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In this study, we implemented a new numerical method known as the Chebyshev Pseudospectral method for solving nonlinear
delay differential equations having fractional order. (e fractional derivative is defined in Caputo manner. (e proposed method
is simple, effective, and straightforward as compared to other numerical techniques. To check the validity and accuracy of the
proposed method, some illustrative examples are solved by using the present scenario. (e obtained results have confirmed the
greater accuracy than the modified Laguerre wavelet method, the Chebyshev wavelet method, and the modified wavelet-based
algorithm.Moreover, based on the novelty and scientific importance, the present method can be extended to solve other nonlinear
fractional-order delay differential equations.

1. Introduction

Fractional calculus is used in various branches of mathe-
matics due to its numerous applications in modeling dif-
ferent physical phenomena in engineering and science. (e
concept of fractional calculus has been derived from the fact
Dα(f(x)), where alpha is noninteger. Later on, different
scientists such as Riemann–Liouville, Euler, Leibniz,
L’Hospital, Bernoulli, and Wallis have devoted their work to
this research area. Fractional calculus has numerous ap-
plications in different field of sciences. For example dynamic
of viscoelastic materials [1], electromagnetism [2], fluid
mechanics [3], propagation of spherical flames [4], and
viscoelastic materials [5].

In our real life, DEs are used to develop a different
number of physical problems. Some are more complex and
cannot be modeled with the help of simple differential
equations. For these complex problems, a new technique has
been used by the researchers known as fractional differential

equations (FDEs). In the mathematical modeling of real-
world physical problems, FDEs have been widespread due to
their numerous applications in engineering and real-life
sciences problems [6–9], such as economics [10], solid
mechanics [11], continuum and statistical mechanics [12],
oscillation of earthquakes [13], dynamics of interfaces be-
tween soft-nanoparticles and rough substrates [14], fluid-
dynamic traffic model [15], colored noise [16], solid me-
chanics [11], anomalous transport [17], and bioengineering
[18–20].

Delay differential equations (DDEs) have a wide range of
applications in engineering and science. Delay differential
equation simplifies the ordinary differential equation, de-
pends on the past data, and is suitable for physical systems.
Nowadays, researchers pay more attention to FDDEs as
compared to DEs because a slight delay has a large effect. In
this regard, numerous papers have been dedicated to the
study of the numerical solution of FDDEs. FDDs have been
widespread in mathematical modelings, such as population
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dynamics, epidemiology, immunology, physiology, and
neural networks [21–25].

In literature, there is no precise technique for finding an
exact or analytical solution for every FDDEs; the researcher’s
effort is to find the numerical solution of FDDEs. Various
methods have been implemented for solving these problems
numerically. (e well-known among these methods are new
predictor corrector method (NPCM) [26], adomian de-
composition method (ADM) [27], Legendre pseudospectral
method (LSM) [28], kernel method (KM) [29], LMS method
(LMSM) [30], Adams–Bashforth–Moulton algorithm
(ABMA) [31], extend predictor corrector method (EPCM)
[32], simplified reproducing kernel method (SRKM) [29],
variation iteration method (VIM) [33], homotopy pertur-
bation method (HPM) [34], Galerkin method (GM) [35],
Runge–Kutta-type methods (RKM) [36], Bernoulli wavelet
method (BWM) [37], and modified Laguerre wavelet
method [38] have been used for the analytical and numerical
solution of FDDEs.

In the present work, CPM is extended for the solutions of
FDDEs. (e results we obtained are compared with other
methods, which show that CPM has good convergence rate
than other methods. We focus on FDDE of the form

D
c
uf(u) � g(u, f(u), f(h(u))),

c≤ u≤d, m< c≤m + 1, m � 1, 2, 3, . . . ,
(1)

with the following boundary conditions:
f(c) � α0, f(d) � α1, f(u) � ζ(u), u∈ c0, c , (2)

where h is the delay function which is to be assumed
continues in the interval [c, d] and satisfies the inequality
c0 ≤ h(u)≤ u for some fix real constant c0, for u ∈ [c, d] and
ζ ∈ C[c0, c]

(e following is a summary of the paper’s structure. In
Section 2, we introduce some fundamental fractional cal-
culus definitions and mathematical techniques that will be
useful in our later study.(e approximation of the fractional
derivative D

c
uf(u) is obtained in Section 3. Section 4 de-

scribes the Chebyshev collocation method’s application to
the solution of eq. (1). As a result, a set of algebraic equations
is created, and the solution to the problem in question is
presented. Section 5 provides some numerical results to help
clarify the method.

