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*is study investigates the sampled-data admissibility problem for a singular system. *e objective of this paper is to design a
sampled-data controller to ensure the admissibility of a singular system and to construct an appropriate Lyapunov–Krasovskii
functional (LKF) to get less conservative results for the sampled-data singular system. To accomplish these objectives, the system is
converted into a time-delay system by the input delay approach firstly, and both lower and upper bounds of the delay are
considered. Secondly, by introducing a suitable LKF, the admissibility criteria are obtained. *en, when estimating the derivative
of the LKF, a relaxation variable is introduced by the method of reciprocally convex inequality, and it is proved that the
conservatism is reduced. Finally, two numerical examples are given to prove that the designed sampled-data controller can ensure
the states of the systems under the influence of external interference.

1. Introduction

Singular systems have gained considerable attention re-
cently, especially in the research of admissibility and other
related theories. Compared with the state-space system, the
stability, the regularity, and the impulsivity (or causality)
have to be considered in singular systems. *e singular
system has extensive applications, which cover a variety of
engineering fields and practical systems, such as the circuit
system, mechanical engineering system, economic system,
aerospace system, and robot. Besides, the singular system has
more algebraic equations than the normal systems, so the
singular system has better extension performance. In recent
years, research on the admissibility problem of singular
systems has become a hot subject [1–11]. In [7], the ad-
missibility of singular systems is discussed in view of Lya-
punov theory, and stability conditions and controller design
methods are given. In [8], the robust admissibility issue for
the uncertain discrete switched singular system is studied,
and the arbitrary switching law and output feedback con-
troller are designed to guarantee that the system is

admissible. In [9], the delta operator model for a singular
system is obtained by replacing the traditional discrete
model with the generalized discrete model. And the rela-
tionship between discrete and delta operator models is
established. In [10], the admissibility of the stochastic sin-
gular system with the T-S fuzzy model is studied, and a new
quadratic Lyapunov function is proposed to obtain more
relaxed admissibility conditions than the existing methods.
*e issue about robust admissibility for fuzzy singular
systems is studied in [11]. By establishing the LMI, non-
quadratic Lyapunov functions are constructed, which
achieve less conservative result.

Recently, sampled-data systems have become a hot topic.
*e system’s characteristic is that the discrete and contin-
uous signals are both existing in one system, and it is difficult
to be analyzed and designed. Recently, various viewpoints
have been reported for sampled-data systems (see [12–20]).
*e main design methods for analyzing the sampled-data
systems can be divided into three kinds. *e first one is the
lifting technique (see [21]), which converts a continuous
system into a discrete system of equal finite dimension. *e
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second one is jump system methods (see [22]), where the
performance analysis of the sampling system is transformed
into the solution of two Riccati equations with mutual jump.
However, the two methods mentioned above cannot solve
the uncertainty problems caused by the sampling time or
system matrix. *e third one is the input delay method (see
[23]), and the system is transformed into a continuous time-
varying delay system, and then the stability analysis can be
accomplished using the method of time-delay system. Be-
sides, the input delay approach can deal with the uncertainty
of system parameters, and it has been widely used in the
sampled-data system (see [24, 25]) and practical engineering
field such as autonomous airship, high-speed train, and
dynamic positioning ship (see [26–28]). In [24], based on the
polytopic linear parameter-varying method, the issue of the
sampled-data control is discussed for a nonlinear system.
And Wirtinger’s inequality is used to obtain less conser-
vative exponential stability condition. In [25], based on the
input delay approach, the exponential stability issue for the
linear parameter-varying system with aperiodic sampled-
data rates is studied. And the distance between actual pa-
rameters and measured parameters is considered. In [26],
the robust sampled-data control problem of the high-speed
train is studied.*rough the input delay approach, the high-
speed cruise sampled-data controller of the train is designed.
It ensures that the train is robust and stable under the in-
terference of external wind. In [27], the sampled-data
control issue for an autonomous airship with polyhedral
parameter uncertainty is discussed. And a sampled-data
controller is designed to guarantee that the system is ex-
ponentially stable and meets the H∞ performance index. In
[28], a state-derivative control law is provided for a sampled-
data dynamic positioning ship. By combining the delay-
decomposition technique with Wirtinger’s integral in-
equalities, less conservative results are obtained.

