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Te standardized precipitation index (SPI) is one of the most widely used indices for characterizing and monitoring drought in
various regions. SPI’s applicability has regional and time-scale constraints when it observes in several homogeneous climatic
regions with similar characteristics. It also does not provide sufcient knowledge about precipitation defcits and the spatio-
temporal evolution of drought. Terefore, a new method, the regional spatially agglomerative continuous drought probability
monitoring system (RSACDPMS), is proposed to obtain spatiotemporal information and monitor drought characteristics more
expeditiously. Te proposed framework uses spatially agglomerative precipitation (SAP) and copulas’ functions to continuously
monitor the drought probability in the homogenous region. Te RSACDPMS is validated in the region of the Northern area of
Pakistan. Te outcomes of the current study provide a better quantitative way to obtain appropriate information about pre-
cipitation defcits and the spatiotemporal evolution of drought.

1. Introduction

Drought is a creeping phenomenon that gradually spreads in
an area over a period and may continue for a long period
[1–4]. It is a multifaceted phenomenon that periodically
fuctuates in many regions worldwide and becomes a cause
of negative impacts [5, 6]. Its impacts directly or indirectly
afect humans’ activities more than other natural hazards
[3, 4, 7, 8]. Furthermore, it negatively afects vast areas in
several ways, such as distressing the region’s economy,
recreation, water resources, waterfowl, hydroelectric energy,
forestry, and other environmental locations [9–11]. How-
ever, suitable drought monitoring measures can assist to
reduce the negative impacts of drought in the afected area
regarding the needs such as the region’s economy, food,

water resources, hydroelectric energy, and social security of
the people. Although drought is primarily a water-associated
hazard, it has been assessed and defned by several felds
from various perspectives [12–14]. To bring some order to
measure drought that substantially helps in investigating the
various efects, the climatological scientists grouped the
drought into four major types [15, 16]. Tese defnitions are
associated with a shortage of precipitation over time [12–14].

Te standardized procedures are commonly used for
drought assessment and its characterization [17]. Numerous
studies proposed several standardized drought indices for
characterizing and monitoring drought [18, 20]. Te indices
provide quantitative information about drought monitoring
forecasting that helps decision makers with drought char-
acteristics. Over the years, several drought indices have been
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developed for drought assessment. However, due to the
complexity of the drought phenomena, several researchers
proposed various drought indices to the specifc climatic
conditions. Some of the indices are used in specifc regions
and have some limitations of use under specifc climatic
conditions. For instance, Palmer [21] provided an index
which is known as “Palmer drought severity index (PDSI)”
and is extensively used in the United States. Gibbs and
Maher [22] developed an index which is known as “Rainfall
deciles as drought indicators (RDDIs) and functioning” in
Australia. Te China Z index (CZI) was developed in China
and is frequently used in China to identify and monitor
drought events. However, among the various standardized
indices, the standardized precipitation index (SPI), devel-
oped by McKee et al. [23], is frequently used. Te SPI uses
precipitation data to assess meteorological drought on
various time scales. It prevails in developing drought
monitoring and mitigating policies [24, 25]. Furthermore,
the standardized values of the SPI, therefore, can be used to
compare in diferent climatic zones [13, 19, 26, 27]. Te SPI
has been frequently considered to identify or envisage
drought events; however, standardized numerical values of
the index become challenging when associated with the
precipitation defcits and the temporal evolution of droughts
[28, 29]. Terefore, it is important to develop a new method
that provides information about the precipitation defcits,
drought probability, and temporal evolution of the droughts.