2. Basic Definitions of Fractional Derivatives

Definition 1. A real function, g(u), u> 0, is said to be in the
space Cμ, μ ∈ R, if there exists a real number p> μ, such that
g(u) � upg1(u), where g1(u) ∈ [0,∞), and it is said to be in
the space Cm

μ if and only if g(m) ∈ Cμ, m ∈ N.

Definition 2. In Caputo manner, the derivative having
fractional-order Dcg(u) is given as below:

D
c
g(u) �

1
Γ(j − c)


u

0
(u − t)

j− c− 1
g

(n)
(t)dt, u> 0, j − 1< c< j.

(3)

(e order of the derivative is c> 0, and the lowest integer
greater than c is j ∈ N and g ∈ Cn

− 1.
We have the Caputo derivative [39]:

D
c
C � 0, C is a constant, (4)

D
c
u
α

�

0 for α ∈ N0 and α<⌈ c ⌉

Γ(α + 1)

Γ(α + 1 − c)
u
α− c for α ∈ N0 and α≥ ⌈ c ⌉

⎧⎪⎪⎨

⎪⎪⎩
, (5)

where the lowest integer larger than or equal to c is denoted
by the ceiling function ⌈ c ⌉ and N0 � 1, 2, . . .. Remember
that the Caputo differential operator is the same as the
normal differential operator of the integer order for c ∈ N.
Fractional differentiation is a linear operation, just like in-
teger-order differentiation:

D
c
(ϕg(u) + μh(u)) � ϕD

c
g(u) + μD

c
h(u), (6)

where ϕ and μ are constants.

3. Chebyshev Series Expansion Is Used to
Approximate a Caputo Derivative

On the interval [− 1, 1], Chebyshev polynomials are defined
and, with the help of recurrence formulae, explained as
[40, 41]

Tj+1(u) � 2uTj(u) − Tj− 1(u), j � 1, 2, . . . , (7)

where T0(u) � 1 and T1(u)u. (e Chebyshev polynomial
analytical form for degree j is defined as [41]

Tj(u) �
j

2


⌊ j/2 ⌋

r�0
(− 1)

r (j − r − 1)!

r!(j − 2r)!
(2u)

j− 2r
. (8)

If we apply the Chebyshev polynomials over the [0, 1]

interval, we explain the Chebyshev shifted polynomials
Tj(u). (ese are described in the sense of Chebyshev
polynomials Tj(u) as [41]

Tj(u) � Tj(2u − 1). (9)

And recurrence formula is as follows:
Tj+1(u) � 2(2u − 1)Tj(u) − Tj− 1(u), j � 1, 2, . . . , (10)

where T0(u) � 1 and T1(u) � 2u − 1. (e orthogonality
condition is [42]


1

0

Tj(u)Tm(u)
�����
u − u

2
 du �

0m≠ j,

π
2

m � j≠ 0,

π m � j � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(11)

Now, we can use the well-known relation,
Tj(u) � T2j(

��
u

√
), (12)
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and equation (8) to get shifted Chebyshev polynomials
analytical form having order j as

Tj(u) � 

j

r�0
(− 1)

r22j− 2rj(2j − r − 1)!

r!(2j − 2r)!
(x)

j− 2r
. (13)

A function f(u) ∈ L2[0, 1] may be described in terms of
Chebyshev shifted polynomials as

f(u) � 
∞

j�1
cj

Tj(u), (14)

where the coefficients cj, j� 1, 2,. . ., are given by

c0 �
1
π


1

0

g(u)T0(u)
�����
u − u

2
 du and cn �

2
π


1

0

g(u)Tj(u)
�����
u − u

2
 du. (15)

Only Chebyshev shifted polynomials first (m + 1)-terms
are considered in practice. (us,

fm(u) � 
m

j�0
cj

Tj(u). (16)

3.1. Chebyshev Truncation 9eorem [43]. (e sum of the
absolute values of all the disregarded coefficients limits the
inaccuracy in approximating f(u) by the sum of its first m
terms. (at is, assuming

fm(u) � 
m

k�0
ckTk(u), (17)

then, for all f(u), all m, and all u ∈ [− 1, 1], we obtain

ET(m) � f(u) − fm(u)


≤ 
∞

k�m+1
ck


. (18)

Proof. For any u ∈ [− 1, 1] and all k, the Chebyshev poly-
nomials are bounded by 1, |Tk(u)|≤ 1. As a result, the kth
term is restricted by |ck|. By subtracting the reduced series
from the infinite series, bounding each term in the differ-
ence, and then summing the bounds, the theorem can be
derived.