However, although the sampled-data control technology
has been well developed in control theory, few results have
been reported for the sampled-data singular systems, and the
research process on this field is nearly blank. *e technical
challenges are listed as follows:

(1) *e mathematical structure of the sampled-data
singular system is more complex

(2) How to improve the LKF to get less conservative
results for the sampled-data singular system

(3) How to design a sampled-data controller to guar-
antee the admissibility of the system and achieve the
performance index

As mentioned above, compared with the state-space
system, the singular system has richer connotation and
wider range. Besides, many multidimensional and multilevel
large-scale complex systems are suitable to be dealt with by
singular systems. So, it is important and meaningful to
analyze the sampled-data control problem for the singular
system, which is the motivation of this paper.

In this paper, the admissibility of the sampled-data
singular system is studied. Firstly, the system’s model is
established, and then it is transformed into a time-delay

system by using the input delay method. *en, both lower
and upper bounds of the sampling period are considered.
LMI and Lyapunov functions are introduced for admissi-
bility analysis. By introducing the convex reciprocal in-
equality, the less conservative results can be obtained. *en,
the design method of the sampled-data controller is pro-
vided, which makes the system achieve good performance
under external interference. Finally, two examples are given
to prove the effectiveness of this method.

*e main contributions of this article are summarized as
follows:

(1) *e admissibility condition is established for a
sampled-data singular system to ensure the regu-
larity, impulse free, and asymptotical stability. *e
system has wider application scopes than the existing
sampled-data system.

(2) *e upper and lower bounds of the variable sampling
period are considered, which covers the previous
research works as special cases.

(3) Reciprocally convex combination approach is used
to estimate the integral terms of the LKF to obtain
less conservative results.

Notations: the superscript “T” stands for the transpose.
Rm×n denotes the set of m × n real matrices. “∗ ”denotes the
matrix entries implied by symmetry. L2[0,∞) is the space of
square integrable functions on [0,∞).

2. Problem Formulation

Consider the singular system as follows:

E _x(t) � Ax(t) + Bu(t) + Bww(t),

y(t) � Cx(t) + Du(t),
 (1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input,
y(t) ∈ Rp is the control output, and w(t) ∈ Rs is the dis-
turbance which belongs to L2[0,∞) and satisfies that

∞
0 wT(t)w(t)dt <∞, and it means that the energy of the

disturbance is finite. Matrix E ∈ Rn×n is assumed to be
singular, and rank (E) � r≤ n. A, B, C, D, andBw are known
constant matrices.

It is assumed that the control signals are obtained at each
sampling time 0 � t0 < t1 < · · · < tk < · · · < lim

k⟶∞
tk � +∞,

and they have

u(t) � ud tk( , tk ≤ t< tk+1, (2)

where ud represents the discrete-time control signal. *e
proposed sampled-data scheme is depicted in Figure 1.

*e sampling period is assumed such that

d1 ≤ tk+1 − tk ≤d2, ∀k≥ 0, d2 >d1 ≥ 0, (3)

where d1 and d2 are the lower and upper bound of the
sampling period. Consider the sampled-data controller as
follows:

u(t) � Kx tk( , tk ≤ t< tk+1, (4)
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where K is a controller gain matrix. By substituting (4) into
(1), then

E _x(t) � Ax(t) + BKx tk(  + Bww(t), t> 0,

y(t) � Cx(t) + DK x tk( .
 (5)

Remark 1. It is noted that both continuous and discrete
signals exist in a singular system (5). *erefore, compared
with the existing methods for analyzing the continuous or
discrete singular systems, it is more complex andmeaningful
to study the sampled-data control issue for singular systems.

To obtain the main results, we list the following definitions.

Definition 1 (see [29])

(1) If there exists a constant s ∈ C (C represents the
complex field) satisfying det(sE − A)≠ 0, then the
matrix pair (E, A) is regular

(2) If deg(det(sE − A)) � rank (E), then the matrix pair
(E, A) is impulse free

Definition 2 (see [30])

(1) *e singular system

E _x(t) � Ax(t) + Bx(t − τ(t)) (6)

is said to be regular and impulse free if the pair (E,A)
is regular and impulse free.

(2) System (6) is said to be asymptotically admissible if it
is regular, impulse free, and asymptotically stable.

