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Due to the symmetry feature in nature, fractional diferential equations precisely measure and describe biological and physical
processes. Multiterm time-fractional order has been introduced to model complex processes in diferent physical phenomena.
Tis article presents a numerical method based on the cubic B-spline fnite element method for the solution of multiterm time-
fractional diferential equations. Te temporal fractional part is defned in the Caputo sense while the B-spline fnite element
method is employed for space approximation. In addition, the four-point Gauss− Legendre quadrature is applied to evaluate the
source term. Te stability of the proposed scheme is discussed by the Von Neumann method, which verifes that the scheme is
unconditionally stable. L2 and L∞ norms are used to check the efciency and accuracy of the proposed scheme. Computed results
are compared with the exact and available methods in the literature, which show the betterment of the proposed method.

1. Introduction

Isaac Newton and Leibniz independently discovered frac-
tional calculus in the 17th century [1]. Fractional calculus
involves integration and diferentiation of arbitrary orders.
Mathematicians studied fraction calculus as an abstract area
containing pure mathematical manipulations with limited
applications before 1970. Tenceforth, fractional calculus
emerged as an application in physics, dynamical systems,
control engineering, economics, bioengineering, fuid me-
chanics, electrochemistry, continuum, and statistical me-
chanics [2–6]. In addition, applications can also be found in
signal and image processing, heat and mass transfer, elec-
tromagnetics, dynamic system, fuid fow in porous and
nonporous media, medicine, viscoelastic materials, and
anomalous transport [7, 8]. Te noteworthy property of

fractional order is nonlocality, which provides an excellent
description of the memory and hereditary properties of
various physical processes [9, 10].

Multiterm time-fractional diferential equations were
developed to model complex real-world phenomena that a
single term could not accurately describe. For example, a two-
term fractional order difusion model was proposed for the total
concentration in solute transport to explicitly distinguish the
solute’s mobile and immobile status using fractional dynamics.
Te kinetic equation with two fractional derivatives of diferent
orders describes subdifusive motion in velocity felds. Multi-
term fractional diferential equations can model anomalous
difusion phenomena in complex systems and highly hetero-
geneous aquifers [11–14]. Furthermore, the proposed model is
used to discretize distributed-order derivatives in DEs. Hence,
studies of multiterm fractional order DEs have become essential
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and valuable for diferent applications [15, 16]. Tis work
considers multiterm time-fractional DEs as follows:

Pα1 ,α2 ,...,αm
zt( 􏼁Y(w, t) �

z
2
Y(w, t)

zw
2 + f(w, t), (w, t) ∈ (c, d) ×(0, T),

Y(w, 0) � h1(w), w ∈ [c, d],

Y(0, t) � v1(t), Y(L, t) � v2(t), t> 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where h1(w), v1(t), and v2(t) are smooth functions and
Pα1 ,α2 ,...,αm

(zt) is a diferential operator defned as follows:

Pα1 ,α2 ,...,αm
zt( 􏼁 � 􏽘

m

i�1
aiz

αi

t , ai > 0, m ∈ N
+
, 0< αm < αm− 1 · · · < α2 < α1 ≤ 1. (2)

Many authors studied and solved (1) using diferent
techniques. Daftardar and Bhalekar considered multi-
term fractional difusion-wave equations using separa-
tion of variables [18]. Luchko applied the Mittag− Lefer
function and Fourier variable separation for the solution
of (1) given in [17]. Li et al. used Mittag− Lefer function
and the expansion method for the initial and boundary
value problems [19]. Te authors in [20] studied the exact
solution of (1) using Luckh’s theorem, Mittag− Lefer
function, and the Laplace operator. However, the exact
solution of fractional diferential equation is difcult to
fnd in general. Even if the exact solutions are found, they
contain special functions such as hypergeometric,
H-function, Wright, and Mittag− Lefer functions.
Terefore, it is necessary to develop an efcient nu-
merical method for solving fractional DEs.

Numerous researchers solved (1) using diferent nu-
merical methods. Ye et al. studied Riesz Caputo fractional
DEs to prove the maximum principle and employed a
predictor-corrector method with L1 and L2 schemes [20].
Qiao and Xu used the orthogonal spline collocation method
for time-fractional difusion equations [21]. Shiralashetti
and Deshi solved (1) using the Haar wavelet collocation
method [22]. Li and co-authors applied mixed fnite element
(FEM) and fnite diference methods for time-fractional
difusion-wave equations and proved stability and conver-
gence [23]. Te authors in [24] gave two kinds of implicit
diference algorithms for multiterm time-fractional wave
equations with nonhomogeneous Dirichlet boundary con-
ditions. Ren and Sun proposed a high-precision diference
algorithm for one and two-dimensional time-fractional
difusion equations [25]. Dehghan and co-authors employed
fnite diference and Galerkin spectral methods for the so-
lution of fractional order difusion-wave equations [26].

