_j) be a j-closure space and $\forall j \in \{r, l\}$. Then, $Int_j(X)$ satisfies the following properties:

(i) $Int_j(U) = U$

(ii) $Int_j(X) \subseteq X$, $\forall X \subseteq U$

(iii) $Int_j(X \cap Y) = Int_j(X) \cap Int_j(Y)$

(iv) $Int_j(Int_j(X)) = Int_j(X)$.

Lemma 6. Let (U, Cl_j) be a j-closure space, $\forall j \in \{r, l\}$ and $X \subseteq U$. Then, X is j-open if and only if $Int_j(X) = X$.

4. Generalized Approximations in Terms of Closure Operators

In the current section, we aim to present some topological properties of operators Cl_j and Int_j for each $j \in \{r, l\}$ and apply its relationship with the rough set theory. This study is a generalization for Pawlak’s approximations [24]. In addition, a comparison between them is discussed with different sorts of examples.

Definition 15. Let (U, Cl_j) be a j-closure space, $\forall j \in \{r, l\}$ and $X \subseteq U$. Then, j-lower and j-upper approximations of X are defined, respectively, by

$L_j(X) = \{x \in U : A_j(x) \subseteq X\} = Int_j(X)$, and $R_j(X) = \{x \in U : A_j(x) \cap X \neq \emptyset\} = Cl_j(X)$.

Definition 16. Let (U, Cl_j) be a j-closure space, $\forall j \in \{r, l\}$ and $X \subseteq U$. The j-boundary, j-positive, and j-negative regions of X, for each $j \in \{r, l\}$, are defined, respectively, by

$B_j(X) = R_j(X) - L_j(X)$, $POS_j(X) = R_j(X)$, and $NEG_j(X) = U - R_j(X)$.

Definition 17. Let (U, Cl_j) be a j-closure space, $\forall j \in \{r, l\}$ and $X \subseteq U$. Then, X is called j-exact set if $L_j(X) = R_j(X) = X$. Otherwise, it is called j-rough.

Definition 18. Let (U, Cl_j) be a j-closure space, $\forall j \in \{r, l\}$ and $X \subseteq U$. Thus, the j-accuracy of the approximations of X is defined as follows:

$a_j(X) = |R_j(A)|/|\overline{R}_j(A)|$, where $|\overline{R}_j(X)| \neq 0$ and $|X|$ refer to the cardinality of X.

Remark 5. According to Definitions 15–18, we have $\forall j \in \{r, l\}$.

(i) $0 \leq a_j(X) \leq 1$, for every $X \subseteq U$, $\forall j \in \{r, l\}$

(ii) If $a_j(X) = 1$, then $R_j(X) = X$, then X is j-exact. Otherwise, it is j-rough.

Proposition 6. Let (U, Cl_j) be a j-closure space, $\forall j \in \{r, l\}$ and $X, Y \subseteq U$. Then, we have

(L1) $R_j(X) \subseteq X$ (U1)$X \subseteq \overline{R}_j(X)$

(L2) $R_j(\emptyset) = \emptyset$ (U2)$\overline{R}_j(\emptyset) = \emptyset$

(L3) $R_j(U) = U$ (U3)$\overline{R}_j(U) = U$

(L4) $R_j(X \cap Y) = R_j(X) \cap R_j(Y)$ (U4)$\overline{R}_j(X \cup Y) = \overline{R}_j(X) \cup \overline{R}_j(Y)$

(L5) If $X \subseteq Y$, then $R_j(X) = R_j(Y)$ (U5) If $X \subseteq Y$, then $\overline{R}_j(X) = \overline{R}_j(Y)$

(L6) $R_j(X) \cup R_j(Y) \subseteq R_j(X \cup Y)$ (U6)$\overline{R}_j(X) \cap \overline{R}_j(Y) \subseteq \overline{R}_j(X \cap Y)$

(L7) $R_j(X^c)^c = (\overline{R}_j(X))^c$ (U7)$\overline{R}_j(X^c)^c = (\overline{R}_j(X))^c$

(L8) $R_j([R_j(X)]^c) = R_j(X)$ (U8)$\overline{R}_j([R_j(X)]^c) = \overline{R}_j(X)$

(L9) $[R_j(X)]^c = (\overline{R}_j(X))^c$ (U9)$\overline{R}_j([R_j(X)]^c) = \overline{R}_j(X)$

(L10) $\forall K \in \mathcal{J}(U) \Rightarrow R_j(K) = K$ (U10)$\forall K \in \mathcal{J}(U) \Rightarrow \overline{R}(K) = K$

Proof. Directly, using the definitions and properties of Cl_j and Int_j, the proof is clear. \square

Remark 6.