*e objective of this paper is designing a sampled-data
controller to satisfy that

(1) System (5) with w(t) � 0 is asymptotically
admissible

(2) Despite the external disturbances, the output signal
y(t) satisfies that

����y(t)|2 ≤ c
����w(t)‖2 for all nonzero

w(t) ∈ L2[0,∞) under the zero condition, where
c> 0

Based on the input delay approach, define

τ(t) � t − tk, tk ≤ t< tk+1, (7)

where the time-varying delay τ(t) is piecewise linear sat-
isfying τ(t) ∈ [d1, d2). And the derivative of τ(t) is

_τ(t) � 1, t≠ tk. (8)

Substituting the time delay τ(t) into the control input
signal u(t), sampled-data controller (4) can be converted
such that

u(t) � ud tk(  � u t − t − tk( ( 

� u(t − τ(t)).
(9)

Substituting (8) into (5), sampled-data system (5) is
converted into a singular system with time-varying delay.

E _x(t) � Ax(t) + BKx(t − τ(t)) + Bww(t), t> 0,

y(t) � Cx(t) + DK x(t − τ(t)).
 (10)

Remark 2. Compared with [24, 25, 31] which use the
similar input delay approach to deal with the sampled-
data problem, it can be seen that if E � I, then system (9)
is simplified to the normal sampled-data system such as
[24, 25, 31], which shows that the work covers these
references as special issues. However, [31] did not
consider the variable sampling period and only con-
sidered the constant sampling period. [24, 25] considered
the upper bound of the sampling period, but the lower
bound of the sampling period is omitted, which will limit
its application scope, and it will also lead to conservatism
to some extent. In this paper, the upper and lower bounds
of the variable sampling period are considered. Let
d1 � d2 � d; the sampling period will reduce to be a
constant such as [24, 25, 31]. *us, the proposed method
has wider application scopes than the references.

*e following lemma will be used for obtaining the main
results.

Lemma 1 (see [32]). For given matrix J, R � RT > 0, scalars
h1 and h2 satisfying h1 ≤d(t)≤ h2, and differentiable function
x satisfying _x: [−h2, −h1]⟶ Rn, the following inequality
holds:

h1 − h2(  
t−h1

t−h2

_x
T
(s)R _x(s)ds≤

≤ − ϑT
(t)

I −I 0

0 I −I
 

T

W
I −I 0

0 I −I
 ϑ(t),

(11)

where

ϑT
(t) � x

T
t − h1(  x

T
(t − d(t)) x

T
t − h2(  ,

W �
−R J

∗ −R
 ≤ 0.

(12)

3. Main Results

In this section, the sufficient admissibility criteria for
sampled-data singular systems are exhibited by establishing
the LKF and formulating in terms of LMI.

Disturbance
w (t)

Singular 
System

SamplerZero-Order
Hold

Controller
u (t) = Kx (tk)

x (t)

SensorActuator
y (t)

x (tk)

Figure 1: *e schematic of the sampled-data singular system.
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Theorem 1. For constant delay d1, d2, system (9) is as-
ymptotically admissible with H∞ performance c if there exist
matrices P, R, Qi > 0, Zi > 0, i � 1, 2, 3, such that

E
T
P � P

T
E≥ 0,

Z3 R

R
T

Z3
 > 0,

Π11 Π12
∗ Π22

 < 0,

(13)

where

Π11 �

Ξ11 E
T
Z1E P

T
BK E

T
Z2E P

T
Bw

∗ Ξ22 Ξ23 E
T
RE 0

∗ ∗ Ξ33 Ξ34 0

∗ ∗ ∗ Ξ44 0

∗ ∗ ∗ ∗ −c
2
I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Π12 �
C 0 DK 0 0

A 0 BK 0 Bw

⎡⎢⎣ ⎤⎥⎦

T

,

Π22 � diag −I, −Z
− 1

 ,

Ξ11 � P
T
A + A

T
P + Q1 + Q2 + Q3 − E

T
Z1E − E

T
Z2E,

Ξ22 � −Q1 − E
T
Z1E − E

T
Z3E,

Ξ23 � E
T
Z3E − E

T
RE,

Ξ33 � −2E
T

Z3E + E
T
RE + E

T
R

T
E,

Ξ34 � E
T
Z3E − E

T
RE,

Ξ44 � −Q3 − E
T
Z2E − E

T
Z3E,

Z � d
2
1Z1 + d

2
2Z2 + d

2
21Z3,

d21 � d2 − d1.