Hussain and Haq solved time-fractional difusion equations
via the meshless method [27].

Tis study aims to introduce a computational tech-
nique based on the B-spline fnite element method for the
solution of a multiterm time-fractional difusion equa-
tion. FEM is a powerful and established method used to
approximate the solution of diferential equations (DEs).
In 1943, Courant introduced a piecewise polynomial for
torsion problems [28]. In 1956, Turner et al. developed
the stifness matrices for trusses, beams, and other ele-
ments for engineering analysis of structures [29]. For the
frst time in 1960, the terminology “Finite Element
Method” was used by Clough in his paper on plane
elasticity [30]. After the 1960s, FEM gained popularity
and was used by mathematicians and engineers to solve
complex problems. Besides the FEM, splines are
employed for numerical solutions of DEs and TFDEs
with piecewise polynomials. Isaac Schoenberg frst in-
troduced the concept of splines in 1946. Carl de Boor
worked with Schoenberg and introduced a recursive
formula for splines. A notable property of B-spline is its
local compact support system that generates sparse
matrices; that is why the researchers primarily use
B-spline as a basis function in FEM [31, 32].

Numerous researchers solved time-fractional diferential
equations using the B-spline fnite element method. Esen and
Tasbozan employed quadratic and cubic B-spline FEM for
fractional Burger, gas dynamics, and Schrodinger’s equations
[33–35]. Khader and Khadijah solved the fractional Klein
Gordon equation using quadratic B-spline FEM [36]. Ucar and
Feng used FEM for the solution of fractional difusion equa-
tions [37, 38]. In [39], the authors applied the Petrov Galerkin
method for the time-fractional KdV equation. Formore details,
the reader is referred to [40–45] and the references therein.
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Te primary objective of this study is to develop a hybrid
scheme comprising of fnite diference and fnite element
methods to fnd the numerical solution of (1). A cubic
B-spline is used as a test and shape function in a fnite el-
ement method called the Galerkin approach that generates
the symmetric matrices. A Caputo fractional derivative is
defned for the temporal fractional part, and the four-point
Gauss-Legendre quadrature is used to evaluate the nu-
merical integration of functions to obtain better accuracy.
Te stability of the scheme is examined via the Fourier
method. Te distribution of the current work is as follows:
Te recurrence relation and mathematical formulation of

cubic B-spline are presented in Section 2. Te solution
methodology and stability are discussed in Sections 3 and 4.
Te performance of the proposed method is examined via
test problems in Section 5 while the concluding remarks are
given in Section 6.

2. Cubic B-Spline

Let us consider Ω � [c, d], taking wl ∈ [c, d] such that c �

w0 <w1 <w2 · · · wN � d and h � wl+1 − wl. Te B-spline of
degree r is denoted by Ψl, r(w) and defned as follows:

Ψl,0(w) �
1, w ∈ wl, wl+1􏼂 􏼁,

0, Otherwise,

⎧⎪⎨

⎪⎩
(3)

Ψl,r(w) �
w − wl

wl+r − wl

􏼢 􏼣Ψl,r− 1(w) +
wl+r+1 − w

wl+r+1 − wl+1
􏼢 􏼣Ψl+1,r− 1(w), l � 0(1)N. (4)

Te formula in (4) is called the Cox− de Boor recursion
formula. Te linear B-spline is defned as follows:

Ψl,1(w) �
1
h

w − wl− 1( 􏼁, w ∈ wl− 1, wl􏼂 􏼁,

wl+1 − w( 􏼁, w ∈ wl, wl+1􏼂 􏼁.

⎧⎪⎨

⎪⎩
(5)

Te defnition of a cubic B-spline is

Ψl,3(w) ≡ Ψl(w) �

�

g1
1
h

w − wl− 2( 􏼁􏼒 􏼓, w ∈ wl− 2, wl− 1􏼂 􏼁,

g2
1
h

w − wl− 1( 􏼁􏼒 􏼓, w ∈ wl− 1, wl􏼂 􏼁,

g2
1
h

wl+1 − w( 􏼁􏼒 􏼓, w ∈ wl, wl+1􏼂 􏼁,

g1
1
h

wl+2 − w( 􏼁􏼒 􏼓, w ∈ wl+1, wl+2􏼂 􏼁,

0, Otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

where g1(w) � w3 and g2(w) � 1 + 3w + 3w2 − 3w3. Ap-
proximating Y(w, t) by cubic B-spline, we get

Y(w, t) � 􏽘
N+1

l�− 1
Cl(t)Ψl(w), (7)

where Cl are unknown parameters to be determined. Using
transformation ξ � w − wl, 0≤ ξ ≤ h in (6) takes the fol-
lowing form:

Ψl− 1 �
1
h
3(h − ξ)

3
,

Ψl �
1
h
3 h

3
+ 3h

2
(h − ξ) + 3h(h − ξ)

2
− 3(h − ξ)

3
􏼐 􏼑,

Ψl+1 �
1
h
3 h

3
+ 3h

2ξ + 3hξ2 − 3ξ3􏼐 􏼑,

Ψl+2 �
ξ
h

􏼠 􏼡

3

.