(i) If R represents an equivalence relation, then the j-adhesion set $A_j(x)$ of each $x \in U$ represents an
Complexity

equivalence class of \(x \); that is, \(A_j(x) = [x]_R \). Thus, our approximations (\(j \)-approximations that given in Definitions 15 and 16) are conceded with Pawlak’s approximations.

(2) Moreover, according to Proposition 4.6, the \(j \)-approximations satisfy all properties of the classical rough set model that was introduced by Pawlak [24], using any relation without any restrictions. Therefore, we say that the current methods represent an interesting generalization to the rough set theory.

(3) According to Definition 15, we have two different generalized rough approximation operators. Example 3 illustrates that these operators are independent.

Example 3. Let \(U = \{a, b, c, d\} \) and \(R = \{(a, a), (a, b), (b, b), (c, a), (d, b)\} \). Then, we get the following: \(A_r(a) = \{a\}, A_r(b) = \{b, d\}, A_r(c) = \{c\}, \) and \(A_r(d) = \{b, d\} \). Furthermore, \(A_l(a) = \{a\}, A_l(b) = \{b\}, A_l(c) = \{c, d\}, \) and \(A_l(d) = \{c, d\} \). Consider \(X = \{a\}, Y = \{a, b\}, \) and \(Z = \{a, c\} \). Thus, we compute the approximations for some subsets of \(U \) as shown in Table 1.

From Table 1, it is clear that the subset \(X \) is \(r \)-exact and \(l \)-exact. However, \(Y \) is \(r \)-rough although it is \(l \)-exact, and also the subset \(Z \) is \(l \)-rough although it is \(r \)-exact.

Definition 19. Let \((U, Cl_j) \) be a \(j \)-closure space, \(\forall j \in \{r, l\} \) and \(X \subseteq U \). The generalized lower and upper approximations, the boundary, positive and negative regions, and the accuracy of the approximations of \(X \) are defined by

\[
\begin{align*}
G(X) &= R_r(X) \cup R_l(X), \\
\overline{G}(X) &= R_r(X) \cap R_l(X), \\
B(X) &= \overline{G}(X) - G(X), \\
POS(X) &= G(X), \\
NEG(X) &= U - \overline{G}(X) \text{ and } d \\
\mu(X) &= \frac{|G(X)|}{|\overline{G}(X)|}
\end{align*}
\]

where \(|\overline{G}(X)| \neq 0 \) and \(|X| \) refer to the cardinality of \(X \).

Definition 20. Let \((U, Cl_j) \) be a \(j \)-closure space, \(\forall j \in \{r, l\} \) and \(X \subseteq U \). Then, \(X \) is a generalized exact (shortly, \(g \)-exact) set if \(G(X) = \overline{G}(X) = X \). Otherwise, it is called \(g \)-rough.

Remark 7

(1) \(0 \leq \mu(X) \leq 1 \), \(\forall X \subseteq U \)

(2) \(X \) is \(g \)-exact if \(\mu(X) = 1 \). Otherwise, it is a \(g \)-rough set.

Proposition 7. If \((U, Cl_j) \) is a \(j \)-closure space, \(\forall j \in \{r, l\} \) and \(X, Y \subseteq U \), then the generalized approximation operators \(G(X) \) and \(\overline{G}(X) \) satisfy all Pawlak’s properties (L1-L10) and (U1-U10).

Proof. By using Proposition 6, the proof is obvious.

The main goal of the following results is to introduce the relationships between the \(g \)-approximations and \(j \)-approximations. Moreover, they show the best of these approximations.