(14)

Proof. Firstly, we prove system (9) is regular and impulse
free. From (13), it can be obtained that

Q1 + Q2 + Q3 + A
T
P + P

T
A − E

T
Z1E − E

T
Z2E< 0. (15)

As Q1 > 0, Q2 > 0, andQ3 > 0, then

A
T
P + P

T
A − E

T
Z1E − E

T
Z2E< 0. (16)

Since rank (E) � r≤ n, there exist nonsingular matrices
M ∈ Rn×n and H ∈ Rn×n such that

E � MEH

�
Ir 0

0 0
 .

(17)

Similar to (17), it can be defined that

A � MAH

�
A11 A12

A21 A22
 ,

P � M
− T

PH

�
P11 P12

P21 P22
 .

(18)

From (17) and (18),

P �
P11 0

P21 P22
 ,

P
T
11 � P11 > 0.

(19)

Premultiplying and postmultiplying HT and H with
Ξ11 < 0,

A
T
22P22 + P

T
22A22 < 0. (20)

From (20), it means that A22 is nonsingular, and the pair
(E, A) is regular and impulse free. According to Definition 1,
system (9) is regular and impulse free.

*en, we will show that system (9) is asymptotically
stable. *e LKF is constructed as

V(t) � 
4

i�1
Vi(t), t ∈ tk, tk+1 

V1(t) � x(t)
T
E

T
Px(t),

V2(t) � 
t

t−d1

x(s)
T
Q1x(s)ds + 

t

t−τ(t)
x(s)

T
Q2x(s)ds

+ 
t

t−d2

x(s)
T
Q3x(s)ds,

V3(t) � d1 
0

−d1


t

t+θ
_x
T
(s)E

T
Z1E _x(s)dsdθ

+ d2 
0

−d2


t

t+θ
_x
T
(s)E

T
Z2E _x(s)dsdθ,

V4(t) � d21 
−d1

−d2


t

t+θ
_x
T
(s)E

T
Z3E _x(s)dsdθ.

(21)

Calculating the derivative of V(t), it can be obtained that
_V1(t) � 2x(t)

T
E

T
P _x(t),

_V2(t) � x(t)
T
Q1x(t) − x t − d1( 

T
Q1x t − d1( 

+ x(t)
T
Q2x(t) + x(t)

T
Q3x(t) − x t − d2( 

T
Q3x t − d2( ,

_V3(t) � d
2
1 _x(t)

T
E

T
Z1Ex(t) + d

2
2 _x(t)

T
E

T
Z2E _x(t)

− d1 
t

t−d1

_x
T
(s)E

T
Z1E _x(s)ds

− d2 
t

t−d2

_x
T
(s)E

T
Z2E _x(s)ds,

_V4(t) � d
2
21 _x(t)

T
E

T
Z3E _x(t) − d21 

t−d1

t−d2

_x
T
(s)E

T
Z3E _x(s)ds.

(22)
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According to Jensen’s inequality, it can be obtained that

− d1 
t

t−d1

_x
T
(s)E

T
Z1E _x(s)ds≤

− x(t) − x t − d1(  
T
E

T
Z1E x(t) − x t − d1(  ,

− d2 
t

t−d2

_x
T
(s)E

T
Z2E _x(s)ds≤

− x(t) − x t − d2(  
T
E

T
Z2E x(t) − x t − d2(  ,

(23)

and

− d21 
t−d1

t−d2

_x
T

(s)E
T
Z3E _x(s)ds

� −d21 
t−τ(t)

t−d2

_x
T
(s)E

T
Z3E _x(s)ds

− d21 
t−d1

t−τ(t)
_x
T
(s)E

T
Z3E _x(s)ds

≤ −
d21

d2 − τ(t)
x(t − τ(t)) − x t − d2( ( 

T

× E
T
Z3E x(t − τ(t)) − x t − d2( ( 

+
d21

τ(t) − d1
x t − d1(  − x(t − τ(t))( 

T

× E
T
Z3E x t − d1(  − x(t − τ(t))( .

(24)

It can be found from (12) that
��������
d2 − d(t)

τ(t) − d1



x t − d1(  − x(t − τ(t))( E

−

��������
d(t) − d1

d2 − τ(t)



x(t − τ(t)) − x t − d2( ( E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

Z3 R

R
T

Z3

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

��������
d2 − τ(t)

τ(t) − d1



x t − d1(  − x(t − τ(t))( E

−

��������
τ(t) − d1

d2 − τ(t)



x(t − τ(t)) − x t − d2( ( E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ 0.