(8)

All splines apart from Ψl− 1,Ψl,Ψl+1, and Ψl+2 are zero
over the interval [wl, wl+1]. Using (8) in terms of (7) as
follows:

Y(ξ, t) � 􏽘
l+2

k�l− 1
Ck(t)Ψk(ξ). (9)

Te values of Ψk(w) and its derivatives at the nodal
points are given by

Ψk wl( 􏼁 �

4, if k � l,

1, if |k − l| � 1,

0, if |k − l|≥ 2,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(10)

Ψk
′ wl( 􏼁 �

0, if k � l,

− 3
h

, if k � 1 − 1,

− 3
h

, if k � l + 1,

0, if |k − l|≥ 2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

Complexity 3



Ψk
″ wl( 􏼁 �

− 12
h
2 , if k � l,

6
h
2, if |k − 1| � 1,

0, if |k − 1|≥ 2.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(12)

Using equations (10)–(12), it yields

Yl � Cl− 1 + 4Cl + Cl+1,

Yl
′ �

3
h

Cl+1 − Cl− 1( 􏼁,

Yl
″ �

6
h
2 Cl+1 − 2Cl + Cl− 1( 􏼁, l � 0(1)N.

(13)

3. Proposed Solution Methodology

Tis section describes the methodology of the proposed
scheme for solving the time-fractional diferential equations.

3.1. Time Discretization. Tis part introduces the formula-
tion of temporal-fractional derivative of diferential equa-
tions, which is given in (1). For this, let the time interval
[0, T] be discretized using mesh points
ts � sΔt, s � 0, 1, 2, . . . , n where Δt � T/n is the temporal
mesh size and T is the maximum time limit. Te time-
fractional derivative can be approximated by an L1 ap-
proximation formula [46] as follows:

z
α
t Y w, tn+1( 􏼁 �

1
Γ(1 − α)

􏽚
tn+1

0

zY(w, z)

zz
tn+1 − z( 􏼁

− αdz,

�
1
Γ(1 − α)

􏽘

n

p�0
􏽚

tp+1

tp

zY(w, z)

zz
tn+1 − z( 􏼁

− αdz.

(14)

Using forward diference for time derivative leads to the
following:

z
α
t Y w, tn+1( 􏼁 �

1
Γ(1 − α)

􏽘

n

p�0

Y
p+1

− Y
p

Δt
+ O(Δt)􏼢 􏼣 􏽚

tp+1

tp

tn+1 − z( 􏼁
− α

dz,

�
1
Γ(1 − α)

􏽘

n

p�0

Y
p+1

− Y
p

Δt
􏼢 􏼣

(n + 1 − p)
1− α

− (n − p)
1− α

1 − α
Δt1− α

􏼢 􏼣 + O(Δt)2− α
,

�
(Δt)− α

Γ(2 − α)
􏽘

n

p�0
Y

n+1− p
− Y

n− p
􏽨 􏽩 (p + 1)

1− α
− (p)

1− α
􏽨 􏽩 + O(Δt)2− α

,

� rα 􏽘

n

p�0
sα(p) Y

n+1− p
− Y

n− p
􏽨 􏽩 + O(Δt)2− α

,

(15)

where rα � (Δt)− α/Γ(2 − α) and sα(p) � (p + 1)1− α

− (p)1− α.
Te same procedure is applied for the discretization of

fractional derivative of order αi, i � 1, 2, 3.

3.2. Numerical Integration. Numerical integration plays an
important role in applied sciences and engineering. Te
numerical integration is primarily evaluated using Newton
cotes and Gauss quadrature [47, 48]. Newton cotes quad-
rature such as Trapezoidal, Simpson’s rule, and their
composite forms are appropriate for uniform nodes.
Gaussian quadrature is preferable for nonuniform nodes to
obtain accuracy even for fewer nodal points. Te quadrature
rule yields an exact result of degree 2n − 1.Te source term is
approximated as follows:

􏽚
1

− 1
g(y)dy ≈ 􏽘

4

j�1
Tjg yj􏼐 􏼑, (16)

where Tj are weight factors and yj are the quadrature or
sampling points. Te sampling points can be obtained from
the roots of Legendre polynomial
Pn(y) � 1/(2nn!)(dn(y2 − 1)2/(dyn)) and weight points
from the integration of Lagrange polynomial.Te four-point
Gauss quadrature of sampling and weight points are

y � ∓

���������

15 ± 2
��
30

√

35

􏽳

and,

T �
18 ±

��
30

√

36
.