Theorem 2. Let \((U, Cl_j) \) be a \(j \)-closure space, \(\forall j \in \{r, l\} \) and \(X \subseteq U \), then

\[
\begin{align*}
(i) & \quad R_r(X) \subseteq \overline{G}(X) \subseteq X \subseteq \overline{G}(X) \subseteq \overline{R}_r(X) \\
(ii) & \quad R_l(X) \subseteq \overline{G}(X) \subseteq X \subseteq \overline{G}(X) \subseteq \overline{R}_l(X).
\end{align*}
\]

Proof. It is sufficient to prove (i) and (ii) similarly. Let \(x \in R_r(X) \), then by Definition 19, \(x \in G(X) \), and thus, \(x \in X \). Hence, \(x \in \overline{G}(X) \) which means that, by Definition 19, \(x \in \overline{R}_r(X) \).

Corollary 1. Let \((U, Cl_j) \) be a \(j \)-closure space, \(\forall j \in \{r, l\} \) and \(Y \subseteq U \). So,

\[
\begin{align*}
(i) & \quad B(Y) \subseteq B_j(Y) \\
(ii) & \quad a_j(Y) \leq \mu(Y).
\end{align*}
\]

Corollary 2. Let \((U, Cl_j) \) be a \(j \)-closure space, \(\forall j \in \{r, l\} \) and \(X \subseteq U \). Then, \(X \) is \(g \)-exact if it is \(j \)-exact.

The opposite of Corollary 2 is not correct in general.

Example 4. (Continuation of Example 3). The approximations of all subsets of \(U \) are calculated. Thus, Table 2 introduces comparisons between the approximations, boundary, and accurate measure of \(j \)-approximations and \(g \)-approximations.

Remark 8. From Table 2, it is noted that

(1) \(\{a, b\} \) and \(\{c, d\} \) are \(g \)-exact, but it is neither \(r \)-exact (\(r \)-rough) nor \(l \)-exact (\(l \)-rough).

(2) \(\{b, d\} \) and \(\{a, b, d\} \) are \(g \)-exact, but it is neither \(r \)-exact (\(r \)-exact) nor \(l \)-exact (\(l \)-exact).

(3) \(\{d\} \) and \(\{b, c\} \) are \(g \)-rough. Also, it is \(r \)-rough and \(l \)-rough.

Example 5 (Continuation for Example 3). Table 3 represents a comparison between our method and Yao approach [26].

Remark 9. From Table 3, we notice that

(1) Our method in Definition 16 represents the best method for computing exactness and the roughness of sets, because the boundary regions are reduced or cancelled, and then, we obtain more accurate measures for approximating sets. On the other hand, in Yao approach, there are rough sets that are not defined, and then, we cannot be able, by Yao [26], to define it or remove the vauge of it, but it is exact in our approaches.

(2) Moreover, in Yao approach, there are sets whose lower (resp., upper) approximation does not belong...
Table 1: Comparison between r-approximations and l-approximations.

<table>
<thead>
<tr>
<th>A</th>
<th>$\mathcal{R}_r (A)$</th>
<th>$\mathcal{R}_l (A)$</th>
<th>$B_r (X)$</th>
<th>$\alpha_r (A)$</th>
<th>$\mathcal{R}_l (A)$</th>
<th>$B_l (A)$</th>
<th>$\alpha_l (A)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[a]$</td>
<td>$[a]$</td>
<td>$[a]$</td>
<td>\emptyset</td>
<td>1</td>
<td>$[a]$</td>
<td>$[a]$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>$[a, b]$</td>
<td>$[a]$</td>
<td>$[a, b, d]$</td>
<td>$[b, d]$</td>
<td>$1/3$</td>
<td>$[a, b]$</td>
<td>$[a, b]$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>$[a, c]$</td>
<td>$[a, c]$</td>
<td>\emptyset</td>
<td>1</td>
<td>$[a]$</td>
<td>$[a, c, d]$</td>
<td>$[c, d]$</td>
<td>$1/3$</td>
</tr>
</tbody>
</table>

Table 2: Comparison between j-approximations and g-approximations.

<table>
<thead>
<tr>
<th>A</th>
<th>r-approximations</th>
<th>l-approximations</th>
<th>g-approximations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\mathcal{R}_r (A)$</td>
<td>$\mathcal{R}_l (A)$</td>
<td>$B_r (X)$</td>
</tr>
<tr>
<td>$[a]$</td>
<td>$[a]$</td>
<td>$[a]$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>$[b]$</td>
<td>\emptyset</td>
<td>$[b, d]$</td>
<td>$[b, d]$</td>
</tr>
<tr>
<td>$[c]$</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>$[d]$</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>$[a, b]$</td>
<td>U</td>
<td>U</td>
<td>\emptyset</td>
</tr>
<tr>
<td>$[a, c]$</td>
<td>U</td>
<td>U</td>
<td>\emptyset</td>
</tr>
<tr>
<td>$[b, c]$</td>
<td>U</td>
<td>U</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>

Table 3: The boundary and accuracy of approximations for Yao Method 2.9 [26] and current method in Definition 4.2.