Usually, drought occurrences are identifed by the uni-
variate setting. However, the climatological characteristics of
hydrological phenomena consist of the dependence structure.
Te univariate setting could not be able to consider the de-
pendence structure. Since univariate approaches cannot
perform well and become insufcient in hydrological phe-
nomena [30]. Terefore, multivariate techniques were de-
veloped to address the dependence structure of the
characteristics to enhance the efciency of the estimates in
hydrological studies. Tese techniques have several short-
comings; for example, these techniques do not explicitly
model more than two variables. Tese techniques are also
based on the condition that marginal must have a similar
probability distribution that restricts them from illustrating
other individual dependence structures. Te research is
therefore needed to develop techniques that explicitly de-
scribe the dependence structure to overcome these issues. In
this regard, the concept of copula-based modeling was in-
troduced that has some fexibility. For instance, copula-based
modeling extensively assesses a multivariate dependence
structure and joint distributions through mainly categorizing
the dependence structure of random variables from their
marginal distributions [31]. Te copulas and their

applications in drought have achieved signifcant importance
for joint modeling of drought indices [32]. Furthermore,
copulas’ functions were used to evaluate varying character-
istics of the drought events (e.g., duration, magnitude, in-
tensity, and spatial distribution). In climatic regions such as
the Northern area of Pakistan, the major source of drought
events is insufcient precipitation during the rainy season. An
advanced copula-based methodology is employed to observe
the advancement in drought probability by using continuous
precipitation information.

Te present study proposes the Regional Spatially Ag-
glomerative Continuous Drought Probability Monitoring
System (RSACDPMS) to calculate more accurate and
comprehensive information about homogeneous stations
and monitor regional drought characteristics more expe-
ditiously. Te RSACDPMS utilizes spatially agglomerative
precipitation (SAP) and copulas’ functions to continuously
monitor the drought probability in the homogeneous region.
Te proposed framework is validated on six meteorological
stations in the Northern area of Pakistan.Te study provides
a better quantitative way of analyzing drought at the regional
level.

2. Methods

2.1. Copula’s Teory. Te predictive relationship between
two or more than two variables can be analyzed by studying
their dependence structure. Mostly, the relationship among
the variables can be analyzed using the Pearson correlation
coefcient. However, this method cannot consider structural
dependence but the degree of dependence. Furthermore, the
structural dependence remains unimportant by using this
method. Terefore, the nonlinear dependence structure
between the variables can be judged by the rank correlation
coefcient. Generally, this nonlinear dependence structure is
assessed by using Spearman rank correlation and Kendall’s
Tau.Moreover, the use of Kendall’s Tau is frequent because it
helps to determine the concordant or discordant pairs’
probability directly.Te relationship between the correlation
coefcient and copula function allows assessing the liner
dependencies [33]. For this purpose, Sklar’s theorem has
gained substantial importance on the various characteristics
for the analysis in literature [33, 34]. For instance, random
variables, we can say y1,. . .,yd which are following a
marginal probability distribution function
F1(y1),. . .,Fd(yd), respectively, there exists a copula, C [35],
that can be used to join these functions of marginal dis-
tribution in the form of a joint distribution function, as
shown in the following equation:

H y1, y2, y3 . . . , yd( 􏼁 � F1 y1( 􏼁, F2 y2( 􏼁, F3 y3( 􏼁, Fd yd, Fd yd( 􏼁( 􏼁( 􏼁

� C u1, u2, u3..., ud( 􏼁,
(1)

2 Complexity



where Fk(yk) � uk for k � 1, 2, 3, . . . . . . , m, with uk∼ u(0, 1),
and C(u1, u2, . . . , ud) is envisioned as the copula function.
Te copulas have been employed as a convenient and useful
method in distinct parts of several felds [33, 35]. Tese
various characteristics can be predicted by helping multi-
variate copulas.

2.2. Regional Spatially Agglomerative Continuous Drought
Probability Monitoring (RSACDPMS). Te RSACDPMS
uses regional-level characteristics to continuously monitor
the drought probability in the Northern area of Pakistan.Te
RSACDPMS provides knowledge for several homogeneous
climatic regions and monitors drought characteristics more
expeditiously. To complete this work, the following steps are
described accordingly.