(17)

Let y � (h/2) + (h/2)ξ and substitute in (16); it becomes

h

2
􏽚

h

0
g

h

2
+

h

2
ξ􏼠 􏼡dξ ≈

h

2
􏽘

4

j�1
Tjg

h

2
+

h

2
ξj􏼠 􏼡. (18)
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3.3. Cubic B-Spline Galerkin’s Approximation. Applying
Galerkin’s approach to (1) with weight function W leads to
weak formulation as follows:

􏽚

d

c

W Pα1 ,α2 ,...,αm
zt( 􏼁Y −

z
2
Y

zw
2 − f􏼢 􏼣dw � 0, (19)

􏽚
d

c
􏽘

m

i�1
aiz

αi

t WY +
zW

zw

zY

zw
⎡⎣ ⎤⎦dw − WYw

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

d

c

− 􏽚
d

c
Wfdw � 0. (20)

For m � 3, (20) becomes

􏽚
d

c
a1z

α1
t WY + a2z

α2
t WY + a3z

α3
t WY +

zW

zw

zY

zw
􏼠􏼢 􏼣dw − WYw

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

d

c

� 􏽚
d

c
Wfdw. (21)

Let W � Ψi, i � l − 1, l, l + 1, l + 2, and using (6) and (9)
in (21), one has

􏽘

l+2

j�l− 1
􏽚

wl+1

wl

ΨiΨj a1
zα1Cj

ztα1
+ a2

zα2Cj

ztα2
+ a3

zα3Cj

ztα3
􏼢 􏼣 + Ψi

′Ψj
′Cj􏼠 􏼡dw − ΨiΨj

′Cj

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

wl+1

wl

,

� 􏽚
wl+1

wl

Ψifdw.

(22)

Using (8) in (22) leads to the following:

􏽘

l+2

j�l− 1
􏽚

h

0
ΨiΨjdξ􏼠 􏼡 􏽘

3

k�1
al

z
αl Cj

zt
αl

⎡⎣ ⎤⎦ + 􏽚
h

0
Ψi
′Ψj
′dξ􏼠 􏼡Cj − ΨiΨj

′Cj

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

h

0

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

� 􏽚
h

0
Ψif ξ + wi, t( 􏼁dξ .

(23)

Te matrix form of (23) leads to

􏽘

3

j�1
ajA

e
1
z
αj C

e

zt
αj

+ A
e
2 − A

e
3( 􏼁C

e

� F
e
.

(24)

Where (Cl− 1, Cl, Cl+1, Cl+2)
T are the unknowns and Ae

1, Ae
2,

Ae
3, and Fe are element matrices and can be expressed as

follows:
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A
e
1 �

h

140

20 129 60 1

129 1188 933 60

60 933 1188 129

1 60 129 20

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A
e
2 �

1
10h

18 21 − 36 − 3

21 102 − 87 − 36

− 36 − 87 102 21

− 3 − 36 21 18

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A
e
3 �

3
h

1 0 − 1 0

4 − 1 − 4 1

1 − 4 − 1 4

0 − 1 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

F
e

�

􏽚
h

0
Ψl− 1f dξ

􏽚
h

0
Ψlf dξ

􏽚

h

0

Ψl+1f dξ

􏽚
h

0
Ψl+2fdξ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(25)

Te source term is evaluated by Gauss− Legendre
quadrature in Section 3.2 as follows:

F
e
i ≈

h

2
􏽘

4

j�1
TjfjΨi,j, i � l − 1, l, l + 1, l + 2. (26)

Assembling all element contributions give the following
system of equations:

􏽘

3

i�1
aiA1

z
αi C

zt
αi

+ A2 − A3( 􏼁C,

� F.

(27)

Te matrices A1, A2, and A3 are septa-diagonal matrices
of the form

A1:
h

140
(1, 120, 1191, 2416, 1191, 120, 1),

A2:
1
10h

(− 3, − 72, − 45, 240, − 45, − 72, − 3),

A3:
3
h

(0, 0, 0, 0, 0, 0, 0).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(28)

Using (14) in (28), it becomes

􏽘
3

i�1
ai

z
αi C

zt
αi
≈ 􏽘

3

i�1
ai rαi

C
n+1

− rαi
C

n
+ rαi

􏽘

n

p�1
sαi

(p) C
n+1− p

− C
n− p

􏼐 􏼑⎡⎢⎢⎣ ⎤⎥⎥⎦, (29)

where

rαi
�

(Δt)− αi

Γ 2 − αi( 􏼁
, sαi

(p) �

� (p + 1)
1− αi − (p)

1− αi , i � 1, 2, 3.