<table>
<thead>
<tr>
<th>A</th>
<th>$\alpha_{pr}(A)$</th>
<th>$\overline{\alpha_{pr}}(A)$</th>
<th>$B(A)$</th>
<th>$\pi(A)$</th>
<th>$\mathcal{Q}(A)$</th>
<th>$\overline{\mathcal{Q}}(A)$</th>
<th>$B(A)$</th>
<th>$\mu(A)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[a]$</td>
<td>$[c]$</td>
<td>$[a, c, d]$</td>
<td>$[a, d]$</td>
<td>$1/3$</td>
<td>$[a]$</td>
<td>$[a]$</td>
<td>\emptyset</td>
<td>1</td>
</tr>
<tr>
<td>$[b]$</td>
<td>$[b, d]$</td>
<td>$[a, b, d]$</td>
<td>$[b]$</td>
<td>$2/3$</td>
<td>$[b]$</td>
<td>$[b]$</td>
<td>\emptyset</td>
<td>1</td>
</tr>
<tr>
<td>$[c]$</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>Not defined</td>
<td>$[c]$</td>
<td>$[c]$</td>
<td>\emptyset</td>
<td>1</td>
</tr>
<tr>
<td>$[d]$</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>Not defined</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>0</td>
</tr>
<tr>
<td>$[a, b]$</td>
<td>U</td>
<td>U</td>
<td>\emptyset</td>
<td>1</td>
<td>$[a, b]$</td>
<td>$[a, b]$</td>
<td>\emptyset</td>
<td>1</td>
</tr>
<tr>
<td>$[a, c]$</td>
<td>U</td>
<td>U</td>
<td>\emptyset</td>
<td>1</td>
<td>$[a, c]$</td>
<td>$[a, c]$</td>
<td>\emptyset</td>
<td>1</td>
</tr>
<tr>
<td>$[a, d]$</td>
<td>U</td>
<td>U</td>
<td>\emptyset</td>
<td>1</td>
<td>$[a, d]$</td>
<td>$[a, d]$</td>
<td>\emptyset</td>
<td>1</td>
</tr>
<tr>
<td>$[b, c]$</td>
<td>U</td>
<td>U</td>
<td>\emptyset</td>
<td>1</td>
<td>$[b, c]$</td>
<td>$[b, c]$</td>
<td>\emptyset</td>
<td>1</td>
</tr>
<tr>
<td>$[b, d]$</td>
<td>U</td>
<td>U</td>
<td>\emptyset</td>
<td>1</td>
<td>$[b, d]$</td>
<td>$[b, d]$</td>
<td>\emptyset</td>
<td>1</td>
</tr>
<tr>
<td>$[c, d]$</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>Not defined</td>
<td>$[c, d]$</td>
<td>$[c, d]$</td>
<td>\emptyset</td>
<td>1</td>
</tr>
<tr>
<td>$[a, b, c]$</td>
<td>U</td>
<td>U</td>
<td>\emptyset</td>
<td>1</td>
<td>$[a, b, c]$</td>
<td>$[a, b, c]$</td>
<td>\emptyset</td>
<td>1</td>
</tr>
<tr>
<td>$[a, b, d]$</td>
<td>U</td>
<td>U</td>
<td>\emptyset</td>
<td>1</td>
<td>$[a, b, d]$</td>
<td>$[a, b, d]$</td>
<td>\emptyset</td>
<td>1</td>
</tr>
<tr>
<td>$[a, c, d]$</td>
<td>U</td>
<td>U</td>
<td>\emptyset</td>
<td>1</td>
<td>$[a, c, d]$</td>
<td>$[a, c, d]$</td>
<td>\emptyset</td>
<td>1</td>
</tr>
<tr>
<td>$[b, c, d]$</td>
<td>U</td>
<td>U</td>
<td>\emptyset</td>
<td>1</td>
<td>$[b, c, d]$</td>
<td>$[b, c, d]$</td>
<td>\emptyset</td>
<td>1</td>
</tr>
</tbody>
</table>