2.2.1. Seasonal Treshold at the Regional Level Defnition.
Te major concern of the study is to monitor advances re-
garding precipitation at the regional level. For this purpose, the
present study proposed RSACDPMS that calculates the re-
gional thresholds. Tis calculation is based on the following
steps. Te precipitation thresholds for four drought severity
conditions (“extremely dry, severely dry, median dry, and
normal dry”) are calculated. Tese severity conditions are
defned in the literature and are classifed according to liter-
ature [36]. Te RSACDPMS can be used for other drought
severity conditions accordingly. However, the present study
considers them according to current requirements for the
research. Te rainy season of six months (January to June) is
selected for the current analysis. During this selected season,
most of the rain falls for this region [37, 38]. Te selected rainy
season is important for the climatological characteristics. Tis
season accounts for 70% to 80% of the annual rainfall from
January to June. Te dependency of the other parts of the
country is highly linked to this rainy period. Te rainy season
provides high precipitation, which substantially contributes to
themajor river system (Indus) in Pakistan. For the rainy period
of six months, the SPI is used to drought-triggering precipi-
tation thresholds. Furthermore, the data of the selected stations
present a homogeneous environment. Niaz et al. [39] proposed
a framework to accumulate information from homogeneous
stations. Te mentioned study selected the standardized values
of the drought category from the varying stations. However, the
present study uses the same methodology for selecting pre-
cipitation data of the homogeneous stations, which is called
“spatially agglomerative precipitation (SAP).”

2.2.2. Converting SPI for the Period. Te SPI, which was
frstly introduced by McKee et al. [23], has frequently been
considered for assessing and characterizing the meteoro-
logical drought. Te SPI can quantify the standardized
discrepancy from selected probability distributions that
model the raw data to observe precipitation [19, 26]. Fur-
thermore, SPI reliability found signifcant distribution in
diferent climatic scenarios (geographical and temporal
distribution) and makes it more recognized worldwide
[19, 40]. However, the SPI index is insufcient to monitor

continuing drought characteristics because it cannot provide
expeditious information associated with precipitation def-
cits, drought probability, and the temporal evaluation of
droughts [28, 29]). Furthermore, the defciency in the
precipitation causes the main factor of the drought occur-
rences. Terefore, the RSACDPMS based on copulas and
steady-state probabilities is developed to give the regional
level probability of having drought as the rainy season
advances by assigning the SPI-6 to drought-triggering
precipitation thresholds. Te purpose of the proposed
RSACDPMS is related to the precipitation advances in the
region.

2.2.3. Copula’s Fitting. Te time series of precipitation data is
used for the characterization of the drought. Te rainy season
of the time-series data is used to envisage the drought oc-
currences in the selected stations. Te thresholds concept
proposed by Santos et al. [28] and used by Pontes Filho et al.
[29] is also used for the analysis with adaptation. Te men-
tioned studies calculate the precipitation thresholds corre-
sponding to each drought intensity using the generic
probabilities proposed by Agnew [41]. However, in the
current study, the probabilities for each drought severity
condition are obtained by the steady-state probabilities,
specifcally for the application site. Moreover, the signifcant
diference is that the RSACDPMS was initiated to continu-
ously monitor the drought probability over the Northern area
of Pakistan. Te precipitation threshold is a signifcant
concern of the analysis. Te precipitation thresholds for a
region and drought severity are calculated by converting the
SPI from January to June, SPI-6. In the studied region, the
selected season (January to June) accounts for 70% to 80% of
the annual rainfall. Te current study is performed to obtain
accurate information and timely inform the meteorologists
and policymakers to understand the growing risk of drought.
For this perspective, the present analysis is accomplished by
considering the copula-based method. Numerous studies
discuss the families of the copulas in literature [35].Moreover,
the copulas were grouped into four prominent families: ex-
treme value type, meta-elliptical copulas, and Archimedean
copulas. Because archimedean copulas have accessible
properties in hydrological analyses, it is therefore very
prevalent in modeling dependence structures, especially in
measuring the dependent tail structures [42]. Te Archi-
medean copulas have limitations for modeling higher-order
dependency structures between/among variables. Meta-el-
liptical copulas [43] can be used to assess such higher-order
types in the dependent structure. Furthermore, Archimedean
copulas (Gumbel) and meta-elliptical copulas (Gaussian and
Student t) were selected as candidates given in the following
equations–:

Gumbel exp − − lnu1( 􏼁
∅

+ − lnu1( 􏼁
∅

􏽨 􏽩

1
∅

⎧⎪⎨

⎪⎩
, (2)

Gaussianθρ θ− 1
u1( 􏼁􏼐 􏼑 + θ− 1
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u2( 􏼁􏼐 􏼑. (4)

3. Application

Te suitable selection of the region (see Figure 1) for the
analysis can improve the capabilities for drought assessment.
Te selected region has important features regarding the
climatological characteristics, including the dependency of
the other regions of the country and high altitude, which
signifcantly infuences the diferent parts; it holds a large
water frozen reservoir, which substantially contributes to the
major river system (Indus) in Pakistan. Terefore, the study
selects the most suitable region for the analysis region and
develops a widespread basis of permeating evaporative and
considerable efect for the irrigation of agriculture sectors of
the country [44–46]. Te agriculture sectors play a signif-
cant role in the development of the country [47–50]). Re-
cently, the agriculture sectors of the country were afected by
global warming [51]. Global warming afects widespread
places of the world; its impacts are stirring Pakistan’s water
temperature scarcity. Generally, the drought existences have
damaged the economic sector, farming, and agriculture
sectors. Particularly, the drought has severely damaged
human life and the agriculture sector for the last three
decades in Sindh (Province of Pakistan). Terefore, the
country needs a comprehensive and substantial method to
monitor drought characteristics more quickly by developing
inclusive and trustful tools. However, the current outcomes
are determined to improve the ability of drought monitoring
and mitigation policies signifcantly.

3.1. Results. Te defciency of precipitation and disturbance
to an expected precipitation pattern becomes the main
forcing factor for a drought. Te drought produces adverse
consequences on society and the economy. Terefore, the
researchers developed various methods and procedures to
reduce the potential negative impacts of drought. However,
there are very few studies that focus on drought monitoring
in homogeneous regions [39, 52, 53]. Te current study used
monthly precipitation data to classify the diferent drought
severities in a homogeneous region. Te various drought
severity conditions are classifed according to literature [36].
Te steady-state probabilities are used to calculate precip-
itation thresholds to monitor drought probability and
temporal evaluation (Table 1).Te steady-state probability is
defned as the probability of drought severity in the long run
duration. Te calculated precipitation thresholds, R∗N for the
rainy season of six months, January to June, at varying
drought severities for a region are given in Table 2. Te Brier
skill score (BSS) values are used to profess the performance
of the RSACDPMS. Te mathematical description of BSS is
available in [29, 54]. In Table 3, the BSS values for normal
droughts are given. A value close to 1 represents that model
performance is better. Furthermore, n rises the predicting
performance of the RSACDPMS rises as well. Te average
value of all the stations for n � 1 is 0.30, while it increases to
0.32 for n � 2 and increases to 0.87 for n � 5. Furthermore,

the probability distributions frequently used for the stan-
dardization of SPI, steady-state probabilities, and copula
functions (to evaluate the dependence structure of a rainy
season’s precipitation and its subperiod precipitation) are
used in RSACDPMS to calculate the precipitation thresholds
in the selected region.