(30)

Applying θ-weighted scheme [49] and using (29) in (27),
it yields

B1C
n+1

� B2C
n

+ B3, (31)

where

B1 � 􏽘
3

i�1
airαi

A1 + θA2 − θA3
⎛⎝ ⎞⎠,

B2 � 􏽘
3

i�1
airαi

A1 +(1 − θ) − A2 + A3( 􏼁⎛⎝ ⎞⎠,

B3 � 􏽘
n

p�1
􏽘

3

i�1
airαi

sαi
(p) C

n+1− p
− C

n− p
􏽨 􏽩A1 + θF

n+1
+(1 − θ)F

n
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(32)
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Te scheme in (31) is derived for three-term time-
fractional DEs. Substituting m � 1, 2 in (20), one can derive
the same scheme for one-term and two-term time-fractional
DEs.Te initial vectorC0 is determined from (9)–(13). Using
(31) together with boundary conditions, the unknown co-
efcients can be obtained for arbitrary time levels and hence
the solution from (9).

4. Stability Analysis

Te stability analysis is based on the Von Neumann concept
in which the growth factor of a typical Fourier mode is
defned as

C
n
q � Λn

e
iqkh

, (33)

Table 1: Error of Y at diferent step sizes.

h Δt Error [24] C.R
1/4 1/16 5.8667E − 03 2.0112E − 02 —
1/8 1/64 1.7728E − 03 4.7622E − 03 1.7265194
1/16 1/256 5.0769E − 04 1.1347E − 03 1.8040100
1/32 1/1024 1.4073E − 04 2.7067E − 04 1.8510179
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Figure 1: Solution profle of approximate, exact, and error of Y at h � Δt � 0.1, α1 � 1 α2 � 0.85 and plot at t � 1. (a) Approximate solution.
(b) Exact solution. (c) Approximate vs Exact. (d) Error.

Table 2: Errors norm of Y at diferent step sizes.

α1 � 0.95, α2 � 0.2, t � 1 α1 � 0.5, α2 � 0.2,Δt � 1/(5 × 104)
h � 2− 10 h � 2− 3 h � 2− 4

Δt L2 [14] t L2 [14] L2 [14]

1/10 1.9115E − 03 7.9200E − 03 0.001 3.4744E − 04 1.6500E − 02 4.1255E − 05 4.1400E − 03
1/20 9.8958E − 04 3.7900E − 03 0.01 1.5960E − 04 8.0400E − 03 1.6479E − 05 2.0000E − 03
1/40 5.0937E − 04 1.8200E − 03 1.00 4.6638E − 05 1.8600E − 03 1.6970E − 05 4.6400E − 04
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where k is the mode number and h is the element size. One
can express (31) in terms of nodal parameters as

􏽘

q+3

p�q− 3
ζp− q+4C

n+1
p ,

� 􏽘

q+3

p�q− 3
σp− q+4C

n
p.

(34)

Using (33) in (34), we get the following:

􏽘

q+3

p�q− 3
ζp− q+4Λ

n+1
e

ipkh
,

� 􏽘

q+3

p�q− 3
σp− q+4Λ

n
e

ipkh
,

(35)

Λn+1
e

iqkh ζ1e
− 3ikh

+ ζ2e
− 2ikh

+ ζ3e
− ikh

+ ζ4 + ζ5e
ikh

+ ζ6e
2kh

+ ζ7e
3ikh

􏽨 􏽩,

� Λn
e

iqkh σ1e
− 3ikh

+ σ2e
− 2ikh

+ σ3e
− ikh

+ σ4 + σ5e
ikh

+ σ6e
2ikh

+ σ7e
3ikh

􏽨 􏽩

+ 􏽘
n

p�1
Λn+1− p

− Λn− p
􏽨 􏽩e

iqkh μ1e
− 3ikh

+ μ2e
− 2ikh

+ μ3e
− ikh

+ μ4 + μ5e
ikh

+ μ6e
2kh

+ μ7e
3ikh

􏽨 􏽩.

(36)

Substituting Euler’s formula eikh � cos kh + i sin kh in
(36), it becomes
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Figure 2: Graphical solution of approximate, exact, and error of Y at h � Δt � 0.1 and plot at t � 1. (a) Approximate solution. (b) Exact
solution. (c) Approximate vs Exact. (d) Error.
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Table 3: Errors norm of Y at diferent step sizes.