5. Decision Making of COVID–19 as Medical Application

In this part, we provide a realistic example of how our methodology might be used to make decisions for an information system concerning coronavirus infections (COVID–19). In fact, we have identified the risk factors for COVID–19 infection in people. In this model, the only decisive criteria for infection transmission are gathering, interaction with wounded individuals, and employment in hospitals. We conclude that remaining at home and avoiding contact with people protect against coronavirus infection. The authors of [42] state that human-to-human transmissions have been described with incubation times ranging from 2 to 10 days, allowing the virus to spread through
The persistence of coronaviruses on different types of inanimate surfaces is shown in Table 4. As shown in the table, coronaviruses can persist on various surfaces for different durations, with some viruses like MERS-CoV and SARS-CoV having longer persistence times compared to others like TGEV and MHV.

Table 4: Multi-information table of causing factors for COVID-19 infection.

<table>
<thead>
<tr>
<th>P_1</th>
<th>P_2</th>
<th>P_3</th>
<th>P_4</th>
<th>P_5</th>
<th>P_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>M, W</td>
<td>M, G</td>
<td>G</td>
<td>M</td>
<td>M, G</td>
<td>G</td>
</tr>
</tbody>
</table>

Infection). Using the set X = \{p_1, p_3, p_5\}, we get \(R_6(X) = \overline{R}(X) = X\) and \(B_6(X) = \emptyset\). Hence, by Definition 8, the nano topology of X is \(\mathcal{N}_6 = \{U, \emptyset, \{p_1, p_3, p_5\}\}\) with a base \(\mathcal{B}_6 = \{U, \emptyset, \{p_1, p_3, p_5\}\}\). The reduction proceeds as follows:

Example 6. Here, we use the notion of nano topology, as defined in Definition 10, to discover the essential elements of “COVID-19” infection via topological reduction of characteristics in a multi-information system. It should be noted that Pawlak’s technique cannot be applied in this case since the used connection is a reflexive relation (not an equivalence relation). Table 4 gives information about six persons of patients \(U = \{p_1, p_2, p_3, \ldots, p_6\}\) and the set of attributes \(AT = \{a_1, a_2, a_3\}\) where \(a_1\) = handled surfaces = \{Metal, Wood, Paper\}, \(a_2\) = protection tools = \{Muzzle, Glove\}, and \(a_3\) = person status = \{Stay at home, Go out home\}, and decision set of the infected persons with COVID-19 is \(D = \{Yes, No\}\).
Step 1. \(a_i\) is removed. Then, \(r\)-adhesion neighbourhoods are \(A_{r-a_i}(p_1) = A_{r-a_i}(p_2) = \{p_1, p_3\}\), \(A_{r-a_i}(p_2) = \{p_2\}\), \(A_{r-a_i}(p_3) = \{p_3\}\), and \(A_{r-a_i}(p_6) = \{p_6\}\).

Accordingly, \(R_{r-a_i}(X) = R_{r-a_i}(X) = X\) and \(B_{r-a_i}(X) = \emptyset\).

Therefore, by Definition 10, \(\tau_{N-a_i} = \{U, \emptyset, \{p_1, p_2, p_3\}\}\) is \(N\).

Also, \(\beta_{N-a_i} = \{U, \emptyset, \{p_1, p_2, p_3\}\}\) is \(\beta_N\).

Step 2. \(a_i\) is removed. So, \(r\)-adhesion neighbourhoods are \(A_{r-a_i}(p_1) = A_{r-a_i}(p_2) = \{p_1, p_3\}\), \(A_{r-a_i}(p_2) = \{p_2\}\), \(A_{r-a_i}(p_3) = \{p_3\}\), and \(A_{r-a_i}(p_6) = \{p_6\}\).

Accordingly, \(R_{r-a_i}(X) = R_{r-a_i}(X) = X\) and \(B_{r-a_i}(X) = \emptyset\).

Therefore, by Definition 10, \(\tau_{N-a_i} = \{U, \emptyset, \{p_1, p_2, p_3\}\}\) is \(N\).

Also, \(\beta_{N-a_i} = \{U, \emptyset, \{p_1, p_2, p_3\}\}\) is \(\beta_N\).