(e following theorem contains the main approximate
formula for the fractional derivative of f(u). □

3.2. 9eorem [44]. Assume α> 0 and that f(u) is estimated
by the shifted Chebyshev polynomials as in (16). (en,

D
α

fm(u)(  � 

m

j�[α]



n− [α]

r�0
cjb

α
j,ru

j− r− α
, (19)

where bαj,r is given by

b
α
j,r � (− 1)

r22j− 2r j(2j − r − 1)!(j − r)!

r!(2j − 2r)!Γ(j − r + 1 − α)
. (20)

Proof. Since Caputo fractional differentiation is a linear
operation, we have

D
α

fm(u)(  � 
m

j�0
cnD

α Tj(u) . (21)

Now, to evaluate Dα( Tj(u)), applying to equations (4)
and (5)–(13),

D
α Tj(u)  � 

j

r�0
(− 1)

r22j− 2rj(2j − r − 1)!

r!(2j − 2r)!
D

α
(u)

j− r
, j � ⌈ α ⌉, ⌈ α ⌉ + 1, . . . m. (22)

Since Tj(u) is a polynomial having degree j, we obtain

D
α Tj(u)  � 0 forall j � 0, 1, 2, . . . , ⌈ α ⌉ − 1, α> 0. (23)

(e following is the result of combining (21)–(23):

D
α

fm(u)(  � 
m

j�⌈ α ⌉



n− ⌈ α ⌉

r�0

cj(− 1)
r22j− 2r

j(2j − r − 1)!(j − r)!

r!(2j − 2r)!Γ(j − r + 1 − α)
u

j− r− α
� 

m

j�⌈ α ⌉



n− ⌈ α ⌉

r�0
cjb

α
j,ru

j− 2r− α
, (24)

which is the desired result. Test example: consider formula (19) with
f(u) � u2, m � 2. (e shifted series of u2 is

u
2

� c0
T0(u) + c1

T1(u) + c2
T2(u) �

3
8

T0(u) +
1
2

T1(u) +
1
8

T2(u) (25)

and
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D

1
2 u

2
  � 

2

j�1


n− 1

r�0
cnb

1
2

 

n,r u
j− r−

1
2 � c1b

1
2

 

1,0 u

1
2

+ c2b

1
2

 

2,0 u

3
2 + c2b

1
2

 

2,1 u

1
2

�
2
��
π

√ u

1
2 +

8
3

��
π

√ u

3
2 −

2
��
π

√ u

1
2 �

8
3

��
π

√ u

3
2,

(26)

which yields the same result as evaluating D1/2(u2) by re-
lation (5). □

4. Chebyshev Collocation Method

We solve the FDDE (1) with the boundary conditions (2)
stated in the next part using Chebyshev’s collocation method
in this section. Assume that the approximate solution f(u)

is defined in terms of a finite numberm of shifted Chebyshev
polynomials, i.e.,

fm(u) � 
m

j�0
cj

Tj(u). (27)

We can use theorem (4.1) and equation (22) to solve
equation (1):



m

j�⌈ α ⌉



n− ⌈ α ⌉

r�0
cjb

α
j,ru

j− 2r− α
� g u, 

m

j�0
cj

Tj(u), 
m

j�0
cj

Tj(h(u))⎛⎝ ⎞⎠, 0< u< 1, m + 1< α<m. (28)

Now, we collocate (23) at points up,
p � 0, 1, 2, . . . , m − ⌈ α ⌉:



m

j�⌈ α ⌉



n− ⌈ α ⌉

r�0
cjb

α
j,ru

j− 2r− α
p � g up, 

m

j�0
cj

Tj up , 
m

j�0
cj

Tj h up  ⎛⎝ ⎞⎠, up, p � 0, 1, . . . m − ⌈ α ⌉, m + 1< α<m. (29)

Using (22) in the boundary conditions (2), we may
construct the following ⌈ α ⌉ equations:



m

i�0
(− 1)

i
ci � α0, 

m

i�0
ci � α1. (30)

We get (m + 1 − ⌈ α ⌉) algebraic equations from (24) and
⌈ α ⌉) algebraic equations from (26). As a result, we have total
(m+ 1) linear or nonlinear algebraic equations that can be
easily solved using matrices for unknowns
cj, j � 0, 1, 2, . . . m, to find out an estimated solution μm(ψ).