α1 � 0.9, α2 � 0.5, h � 0.1, α1 � 0.5, α2 � 0.25, h � 0.1
Δt L2 L∞ C.R ρ(M) Δt L2 L∞ C.R ρ(M)

1/10 3.444E − 03 4.705E − 03 — 4.37E − 01 1/10 4.118E − 03 5.615E − 03 — 6.81E − 02
1/20 1.955E − 03 2.702E − 03 0.8002 9.13E − 01 1/20 2.099E − 03 2.899E − 03 0.9537 2.13E − 01
1/30 1.434E − 03 2.001E − 03 0.4333 8.82E − 01 1/30 1.409E − 03 1.971E − 03 0.5566 2.96E − 01
1/40 1.167E − 03 1.641E − 03 0.2861 9.05E − 01 1/40 1.060E − 03 1.501E − 03 0.3930 3.53E − 01
1/50 1.004E − 03 1.421E − 03 0.2077 — 1/50 8.498E − 04 1.217E − 03 0.3026 3.97E − 01
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Figure 3: Graphical solution of approximate, exact, and error of Y at h � Δt � 0.05 and plot at t � 1. (a) Approximate solution. (b) Exact
solution. (c) Approximate vs Exact. (d) Error.
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Figure 4: Stability plot of example 3 for diferent values of Δt.
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􏽘

3

q�− 3
ζq+4Λ

n+1
[cosqkh + isinqkh],

� 􏽘
3

q�− 3
σq+4Λ

n
+ μq+4 􏽘

n

p�1
Λn+1− p

− Λn− p
􏽨 􏽩⎡⎢⎢⎣ ⎤⎥⎥⎦[cosqkh + isinqkh].

(37)

Te values of ζ, σ and μ are

ζ1 � s1 − 3s2, ζ2 � 120s1 − 72s2, ζ3 � 1191s1 − 45s2,

ζ4 � 2416s1 + 240s2, ζ5 � 1191s1 − 45s2, ζ6 � 120s1 − 72s2,

ζ7 � s1 − 3s2,

⎧⎪⎪⎨

⎪⎪⎩

σ1 � s1 − 3s2, σ2 � 120s1 − 72s2, σ3 � 1191s1 − 45s2,

σ4 � 2416s1 − 240s2, σ5 � 1191s1 − 45s2, σ6 � 120s1 − 72s2,

σ7 � s1 − 3s2,

⎧⎪⎪⎨

⎪⎪⎩

μ1 � s3, μ2 � 120s3, μ3 � 1191s3,

μ4 � 2416s3, μ5 � 1191s3, μ6 � 120s3,

μ7 � s3,

⎧⎪⎪⎨

⎪⎪⎩

(38)

where

s1 � 􏽘
3

i�1
airαi

h

140
,

s2 �
1
20h

,

s3 � 􏽘
3

i�1
airαi

sαi
(p)

h

140
,

β � 􏽘
n

p�1
Λ1− p

− Λ− p
􏽨 􏽩.

(39)

Simplifying (37) leads to

Λn+1
�

a − b

a + b
+

a

a + b
β􏼠 􏼡Λn

,

a � 2416 + 2382cos(hk) + 240cos(2hk) + 2cos(3hk),

b � 240 − 90cos(hk) − 144cos(2hk) − 6cos(3hk).

⎧⎪⎨

⎪⎩

(40)

Since it is clear that for all values of a, b, and β, the
amplifcation factor |Λ|≤ 1. Te scheme is unconditionally

stable according to the Fourier stability method.Te stability
of the scheme is verifed in example 3 computationally using
the Lax− Richtmyer stability criterion.

5. Examples

In this part, the proposed scheme is applied to solvemultiterm
time-fractional diferential equations. Te computed solu-
tions are compared with the exact and available techniques in
the literature. L∞ and L2 norms are used to check the ef-
ciency and accuracy of the proposed method as follows:

L∞ � max
j

􏽥Yj − Yj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

L2 �

����

h 􏽘
N

j�1

􏽶
􏽴

􏽥Yj − Yj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

, (41)

where h is the space step size. Te convergence rate of the
numerical results can also be calculated using the following
formula:

Convergence Rate � C.R,

� log2
L∞(h, 2Δt)
L∞(h,Δt)

􏼠 􏼡.

(42)

Table 4: Error norm of Y at diferent step sizes.

h Δt Error [50] C.R
1/4 1/16 7.3088E − 03 2.1871E − 01
1/10 1/100 6.4504E − 04 3.5611E − 02 3.5022
1/20 1/400 4.2460E − 04 8.9080E − 03 0.6033
1/40 1/1600 1.0858E − 04 2.2258E − 03 1.9673
1/80 1/6400 2.7468E − 05 5.5614E − 04 1.9829

10 Complexity



5.1. Example 1. We consider single-term time-fractional
diferential equations [24].

􏽘

2

i�1
ai

z
αi Y(w, t)

zt
αi

−
z
2
Y(w, t)

zw
2 ,

� 2t − t
2

+
2t

2− α2

Γ 3 − α2( 􏼁
􏼠 􏼡e

w
,

(43)

with initial and boundary conditions

Y(w, 0) � 0, w ∈ [0, 1],

Y(0, t) � t
2
, Y(1, t) � et

2
, t> 0.