(25)

*us, according to Lemma 1, we obtain from (24) and
(25) that

− d21 
t−d1

t−d2

_x
T
(s)E

T
Z3E _x(s)ds

≤ −
x t − d1(  − x(t − τ(t))

x(t − τ(t)) − x t − d2( 
 

T
E

T
Z3E E

T
RE

∗ E
T

Z3E

⎡⎣ ⎤⎦
x t − d1(  − x(t − τ(t))

x(t − τ(t)) − x t − d2( 
 

� −ϑT
(t)

E
T

Z3E −E
T
Z3E + E

T
RE −E

T
RE

∗ 2E
T
Z3E − E

T
R

T
+ R E −E

T
Z3E + E

T
RE

∗ ∗ E
T

Z3E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ϑ(t),

(26)

where

ϑ(t) � xT t − d1(  xT(t − τ(t)) xT t − d2(  
T
. (27)

Substituting (26) into (22),

_V(t)≤ ςT
(t) Φ + A 0 BK 0 

T
d
2
1Z1 + d

2
2Z2 + d

2
21Z3  A 0 BK 0  ς(t), (28)

where
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Φ �

Ξ11 E
T
Z1E P

T
BK E

T
Z2E

∗ Ξ22 Ξ23 E
T
RE

∗ ∗ Ξ33 Ξ34
∗ ∗ ∗ ∗ Ξ44

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

ζ(t) � xT(t) xT t − d1(  xT(t − τ(t)) xT t − d2(  
T
.

(29)

By the Schur complement, (28) guarantees that

Φ + A 0 BK 0 
T

d
2
1Z1 + d

2
2Z2 + d

2
21Z3  A 0 BK 0 < 0.

(30)

*erefore, it can be obtained that _V(t)< − σ‖x(t)‖2

when x(t)≠ 0 and σ > 0. *en, system (9) is asymptotically
stable.

*en, it will be proved that system (9) satisfies the H∞
performance index c. Consider the H∞ performance for all
nonzero w(t) ∈ L2[0,∞) as follows:

Jzw ≤ 
∞

0
y

T
(s)y(s) − c

2
w

T
(s)w(s) ds, c> 0. (31)

*en,

y
T
(t)y(t) − c

2
w

T
(t)w(t) + _V(t)

≤ ζT
(t) Θ + C 0 DK 0 0 

T
C 0 DK 0 0  + A 0 BK 0 Bw 

T
d
2
1Z1 + d

2
2Z2 + d

2
21Z3  A 0 BK 0 Bw  ζ(t),

(32)

where

ζ(t) � xT(t) xT t − d1(  xT(t − τ(t)) xT t − d2(  wT(t) 
T
,

Θ �

Ξ11 E
T
Z1E P

T
BK E

T
Z2E PBw

∗ Ξ22 Ξ23 E
T
RE 0

∗ ∗ Ξ33 Ξ34 0

∗ ∗ ∗ Ξ44 0

∗ ∗ ∗ ∗ −c
2
I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(33)

By the Schur complement, (16) guarantees that

Θ + C 0 DK 0 
T

C 0 DK 0 

+ A 0 BK Bw 
T

d
2
1Z1 + d

2
2Z2 + d

2
21Z3  A 0 BK Bw < 0.

(34)

From (34), we can obtain that

y
T
(t)y(t) − c

2
w

T
(t)w(t) + _V(t)< 0. (35)

Under zero initial conditions, we have V(0) � 0 and
V(∞)≥ 0. From (35), it can be obtained that
‖y(t)‖2 ≤ c‖w(t)‖2 for all nonzero w(t) ∈ L2[0,∞).

*en, according to the condition, system (9) is as-
ymptotically stable and satisfies the H∞ performance index
c. *is completed the proof. □

Remark 3. If E � I, Q1 � Q2 � 0, and R2 � R3 � 0, then the
LKF is similar with the one in [31].*erefore, the LKF in [31]
is a special case of (9), which means that the result in
*eorem 1 has wider application scopes than [31].

Remark 4. To reduce the conservativeness, severable
methods have been reported, such as the free-weighting

matrix method and Wirtinger-based inequality. In the
constructed LKF, we directly use tighter interactive convex
combinatorial inequalities to estimate the integral terms
−d21 

tk

t−d2
_xT(s)ETZ3E _x(s)ds.