5. Numerical Representation

In this section, we solve some delay problems.(e results we
obtained are compared with other methods. All the nu-
merical results are obtained using MAPLE.

Problem 1. Consider the FDDE:

d
α
f(u)

du
�
1
2
exp

u

2 f
u

2
  +

1
2

f(u), 0< α≤ 1, (31)

subject to the initial conditions f(0) � 1, having accurate
solution f(u) � expu at α � 1.

(e exact solution and CPM solution are given in Ta-
ble 1. Table 2 shows CPM and CWM error comparison at
m � 4 which confirm that CPM converges quickly as
compared to CWM.We illustrate the accurate and estimated
solutions for m � 4 in Figure 1, while Figure 2 shows the

error comparison of both methods. Also, Figure 3 provides
the graphical layout of the solution of example 1 at various
fractional orders. It can be seen that the solutions of CPM are
in good agreement to the actual solution than that of CWM.

Problem 2. Consider the nonlinear DDE,

d
α
f(u)

du
� 1 − 2f

2 u

2
 , 0≤ u≤ 1, 1< α≤ 2, (32)

subjects to the initial condition f(0) � 1, f′(0) � 0.
(e accurate solution of this equation for α � 2 is

f(u) � cos(u). (e exact solution and CPM solution are
shown in Table 3. Table 4 shows the error comparison of
CPM at m � 3 and MWBA at m � 20 which confirm that
CPM converges quickly as compare to MLWM. (e esti-
mated and accurate solutions are illustrated in Figure 4,
whereas Figure 5 shows the error comparison of both
methods. In addition, the convergence phenomena of the
solutions at different fractional orders can be seen in
Figure 6. (e results of the presented method are better
than those of the MWBA method for example 2.

Problem 3. Consider the fractional DDE of the form

d
α
f(u)

du
� f

u

2
  +

3
4

f(u) − u
2

+ 2, 0≤ u≤ 1, 1< α≤ 2,

(33)

with initial conditions f(0) � f′(0) � 0.
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(e exact solution of this equation for α � 2 is
f(u) � u2. (e exact solution and CPM solution are shown
in Table 5. Table 6 shows the error comparison of CPM at
m � 3 and MWLM at m � 5 which confirm that CPM
converges quickly as compare to MLWM. We illustrate the
accurate and estimated solutions for m � 3 in Figure 7, while
Figure 8 shows the error comparison of both methods. (e

results of the presented method are better than those of the
MWBA method for example 3.

Problem 4. Consider the following nonlinear delay differ-
ential equation with boundary conditions f(0) � 1 and
f(1) � 1:

Table 1: Exact, CPM solution, and CPM A.E of problem 1 for m� 4.

u Exact CPM CPM error
0 1.000 000 000 000 000 1.000 000 000 000 000 0.0 000 000 000E+ 00
0.01 1.010 050167 084170 1.010 050167197 000 1.1 283 000 000E − 10
0.02 1.020 201 340 026 760 1.020 201 341 818 670 1.7 919100 000E − 09
0.03 1.030 454 533 953 520 1.030 454 542 957 020 9.0 035 000 000E − 09
0.04 1.040 810 774192 390 1.040 810 802 432 060 2.8 239 670 000E − 08
0.05 1.051 271 096 376 020 1.051 271 164 791 820 6.8 415 800 000E − 08
0.06 1.061 836 546 545 360 1.061 836 687 312 300 1.4 076 694 000E − 07
0.07 1.072 508181 254 220 1.072 508 439 997 560 2.5 874 334 000E − 07
0.08 1.083 287 067 674 960 1.083 287 505 579 630 4.3 790 467 000E − 07
0.09 1.094174 283 705 210 1.094174 979 518 540 6.9 581 333 000E − 07
0.10 1.105170 918 075 650 1.105171 970 002 350 1.0 519 267 000E − 06