􏼨 (44)

Te exact solution

Y(w, t) � t
2
e

w
. (45)

Temethod is discussed in Section 3 for multiterm time-
fractional diferential equations that have been used to fnd a
solution of the problem. Te values of the parameters are
α1 � 1, α2 � 0.85, θ � 0.5, and ai � 1, i � 1, 2. Te solution is
computed in the spatial domain [0, 1]. Te results have been
computed for diferent step sizes and are mentioned in
Table 1. Te error norms are computed to check the ef-
ciency of the scheme. Table 1 clearly shows that the error
decreases when the mesh size decreases, which verifes the
temporal and spatial convergence. Te results are compared

with those of the fnite diference method in [24]. Te table
shows that the results obtained using the present method are
better. In addition, the convergence rate is calculated and
presented in Table 1, which is closest to order 2. Te surface
plots of approximate, exact, and absolute errors at Δt � h �

0.1 and t � 0.1 are shown in Figure 1. Te graphs clearly
show that as the values of w and t increase, the solution also
increases exponentially. From the fgures, it is obvious that
the approximate solution coincides with the exact validity of
the proposed scheme.

5.2. Example 2. We consider two-term time-fractional dif-
ferential equation [14].

􏽘
2

i�1
ai

z
αi Y(w, t)

zt
αi

,

�
z
2
Y(w, t)

zw
2 +

2t
2− α1

Γ 3 − α1( 􏼁
+

2t
2− α2

Γ 3 − α2( 􏼁
􏼠 􏼡 w − w

2
􏼐 􏼑 + 2 1 + t

2
􏼐 􏼑.

(46)

Te initial and boundary conditions are

Y(w, 0) � 0, w ∈ [0, 1],

Y(0, t) � w − w
2
, Y(1, t) � 0, t> 0.

􏼨 (47)
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Figure 5: Graphical solution of approximate, exact, and error of Y at h � Δt � 0.1 and plot at t � 1. (a) Approximate solution. (b) Exact
solution. (c) Approximate vs Exact. (d) Error.
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Te exact solution is

Y(w, t) � 1 + t
2

􏼐 􏼑 w − w
2

􏼐 􏼑. (48)

Te proposed method is applied to fnd the results of the
problem as discussed in Section 3 with domain [0, 1]. Taking

ai � 1, i � 1, 2, θ � 0.5 and for diferent values of αi are given
in Table 2. L2 norms are listed in Table 2 to check the
performance and accuracy of the proposed technique. As the
values of Δt decrease, accuracy increases for diferent values
of αi. One can see that the present results are better than
those of [14]. Te surface plots of exact, approximate, and
error are shown in Figure 2 at h � Δt � 0.1 and t � 1. Te
graph of exact and approximate solutions matches each
other, showing good agreement between approximate and
exact solutions.

5.3. Example 3. We consider two-term time-fractional dif-
ferential equation as follows:

􏽘
2

i�1
ai

z
αi Y(w, t)

zt
αi

,

�
z
2
Y(w, t)

zw
2 +

2t
2− α1

Γ 3 − α1( 􏼁
+

2t
2− α2

Γ 3 − α2( 􏼁
􏼠 􏼡sin(2πw) + 4π2t2sin(2πw).

(49)

Te initial and boundary conditions are

Y(w, 0) � 0, w ∈ [0, 1],

Y(0, t) � 0, Y(1, t) � 0, t> 0.
􏼨 (50)

Te exact solution is given by

Y(w, t) � t
2sin(2πw). (51)

Te proposed method is implemented with domain
[0, 1] to two-term time-fractional DEs. Te values of ai �

1, i � 1, 2, θ � 0.5 and the results are obtained for diferent
values of αi which are given in Table 3. L2 and L∞ norms are
calculated and presented in Table 3 to check the performance
and accuracy of the technique. Moreover, the spectral radius
of matrix M is computed to check the stability of the

proposed scheme. It has been noticed that ρ(M) is less than
or equal to unity, which verifes the stability of the scheme
Figure 3. Furthermore, the convergence rate is given in
Table 3 and the order is less than unity. Te stability of the
graph is illustrated in Figure 4, which clearly shows that the
data of spectral radius lies in [0, 1].Te surface plots of exact,
approximate, and error at Δt � h � 0.05 and t � 1are dis-
played in Figure 3. Te exact and approximate graphs match
each other, showing good agreement between approximate
and exact solutions.