During this process, a matrix R is introduced to deal with
the two terms

d21

d2 − τ(t)
x(t − τ(t)) − x t − d2( ( 

T
E

T
Z3E

· x(t − τ(t)) − x t − d2( ( ,

d21

τ(t) − d1
x t − d1(  − x(t − τ(t))( 

T
E

T
Z3E

· x t − d1(  − x(t − τ(t))( .

(36)
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However, the above two terms are not considered in
[33, 34], which will lead to conservatism to some extent.
Besides, (25) is free as matrix R could be more than non-
negative. *erefore, the conservatism has been greatly
reduced.

Remark 5. It is noted that the number of decision variables
is 4.5n2 + 4.5n, and it illustrates that the proposed meth-
odology has lower computational complexity than the free-
weighting matrix method or Jensen inequality lemma which
increases the computational complexity with too much
additional slack variables.

Furthermore, according to the following theorems, we
will design the sampled-data controller to stabilize system (9).

Theorem 2. For scales d1, d2, and c, system (9) is asymp-
totically admissible with H∞ performance c if there exist
matrices P, R, Qi > 0, Zi > 0, i � 1, 2, 3, satisfying

E
T
P � P

T
E≥ 0,

Z3 R

R
T

Z3

⎡⎢⎣ ⎤⎥⎦> 0,

Π11 Π12
∗ Π22

⎡⎣ ⎤⎦< 0,

(37)

where

Π11 �

Ξ11 E
T
Z1E BK E

T
Z2E Bw

∗ Ξ22 Ξ23 E
T
RE 0

∗ ∗ Ξ33 Ξ34 0

∗ ∗ ∗ Ξ44 0

∗ ∗ ∗ ∗ ∗ −c
2
I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Π12 �
CP

T 0 DK 0 0

AP
T 0 BK 0 BwP

T
⎡⎢⎣ ⎤⎥⎦

T

,

Π22 � diag −I, −PZ
− 1

P ,

Ξ11 � AP + PA
T

+ Q1 + Q2 + Q3 − E
T

Z1E − E
T
Z2E,

Ξ22 � −Q1 − E
T
Z1E − E

T
Z3E,

Ξ23 � E
T
Z3E − E

T
RE,

Ξ33 � −2E
T
Z3E + E

T
RE + E

T
R

T
E,

Ξ34 � E
T
Z3E − E

T
RE,

Ξ44 � −Q3 − E
T
Z2E − E

T
Z3E,

Z � d
2
1Z1 + d

2
2Z2 + d

2
21Z3,

d21 � d2 − d1.

(38)

*en, the controller gain matrix K can be obtained such
that

K � KP
− 1

. (39)

Proof. By noticing that −PZ
− 1

P≤Z − 2P, let
η � diag P− T, P− T, P− T, P− T, I, I, I  and , κ � diag P− T,

P− T}, and define

P � P
− 1

,

K � KP
− 1

,

Z � P
− T

ZP
− 1

,

R � P
− T

RP
− 1

,

Zi � P
− T

ZiP
− 1

,

Qi � P
− T

QiP
− 1

, i � 1, 2, 3.

(40)

Pre- and postmultiplying (12) by κ and κT, respectively,
we can obtain (33). Pre- and postmultiplying (13) by η and
ηT, respectively, (34) can be obtained by the Schur com-
plement. *e proof is completed. □

Remark 6. It can be seen that the control performance is
affected by the design parameters d1, d2, and these pa-
rameters are chosen to solve the LMI problem. We can
adjust the design parameters to achieve a better solution.*e
design and implementation step of the proposed method is
provided as follows.

Step 1. We solve the LMI problem Ps to guarantee the
system is admissible.

Ps:

minimize c

subject toP, R, Qi > 0, Zi > 0, i � 1, 2, 3

LMIs(11), (12), (13).

⎧⎪⎪⎨

⎪⎪⎩
(41)

Step 2. If the above problem is feasible, then we solve the
LMI problems Po to obtain the sampled-data controller.
Otherwise, we adjust the design parameters d1, d2, and then
go back to Step 1.

Po:

minimize c,

subject toP, R, Qi > 0, Zi > 0, i � 1, 2, 3,

LMIs(30), (31), (32).