Table 2: Absolute error (A.E) comparison of CPM and other different methods of problem 1 at m� 4.

u CPM A.E CWM A.E
0 0.0 000 000 000E+ 00 0.0 000 000 000E+ 00
0.01 1.1 283 000 000E − 10 1.82 567E − 04
0.02 1.7 919100 000E − 09 3.68 446E − 04
0.03 9.0 035 000 000E − 09 5.57 408E − 04
0.04 2.8 239 670 000E − 08 7.49 213E − 04
0.05 6.8 415 800 000E − 08 9.43 609E − 04
0.06 1.4 076 694 000E − 07 1.14 034E − 03
0.07 2.5 874 334 000E − 07 1.33 912E − 03
0.08 4.3 790 467 000E − 07 1.53 969E − 03
0.09 6.9 581 333 000E − 07 1.74174E − 03
0.10 1.0 519 267 000E − 06 1.94 497E − 03

1.14

1.12

1.10

1.08

1.06

1.04

1.02

1.00
0.00 0.02 0.04 0.06 0.08 0.10

u

Exact
CPM

Figure 1: (e exact and CPM solution graph for problem 1.
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d
α

du
α f(u) �

8
3

d

du
f

u

2
  f(u) + 8u

2
f

u

2
  −

4
3

−
22
3

u − 7u
2

−
5
3
u
3
, 1< α≤ 2. (34)

(e accurate solution of this equation for α � 2 is
f(u) � 1 + u − u3.(e exact and CPM solution are shown in
Table 7. Table 8 shows the error comparison of CPM at m �

4 and MWBA at m � 8 which confirm that CPM converges

quickly as compare to MWBA. (e estimated and accurate
solutions are illustrated in Figure 9, while Figure 10 shows
the error comparison of both methods. It can be seen that
our method is more accurate.
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Figure 2: Error graph of CWM and CPM for problem 1.
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Figure 3: (e graph of the absolute error at various fractional orders for problem 1.
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Problem 5. Consider the FDDE

d
α
f(u)

du
+ f(u) + f(u − 0.3) � exp− u+0.3

, 1< α< 2, 0< α< 1, (35)

having initial conditions f(0) � 1, f′(0) � − 1, and
f′′(0) � 1.

(e accurate solution of this problem for α � 3 is
f(u) � exp− u. (e exact and CPM solutions are shown in

Table 3: Exact, CPM solution, and CPM A.E of problem 2 at m� 10.

u Exact CPM CPM error
0 1.000 000 000 000 000 1.000 000 000 000 000 0.0 000 000 000E+ 00
0.10 0.995 004165 278 026 0.995 004165 278 026 2.9 000 000 000E − 19
0.20 0.980 066 577 841 242 0.980 066 577 841 242 2.7 250 000 000E − 16
0.30 0.955 336 489125 606 0.955 336 489125 621 1.5 097140 000E − 14
0.40 0.921 060 994 002 885 0.921 060 994 003138 2.5 278 786 000E − 13
0.50 0.877 582 561 890 373 0.877 582 561 892 544 2.1 711 958 200E − 12
0.60 0.825 335 614 909 678 0.825 335 614 921 738 1.2 059 545 750E − 11
0.70 0.764 842187 284 488 0.764 842187 333195 4.8 707 056 530E − 11
0.80 0.696 706 709 347165 0.696 706 709 498 894 1.5172 838 626E − 10
0.90 0.621 609 968 270 664 0.621 609 968 640 609 3.6 994 453 098E − 10
1.0 0.540 302 305 868140 0.540 302 306 536 394 6.6 825 465 360E − 10

Table 4: Absolute error (A.E) comparison of CPM and other different methods for problem 2.

u CPM A.E at (m� 3) MLWM A.E at (m� 20)
0 0 2.10 000E − 08
0.10 2.9 000 000 000E − 19 2.11 000E − 08
0.20 2.7 250 000 000E − 16 2.09 000E − 08
0.30 1.5 097140 000E − 14 2.09 000E − 08
0.40 2.5 278 786 000E − 13 2.08 000E − 08
0.50 2.1 711 958 200E − 12 2.06 000E − 08
0.60 1.2 059 545 750E − 11 2.04 000E − 08
0.70 4.8 707 056 530E − 11 2.03 000E − 08
0.80 1.5172 838 626E − 10 2.00 000E − 08
0.90 3.6 994 453 098E − 10 1.99 000E − 08
1.0 6.6 825 465 360E − 10 1.97 000E − 08