5.4. Example 4. We consider three-term time-fractional
diferential equation [50].

􏽘
3

i�1
ai

z
αi Y(w, t)

zt
αi

−
z
2
Y(w, t)

zw
2 ,

� 2w
2
(1 − w)

2 a1t
2− α1

Γ 3 − α1( 􏼁
+

a2t
2− α2

Γ 3 − α2( 􏼁
+

a3t
2− α3

Γ 3 − α3( 􏼁
􏼠 􏼡 − 2 6w

2
− 6w + 1􏼐 􏼑 1 + t

2
􏼐 􏼑.

(52)

Te initial and boundary conditions are

Y(w, 0) � w
2
(1 − w)

2
, w ∈ [0, 1],

Y(0, t) � 0, Y(1, t) � 0, t> 0.

⎧⎨

⎩ (53)

Te exact solution is

Y(w, t) � w
2
(1 − w)

2 1 + t
2

􏼐 􏼑. (54)

In example 4, the same methodology has been used with
domain [0, 1]. Here the values of a1 � a2 � 1, a3 � 0.5, α1 �

0.7, α2 � 0.6, and α3 � 0.4. L2 norms are given in Table 4 to
check the performance and accuracy of the proposed

Table 5: Errors norm of Y at diferent step sizes.

h Δt Error [50] C.R
1/4 1/16 3.1781E − 03 2.4880E − 02 —
1/10 1/100 4.7588E − 04 6.1204E − 03 2.7395
1/20 1/400 1.3246E − 04 2.0016E − 03 1.8450
1/40 1/1600 3.6478E − 05 6.3605E − 04 1.8605
1/80 1/6400 1.0012E − 05 1.9816E − 04 1.8653
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technique. It can be seen that as the time step decreases, the
accuracy increases. Table 4 shows that the present method
gives better results than the implicit fnite diference scheme
[50]. In addition, the convergence rate is calculated and
displayed in Table 4, which is approximate to second order.
Te graphical solutions of exact, approximate, and error at
Δt � h � 0.1, t � 1 are displayed in Figure 5. Te exact and

approximate plots coincide, indicating they are in good
agreement.

5.5. Example 5. We consider three-term time-fractional
diferential equation [50].

􏽘
3

i�1
ai

z
αi Y(w, t)

zt
αi

−
z
2
Y(w, t)

zw
2 ,

� w
1+α1(1 − w)Γ α2 + α3 + 1( 􏼁 a1

t
α2+α3− α1

Γ α2 + α3 − α1 + 1( 􏼁
+ a2

t
α3

Γ α3 + 1( 􏼁
+􏼠 a3

t
α2

Γ α2 + 1(
􏼡 − 1 + α1( 􏼁w

α1− 1 α1 − 2 + α1( 􏼁w( 􏼁 1 + t
α2+α3( 􏼁.

(55)

Te initial and boundary conditions are

Y(w, 0) � w
1+α1(1 − w), w ∈ [0, 1],

Y(0, t) � 0Y(1, t) � 0, t> 0.

⎧⎨

⎩ (56)

Te exact solution

Y(w, t) � w
1+α1(1 − w) 1 + t

α2+α3( 􏼁. (57)

Te solution is computed over the domain [0, 1] and the
values of parameters are a1 � a3 � 1, a2 � 0.5, θ � 0.5, α1 �

0.8, α2 � 0.7, and α3 � 0.6 . Te error norms are computed
for diferent step sizes and are displayed in Table 5. It is clear
from the table that the error norms decrease as the time step
decreases. Table 5 shows that the results obtained from the
present method give better accuracy as compared to the
implicit fnite diference method [50]. Moreover, the
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Figure 6: Graphical solution of approximate, exact, and error of Y at h � Δt � 0.1 and plots at t � 1. (a) Approximate solution. (b) Exact
solution. (c) Plots for diferent value of α’s. (d) Error.
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convergence rate is presented in Table 5, which is greater
than or equal to order 2. Te graphical solutions of ap-
proximate, exact, and error at t � 1, Δt � 0.1, and h � 0.1 are
illustrated in Figure 6. Te solution plot for various values of
α’s is displayed in (6c), and one can notice that the peaks of
solution increase by decreasing the values of α’s. It is clear
from the fgures that the approximate and exact solutions are
in good agreement with each other.

6. Conclusion

Tis work proposed a numerical method based on cubic
B-spline FEM for approximating multiterm time-fractional
diferential equations. Te Caputo formula combined with a
fnite diference has been employed for the temporal frac-
tional part, and Gauss− Legendre quadrature was used to
evaluate the source term. Five test problems including single,
double, and three-term time-fractional diferential equations
have been solved to demonstrate the performance and ac-
curacy of the proposed method.Te efciency and reliability
of the suggested method were examined using L2 and L∞
norms. All the obtained results showed good agreement with
the exact solutions. Te stability of the scheme has been
explained through Fourier analysis, and it was found that the
scheme is unconditionally stable. Comparing approximate
solutions with the exact and existing methods in the liter-
ature shows that the proposed method has a better outcome.
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