⎧⎪⎪⎨

⎪⎪⎩
(42)

Step 3. If the above problem is solvable, we can obtain the
controller, that is, K � KP

− 1. Otherwise, we adjust the
design parameters d1, d2, and then go back to Step 2.

*e flowchart of the proposed method is provided in
Figure 2.

*en, when E � I, the following Corollary 1 can be
obtained based on *eorem 2. According to Corollary 1, we
can use the proposed method to solve the sampled-data
control problem of the practical systems, such as dynamic
positioning ship and autonomous airship.

Corollary 1. For scales d1, d2, and c, system (9) is asymp-
totically stable with H∞ performance c if there exist matrices
P, R, Qi > 0, Zi > 0, i � 1, 2, 3, such that
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Z3 R

R
T

Z3

⎡⎢⎣ ⎤⎥⎦> 0,

Π11 Π12
∗ Π22

⎡⎣ ⎤⎦< 0,

(43)

where

Π11 �

Ξ11 Z1 BK Z2 Bw

∗ Ξ22 Ξ23 R 0

∗ ∗ Ξ33 Ξ34 0

∗ ∗ ∗ Ξ44 0

∗ ∗ ∗ ∗ −c
2
I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Π12 �
CP

T 0 DK 0 0

AP
T 0 BK 0 BwP

T
⎡⎢⎣ ⎤⎥⎦

T

,

Π22 � diag −I, −PZ
− 1

P ,

Ξ11 � AP + PA
T

+ Q1 + Q2 + Q3 − Z1 − Z2,

Ξ22 � −Q1 − Z1 − Z3,

Ξ23 � Z3 − R,

Ξ33 � −2Z3 + R + R
T
,

Ξ34 � Z3 − R,

Ξ44 � −Q3 − Z2 − Z3,

Z � d
2
1Z1 + d

2
2Z2 + d

2
21Z3,

d21 � d2 − d1.

(44)

*en, the controller gain matrix K can be obtained such
that

K � KP
− 1

. (45)

Proof. *e procedure of the proof is similar with*eorem 2,
so it is omitted. □

4. Numerical Examples

In this section, to validate the effectiveness of the given
method, two numerical examples are introduced.

Example 1. Consider the following parameters:

A �
−13.1 −13.7

−15.4 −23.8
 ,

B �
−18.6 −10.4

−25.2 −16.8
 ,

Bw �
1.9

1.8
 ,

C � 0.4 −0.8 ,

E �
9 3

6 2
 ,

D � 1 1 .

(46)

When w(t) � 0, for different lower bounds of the time
delay d1, Table 1 lists the maximum time delay d2 to
guarantee the admissibility of the system by different
methods. From Table 1, the upper bound of time delay d2
obtained by *eorem 1 is larger than that in [33–36], which
indicates that the proposed method in the paper can obtain
lower conservative results than the other references.

Next, consider the situation about w(t) ≠ 0. For different
d2 > 0, Table 2 lists the minimal H∞ performance indicators
c that guarantee the admissibility of the system by *eorem
1 and [37] when d1 � 0. From Table 2, it is easy to see that,
for different upper bounds of time delay d2, H∞ perfor-
mance c obtained by *eorem 1 is smaller than that in [37].
*erefore, it is shown that*eorem 1 improves the results of
[37].

Assuming the sampling interval d2 � 1.7, the H∞ per-
formance is obtained such that cmin � 0.8625. *en, the
controller gain can be computed such that

K �
−0.1663 −0.1109

−0.0554 −0.0370
 . (47)

Consider the system’s initial state xs(t) � −2 −2  and
the external environment disturbance w(t) � 0.5 cos(t) and
random disturbance, respectively. Under different distur-
bances, the response curves of the system’s state and the
control input u(t) are shown in Figures 3–6, respectively.
From Figures 3 and 5, it is shown that the system’s state
x1(t) and x2(t) are stable in a short time under different
disturbances, which further illustrates that the designed
sampled-data controller can make the system’s states stable
and have acceptable control performance with external
variable disturbances.

no

yes

no
yes

Given initial design parameters

Adjust the 
design 

parameters

Calculate the matrix K

Solve the problem Ps

Start

Solve the problem Po

End

Figure 2: *e flowchart of the proposed method.
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Example 2. Similar with [38], the motion equations of a
sampled-data dynamic positioning ship system are con-
sidered as follows:

M _υ + Dυ � τ + w, (48)

where τ denotes the control input, w denotes the external
disturbance, M is the inertia matrix, D is the damping co-
efficient matrix, and υ � [p, v, r]T includes the velocity of
surge, sway, and yaw, respectively. Define the input matrix

x(t) � xa, ya,ψ, p, v, r 
T
, (49)

Table 1: Maximum values of the upper bound d2.

d1 1.4 1.6 1.8 2.0 2.2
[33] 2.1121 2.1450 2.2841 2.4328 2.5852
[34] 2.2314 2.2761 2.4041 2.5383 2.6777
[35] 2.3360 2.3704 2.4242 2.5425 2.7007
[36] 2.3372 2.3730 2.4923 2.6181 2.7494
*eorem 1 2.3418 2.3836 2.5013 2.6408 2.7826

Table 2: Minimum values of H∞ performance c (d1 � 0).

d2 0.9 1.1 1.3 1.5 1.7
[37] 0.2713 0.3548 0.4744 0.6378 0.8736
*eorem 1 0.2627 0.3468 0.4642 0.6174 0.8625

1 2 3 4 50
Time (s)

x (1)
x (2)

–2

–1.5

–1

–0.5

0

0.5

x 
(t)

Figure 3: *e state response curve of system (9)
(w(t) � 0.5 cos(t)).

1 2 3 4 50
Time (s)

–2

–1.5

–1

–0.5

0

0.5

x 
(t)

x (1)
x (2)

Figure 5: *e state response curve of system (9) (w(t) is the
random disturbance).

1 2 3 4 50
Time (s)

–14

–12

–10

–8

–6

–4

–2

0

u1
u2

Figure 4: Control input for system (9) (w(t) � 0.5 cos(t)).

1 2 3 4 50
Time (s)

–14

–12

–10

–8

–6

–4

–2

0

u1
u2

Figure 6: Control input for system (9) (w(t) is the random
disturbance).
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where xa, ya, andψ represent the x-position, y-position, and
yaw angle, respectively. *e values of M and D are con-
sidered such that

M �

0.754 0 0

0 1.199 0.211

0 0.029 0.524

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

D �

0.014 0 0

0 0.102 −0.024

0 0.192 0.095

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(50)

Let A �
0 I

0−M
−1

D
 , B �

0
M

−1 , andBw �
0

M
−1 .

*en,

A �

0 0 0 1 −0.0349 0

0 0 0 0.0349 1 0

0 0 0 0 0 1

0 0 0 −0.0186 0 0

0 0 0 0 −0.0208 0.0342

0 0 0 0 −0.3653 −0.1832

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B � Bw

�

0 0 0

0 0 0

0 0 0

1.3263 0 0

0 0.8422 −0.3391

0 −0.0466 1.9272

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(51)

*e initial states of the ship are assumed such that
xs(t) � 10 10 0.1 0 0 0 

T. Let w(t) � sin(0.1t). And
the values of the sampling period are d1 � 0.8 andd2 � 1.6;
then, the H∞ performance index is obtained according to
Corollary 1 such that cmin � 2.945. *en, the controller gain
is obtained as follows:

K �

−0.2438 −0.0109 −0.0008 −0.5459 −0.0105 0.0002

0.0072 −0.4429 −0.1018 0.0186 −0.5794 −0.1722

−0.0011 0.0088 −0.2082 −0.0022 0.2673 −0.5638

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(52)

*e responses of the DPS state are shown in Figures 7
and 8. Figure 7 shows the responses of the position of x and y
and yaw angle of DPS. Figure 8 shows the response of ve-
locities of DPS. It is shown that the DPS can be stabilized by
the designed sampled-data controller even if external dis-
turbances exist.

5. Conclusion

*e sampled-data control issue for singular systems is
discussed in this paper. Both lower and upper bounds of
the variable period have been considered. *en, the cri-
teria of asymptotical admissibility are given by con-
structing a suitable LKF. *en, the tighter reciprocally
convex inequalities are used to estimate the derivative of
the LKF, and less conservative results can be obtained.
Two numerical examples are given to illustrate the ef-
fectiveness of the proposed method. In the future, we will
improve the proposed methods and consider the actuator
faults and then discuss the sampled-data fault-tolerant
issue for the more complex nonlinear singular systems
such as fuzzy singular systems and singular Markov jump
systems.
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Figure 7: *e responses of the position of x and y and yaw angle of
DPS.
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Figure 8: *e response of velocities of DPS.
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