1.0

0.9

0.8

0.7

0.6

0.5

0.0 0.2 0.4 0.6 0.8 1.0
u

Exact
CPM

Figure 4: (e graph of absolute error at various fractional orders for problem 2.
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Table 9. Table 10 shows the error comparison of CPM and
CWM at m � 6 which confirm that CPM converges quickly
as compared to CWM. We illustrate the accurate and es-
timated solutions for m � 6 in Figure 11, while Figure 12
shows the error comparison of both methods. In Figure 13,

the solution for example 4.5 at different fractional orders is
calculated. It is confirmed that the solution at various
fractional order approaches towards the integer-order so-
lution. (e results of the presented method are better than
those of the CWM method for this problem.
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Figure 5: Exact and CPM solution graph for problem 2.
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Figure 6: Error graph of MLWM and CPM for problem 2.
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Table 5: Exact, CPM solution, and CPM A.E of problem 3 at m� 3.

u Exact CPM CPM error
0 0.000 000 000 000 00 0.000 000 000 000 00 4.0 000 000 000E+ 00
0.10 0.010 000 000 000 00 0.010 000 000 000 00 1.2100 000 000E − 29
0.20 0.040 000 000 000 00 0.040 000 000 000 00 2.4 800 000 000E − 29
0.30 0.090 000 000 000 00 0.090 000 000 000 00 3.7 400 000 000E − 29
0.40 0.160 000 000 000 00 0.160 000 000 000 00 5.0 000 000 000E − 29
0.50 0.250 000 000 000 00 0.250 000 000 000 00 6.4 000 000 000E − 29
0.60 0.360 000 000 000 00 0.360 000 000 000 00 7.8 000 000 000E − 29
0.70 0.490 000 000 000 00 0.490 000 000 000 00 9.4 000 000 000E − 29
0.80 0.640 000 000 000 00 0.640 000 000 000 00 1.1 100 000 000E − 28
0.90 0.810 000 000 000 00 0.810 000 000 000 00 1.2 800 000 000E − 28
1.0 1.000 000 000 000 00 1.000 000 000 000 00 1.4 000 000 000E − 28

Table 6: Absolute error (A.E) comparison of CPM and other different methods of problem 3.

u CPM A.E at (m� 3) MLWM A.E at (m� 5)
0 4.0 000 000 000E+ 00 1.41 421E − 09
0.10 1.2100 000 000E − 29 4.75 800E − 08
0.20 2.4 800 000 000E − 29 9.69 300E − 08
0.30 3.7 400 000 000E − 29 1.47 010E − 07
0.40 5.0 000 000 000E − 29 1.98 200E − 07
0.50 6.4 000 000 000E − 29 2.50 900E − 07
0.60 7.8 000 000 000E − 29 3.05 500E − 07
0.70 9.4 000 000 000E − 29 3.62 400E − 07
0.80 1.1 100 000 000E − 28 4.22 000E − 07
0.90 1.2 800 000 000E − 28 4.84 800E − 07
1.0 1.4 000 000 000E − 28 5.51 000E − 07
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Figure 7: (e exact and CPM solution graph for problem 3.
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Figure 8: Error graph of MLWM and CPM for problem 3.

Table 7: Exact, CPM solution, and CPM A.E at m� 4 of problem 4.

u Exact CPM CPM error
0 1.000 000 000 000 000 1.000 000 000 000 000 2.0 000 000 000E − 40
0.10 1.099 000 000 000 000 1.099 000 000 000 000 3.0 000 000 000E − 39
0.20 1.192 000 000 000 000 1.192 000 000 000 000 6.0 000 000 000E − 39
0.30 1.273 000 000 000 000 1.273 000 000 000 000 7.0 000 000 000E − 39
0.40 1.336 000 000 000 000 1.336 000 000 000 000 1.0 000 000 000E − 38
0.50 1.375 000 000 000 000 1.375 000 000 000 000 1.3 000 000 000E − 38
0.60 1.384 000 000 000 000 1.384 000 000 000 000 1.6 000 000 000E − 38
0.70 1.357 000 000 000 000 1.357 000 000 000 000 1.9 000 000 000E − 38
0.80 1.288 000 000 000 000 1.288 000 000 000 000 2.3 000 000 000E − 38
0.90 1.171 000 000 000 000 1.171 000 000 000 000 2.5 000 000 000E − 38
1.0 1.000 000 000 000 000 1.000 000 000 000 000 2.9 000 000 000E − 38