Step 3. \(a_i\) is removed. Then, \(r\)-adhesion neighbourhoods are \(A_{r-a_i}(p_1) = A_{r-a_i}(p_3) = \{p_1, p_3\}\), \(A_{r-a_i}(p_2) = \{p_2\}\), \(A_{r-a_i}(p_3) = \{p_3\}\), and \(A_{r-a_i}(p_6) = \{p_6\}\).

Accordingly, \(R_{r-a_i}(X) = \{p_1, p_3\}\), \(R_{r-a_i}(X) = \{p_1, p_3, p_5\}\) and \(B_{r-a_i}(X) = \{p_5\}\).

Therefore, by Definition 10, \(\tau_{N-a_i} = \{U, \emptyset, \{p_1, p_3, p_5\}\}\) is \(N\).

In this case, \(\beta_{N-a_i} = \{U, \emptyset, \{p_1, p_3, p_5\}\}\) is \(\beta_N\). So, the CORE is the attribute \(a_i\). This means that “Person status” is the effective factor for COVID-19 infection.

Case 2 (Noninfection). Using the set \(Y = \{p_2, p_6\}\), we get \(R_{r}(Y) = R(Y) = Y\) and \(B(Y) = \emptyset\). Hence, by Definition 8, \(\tau_N = \{U, \emptyset, \{p_2, p_6\}\}\) with a base \(\beta_N = \{U, \emptyset, \{p_2, p_6\}\}\).

Here, the reduction proceeds as follows:

Step 4. \(a_1\) is removed. Hence, like procedures of Case 1, \(\tau_{N-a_1} = \{U, \emptyset, \{p_2, p_6\}\}\) with a base \(\beta_{N-a_1} = \{U, \emptyset, \{p_2, p_6\}\}\).

Step 5. \(a_2\) is removed. Hence, like procedures of Case 1, \(\tau_{N-a_2} = \{U, \emptyset, \{p_2, p_6\}\}\) with a base \(\beta_{N-a_2} = \{U, \emptyset, \{p_2, p_6\}\}\).

Step 6. \(a_3\) is removed. Then, like procedures of Case 1, \(\tau_{N-a_3} = \{U, \emptyset, \{p_2, p_6\}\}\) with a base \(\beta_{N-a_3} = \{U, \emptyset, \{p_2, p_6\}\}\). Therefore, the CORE is \(a_3\). This means that “Person status” is the effective factor for COVID-19 infection.

Observation: According to the CORE, “Person status” (whether you remain at home or not) is the most important factor in COVID-19 infection. Proper medical care for those who remain at home may reduce the danger.

We provide an algorithm for decision-making based on our ideas towards the conclusion of the study.

6. Conclusion and Discussion

The current paper can be divided into three main parts besides the introduction and basic concept sections. The first section examines two kinds of closure operators based on right and left adhesion neighbourhoods formed by a broad binary relation and their features. These operators are extensions of Galton [17], Allam et al. [18], and El-Bably and Fleifel [19, 20], as shown by Theorem 1 with a counterexample. The second part is devoted to the application of the closure operators, proposed in the current paper, in the notion of rough sets. In fact, we have presented three models to approximate the rough sets, which are generalizations of previously presented methods (such as [2, 4, 8, 11, 13, 20, 22, 23, 26–39]). We studied the properties of these approximations, and we were able to demonstrate all of Pawlak’s properties, which were not fulfilled in some other generalizations such as Yao [26] without adding any conditions to the relation. Several comparisons between our methods and previous methods have been presented. Theorem 2 and its results demonstrate that our methods are more accurate and general than other methods of approximations. As a result, we can state that our technique will be beneficial in decision-making for real-world challenges, contributing to the extraction of knowledge from concealed data. Furthermore, the closure operators pave the door for further topological contributions to the rough set theory and applications. Part three of the article offered a medical decision-making application for identifying the effect elements affecting the transmission of the coronavirus (Covid-19) infection. We built a nano topology in this application using a general relation (rather than Pawlak’s approximations, which need an equivalence relation). It is worth mentioning that we have offered algorithms for our decision-making technique, which may be used for any real-world problem.
Data Availability
No data were used to support this study.

Conflicts of Interest
The authors declare that they have no conflicts of interest.

References