Tis study tested the most popular Archimedean copulas
(Clayton, Gumbel, and Frank) and meta-elliptical copulas
(Gaussian and Student t). Tese copulas’ families have been
defned in literature [35, 42]. Te candidate copulas families
are selected based on the Akaike information criterion
(AIC). Te parameters’ estimation of the selected families of
the copulas is carried out by the maximum pseudolikelihood
(MPL). Furthermore, the bivariate models are used for
selecting each subperiod (n), for January (n �1) and May
(n � 5) (Table 4). Te progressive records of the precipitation
are observed by Kendall’s Tau correlation coefcient
(KTCC). KTCC witnesses that the precipitation integrated
progressively in the model. Te stronger structure of the
dependencies RN and Rn is observed which means that the
30% precipitation of the rainy season is explained by n1,
while n5 explains 90% of rainfall. Te slight disparity be-
tween the model and the empirical Kendall’s Tau estimates
infers that RN and Rn are suitably modeled by using copulas.
Te small p-values provide considerable indication against
the independence of the structure. When bivariate models
are ftted, the next step is to monitor drought probability in
chosen stations for every month.

Te year 2017 is being selected as an example to con-
tinuously show the capabilities of RSACDPMS to monitor
drought for that year (Table 5). In January, the observed
precipitation is 16mm, and the climatological precipitation
for this month is 22.78mm. Tus, RSACDPMS has already
started to show the risk of a drought in the frst semester
given the rain in the frst month. To occur a normal dry, its
probability is 0.72, as the frst value is already below the
mean. However, it is not so low, and the other drought
categories do not present high probabilities as well, and 0.39,
0.34, and 0.009 are for median, severe, and extremely dry
conditions. February comes with another month’s below
mean values, and the two-month accumulated precipitation,
which is 34.2, already shows a defcit of 17.9mm from the
climatological accumulated mean of 52.13mm. Tis situa-
tion kept the normal dry probabilities high but is enough to
signifcantly decrease the other categories’ probabilities as
they got closer to their precipitation thresholds. In March,
the drought severity level (i.e., extremely dry (ED)) is already
out of option as the precipitation accumulated by this
month, 60.9mm, is already higher than the ED threshold of
55.29. By April, the observed accumulated precipitation is
already greater than all drought severities but one, the closest
to normal condition. When June is ended and with it, the
rainy season, the accumulated precipitation for 2017 is
102.8mm, which is below the climatological mean
(134.42mm). Moreover, the mean of the accumulated
precipitation (102.8mm) is not enough to meet the normal
dry (ND) threshold (120.99mm). Terefore, RSACDPMS
permitted decision makers to understand the growing risk of
drought in that year and what category it would represent.
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For example, in March, the ND condition has 0.78 drought
risk while other categories have much less drought risk.
Terefore, anticipated measures that ft the exact propor-
tions of normal drought could be implemented to mitigate
its potential negative outcomes.

3.2. Discussion. Te present study develops a new method to
timely inform the meteorologists and policymakers to un-
derstand the growing risk of drought. For this purpose, Pontes
Filho et al. [29] proposed the continuous drought probability
monitoring system (CDPMS) to monitor drought occurrences
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Figure 1: Geographical locations of the six selected stations of the Northern area of Pakistan.
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and translate their probability of occurrence into user-friendly
information mathematical transformations. It was applied at
the rain gauge level in Portugal, but droughts are usually
widespread in large areas. Te mentioned study used generic
probabilities proposed by Agnew [41] and Gamma distribution
to calculate precipitation thresholds in their study. Further-
more, Niaz et al. [54] proposed modifed CDPMS to monitor
drought occurrences in Punjab and Pakistan. Te study used
various probability distributions (instead of Gamma distri-
bution), copulas, and steady-state probabilities (instead of
generic probabilities) to translate the probability of drought
occurrence into user-friendly information mathematical
transformations. However, the present study proposes the
RSACDPMS to calculate more accurate and comprehensive
information about the homogeneous regions and monitor

regional drought characteristics more expeditiously. Te in-
clusion of regional spatiotemporal information makes this
study innovative. RSACDPMS may receive more importance
than CDMPS [29] and MCDPMS [54] at the regional level,
specifcally, in the homogeneous region. Now, themodifcation
in CDMPS and MCDPMS allows users to calculate precipi-
tation thresholds for the homogeneous region. Tis modif-
cation increases the accuracy and efciency to determine
thresholds for the drought severity.