Table 8: Absolute error (A.E) comparison of CPM and other different methods for problem 4.

u CPM error at (m� 4) MWBA error at (m� 8)
0 2.0 000 000 000E − 40 1.20 000E – 29
0.10 3.0 000 000 000E − 39 1.00 000E − 29
0.20 6.0 000 000 000E − 39 1.00 000E − 29
0.30 7.0 000 000 000E − 39 1.00 000E − 29
0.40 1.0 000 000 000E − 38 1.00 000E − 29
0.50 1.3 000 000 000E − 38 1.00 000E − 29
0.60 1.6 000 000 000E − 38 1.00 000E − 29
0.70 1.9 000 000 000E − 38 1.00 000E − 29
0.80 2.3 000 000 000E − 38 2.00 000E − 29
0.90 2.5 000 000 000E − 38 2.00 000E − 29
1.0 2.9 000 000 000E − 38 1.50 000E − 29
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Figure 9: (e exact and CPM solution graph for problem 4.
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Figure 10: Error graph of MWBA and CPM for problem 4.

Table 9: Exact, CPM solution, and CPM error of problem 5 for m� 6.

u Exact CPM CPM (A.E)
0 1.000 000 000 000 000 1.000 000 000 000 000 0.0 000 000 000E+ 00
0.01 0.990 049 833 749168 0.990 049 833 749168 2.6 506 231 572E − 16
0.02 0.980198 673 306 755 0.980198 673 306 738 1.6 837 479 038E − 14
0.03 0.970 445 533 548 508 0.970 445 533 548 318 1.9 035198 323E − 13
0.04 0.960 789 439152 323 0.960 789 439151 262 1.0 614 659 655E − 12
0.05 0.951 229 424 500 714 0.951 229 424 496 695 4.0185154 936E − 12
0.06 0.941 764 533 584 249 0.941 764 533 572 341 1.1 907 912 782E − 11
0.07 0.932 393 819 905 948 0.932 393 819 876151 2.9 797 628 776E − 11
0.08 0.923116 346 386 636 0.923116 346 320 752 6.5 884 200 594E − 11
0.09 0.913 931 185 271 228 0.913 931 185138 694 1.3 253 379 871E − 10
0.10 0.904 837 418 035 960 0.904 837 417 788 512 2.4 744 798 291E − 10
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Table 10: Absolute error (A.E) comparison of CPM and other different methods of problem 5 at m� 6.

u CPM A.E CWM A.E
0 0.0 000 000 000E+ 00 0.0 000 000 000E+ 00
0.01 2.6 506 231 572E − 16 8.20 000E − 09
0.02 1.6 837 479 038E − 14 6.68 000E − 08
0.03 1.9 035198 323E − 13 2.28 800E − 07
0.04 1.0 614 659 655E − 12 5.50 500E − 07
0.05 4.0185154 936E − 12 1.09130E − 06
0.06 1.1 907 912 782E − 11 1.91 420E − 06
0.07 2.9 797 628 776E − 11 3.08 520E − 06
0.08 6.5 884 200 594E − 11 4.67 410E − 06
0.09 1.3 253 379 871E − 10 6.75 420E − 06
0.10 2.4 744 798 291E − 10 9.40 260E − 06
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Figure 11: (e exact and CPM solution graph for problem 5.
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Figure 12: Error graph of CWM and CPM for problem 5.
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6. Conclusion

In this study, we applied the Chebyshev pseudospectral
method for solving fractional delay differential equations.
(e technique is easy to implement and show good con-
vergence rate than other methods. Some examples are solved
which shows the effectiveness of the present method. (e
results we obtained are compared with other methods such
as modified wavelet-based algorithm (MWBA), modified
Laguerre wavelet method (MLWM), Chebyshev wavelet
method (CWM). It is clear from comparison that CPM has
higher accuracy than all these methods. Although, CPM can
easily be extended to other fractional delay or nondelay
models of physics and real-life sciences.
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