4. Conclusion

In this study, the dependency between precipitation of the
season’s total and the observed precipitation at individual
months is addressed by using bivariate copula-basedmodels.

Table 1: Te steady-state probabilities observed for various drought conditions.

SPI SPI> − 1 & SPI≤ 1 SPI> − 1.5 & SPI≤ − 1 SPI> − 2 & SPI≤ − 1.5 SPI≤ − 2
Drought classes Normal dry Median dry Severely dry Extremely dry
Steady state probabilities 0.53 0.17 0.14 0.05

Table 2: Te precipitation thresholds for various drought conditions (extremely dry, severely dry, median dry, and normal dry) are
provided.

Drought intensity Extremely dry Severely dry Median dry Normal dry
Precipitation thresholds (mm) 55.29 66.05 70.04 120.99

Table 3: BSS values n � 1 to n � 5 for the normal droughts.

Region n � 1 n � 2 n � 3 n � 4 n � 5 Average
Northern area 0.30 0.32 0.39 0.71 0.87 0.65

Table 4: Each coupled (RN, Rn) series for bivariate models, their parameters, Kendall’s Tau correlation (according to the model and
empirical), AIC, and p values at the Northern area.

Parameters Kendall’s tau
Rn Family ∅ or ρ v Model Empirical AIC p value

n1 Gumbel 1.50 — 0.33 0.30 − 10.49 <0.05
n2 Gumbel 1.98 — 0.49 0.45 − 27.98 <0.05
n3 T 0.74 2.0 0.53 0.54 − 40.71 <0.05
n4 Gaussian 0.91 — 0.74 0.72 − 81.71 <0.05
n5 Gumbel 10.23 — 0.90 0.91 − 162.6 <0.05

Table 5: Probability of extreme, severe, median, and normal drought events along the rainy season of 2017 (January to June) at scale 6
according to the RSACDPMS framework for the Northern area.

January February March April May June

Mean monthly precipitation (mm) Monthly 22.78 29.35 22.41 27.55 20.28 12.05
Accumulated 22.78 52.13 74.54 102.09 122.37 134.42

Observed precipitation (mm) Monthly 16 18.2 26.7 15.2 16.1 10.6
Accumulated 16 34.2 60.9 76.1 92.2 102.8

Drought category (threshold) Drought risk
Extremely dry (55.29) 0.09 0.07 0.00 0.00 0.00 No drought
Severely dry (66.04) 0.34 0.03 0.01 0.00 0.00 No drought
Median dry (70.05) 0.39 0.04 0.02 0.00 0.00 No drought
Normal dry (120.90) 0.72 0.59 0.78 0.94 0.96 Drought
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Te selection of the classes of the copulas families is based on
the AIC criterion. Te MPL method is employed for esti-
mating the parameters of the copula’s families. Furthermore,
to continuously monitor the drought probability over the
Northern area and monitor advances regarding precipita-
tion at the regional level, the current study proposes
RSACDPMS that provides information about the regional
advances including the precipitation defcits, drought
probability, and spatiotemporal evolution of the drought.
Te RSACDPMS is validated in the Northern area of
Pakistan. Consequently, RSACDPMS enables decision
makers to identify the increasing risk of drought severity in
the homogeneous region. Furthermore, the RSACDPMS
provides information to execute the exact proportions of
such a drought’s anticipated measures to decrease the
possible negative efects of the specifc drought condition.
For example, in March 2017, the ND condition appears with
drought risk (0.78), while other classes have much less
drought risk. Terefore, anticipated measures that ft the
exact proportions of ND could be implemented to decrease
its potential negative efects. Te outcomes obtained from
the RSACDPMS may improve the monitoring abilities in
rainy season advances of the selected region.
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