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(e consistent tanh expansion (CTE) method is successfully applied to the coupled integrable dispersionless (CID) system. A
nonauto-Bäcklund transformation (BT) theorem includes two fields f and v1 is obtained by using the CTE method. One obtains
the consistent condition in the nonauto-BT theorem by means of the relation between the fields f and v1. (e CID system
possesses the CTE solvability property by some detailed analysis. Many interactions between one soliton and multiple resonant
solitons, and between one soliton and cnoidal waves are generated by using the nonauto-BT theorem.(e types of bright and gray
two front waves are shown by some figures. In the meanwhile, the nonlocal symmetry is obtained by the truncated Painlevé
method and the Möbious invariant form.(e initial value problem and an auto-BTare constructed by the localization procedure.

1. Introduction

Finding soliton solutions of the nonlinear integrable sys-
tems is an important topic in nonlinear science. A large
number of useful methods have been investigated, such as
the inverse scattering transformation [1–3], Hirota’s bi-
linear method [4], symmetry reductions [5–7], the Dar-
boux transformation [8], the Painlevé analysis method [9],
the Bäcklund transformation (BT) [10], the separated
variable method [11], etc [12, 13]. (e similarity solutions
can be found by the Lie point symmetry method [14, 15]. To
describe the complex physical phenomena, the interactions
among different nonlinear excitations are worth studying
compared with soliton solutions [16–19]. (ese interaction
excitations cannot be obtained by the direct Lie point
symmetry method. Recently, different types of excitations
are valid by using the symmetry reductions related to
nonlocal symmetry and a consistent tanh expansion (CTE)
method [20–28]. (e CTE method can be investigated not
only for various different types of excitations but also for an
integrable property of the nonlinear systems, including the

supersymmetric extension of the nonlinear systems
[29–32]. Many dispersionless integrable systems have been
developed in various applications, such as quantum field
theories, string theory, conformal field theory, and con-
densed matter theory [33–38]. (e geometry of the dis-
persionless equation is systematically studied by using the
bishop frames and Darboux frames [39, 40]. Multisoliton
solutions of two components of the CID equation are
constructed by the Darboux transformation [41]. (e
nonlocal symmetry of two components of the CID equation
is obtained by the BT method [42]. A coupled dis-
persionless integrable system and its generalizations based
on nonabelian Lie groups have many potential applications
in diverse areas [43, 44]. Here, we shall apply the CTE
method to study three components of the coupled inte-
grable dispersionless (CID) system.(e features of the CTE
solvability, interaction solutions, and nonlocal symmetry
are considered which might be sufficient to explain the
relevant physical processes.

(e layout of this paper is organized as follows: In
Section 2, the CID system does accept a CTE solvable
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system by using the CTE method. (e nonauto-BT the-
orem which consists of the consistent condition is given
by the CTE method. In Section 3, interactions between
one soliton and multiple resonant soliton solutions, be-
tween one soliton and cnoidal periodic waves are given by
means of the nonauto-BT theorem. In Section 4, the
nonlocal symmetry of the CID equation is obtained by the
truncated Painlevé analysis. (e initial value problem
related to the nonlocal symmetry is solved by the local-
ization procedure. Section 5 is a simple summary and
discussion.

2. CTE Solvability of CID System

(e CID system reads

uxt + uxw + uwx � 0,

vxt − 2uxv � 0,

wxt − 2uxw � 0,

(1)

which is first given based on a point of view group theoretical
[43]. (e CID system (1) is solvable by the inverse scattering
transform technique, the Lax pair, and the Painlevé property
[43, 44]. (e Darboux transformation of the CID system is
studied based on a non-Abelian Lie group and expressed the
matrix solutions in terms of quasideterminants [45]. (e
multisoliton solutions are constructed in terms of the
Casorati determinants [46]. Based on the generalized Dar-
boux transformation, the nth-order rogue wave solution of
the CID equation is studied [47]. Lie symmetry analysis and
group invariant solutions for the CID equation are given
[48]. (e multirotating loop soliton solutions are given by
the perturbation technique and symbolic computation [49].
Traveling wave-guide channels of a CID system are inves-
tigated by using the fourth-order Runge-Kutta’s computa-
tional scheme [50] and Hirota’s bilinear method [51].
Algebraic structures of a general CID system are analyzed
through the prolongation structure approach [52]. (e
multivalued loop soliton, chaotic soliton chain, and fractal
pattern are studied by using the projective Riccati equation
method [53].

To apply the CTE method in the CID equation, the
consistent tanh expansion is written as the following form
based on the leading order analysis [21]

u � u0 + u1tanh(f),

v � v0 + v1tanh(f),

w � w0 + w1tanh(f),

(2)

where u0, u1, v0, v1, w0, w1 and f are arbitrary functions of
(t, x). By substituting equation (2) into the CID system (1)
and vanishing the coefficients of powers of tanh3(f) and
tanh2(f), we obtain the solutions of u1, v1, w1􏼈 􏼉 and
u0, v0, w0􏼈 􏼉, respectively

u1 � − ft, v1 � v1, w1 � ft, (3)

and

u0 �
ftt

2ft

,

v0 � −
v1t

2ft

−
v1x

2fx

+
v1fxt

2fxft

,

w0 � −
ftt

2ft

.

(4)

Vanishing the coefficients of tanh1(f) and tanh0(f)

with equations (3 and 4), the functions of f and v1 satisfy

f; t􏼈 􏼉x − 4ftfxt � 0, (5a)

v1xt −
v1fxt

ft

􏼠 􏼡
t

+
fxt

ftfx

v1ft( 􏼁x � 0, (5b)

where f; t􏼈 􏼉 � (z/zt)(ftt/ft) − (1/2)(ftt/ft)
2 is Schwar-

zian derivative. Two functions for f and v1 satisfy equation
(5). (e expansion (2) is thus called a CTE and the CID
system (1) is a CTE solvable system [20].

Nonauto-BT theorem. If the solution f and v1 satisfies
the consistent condition (5), then the solution of u, v,and w

for equation (6) is also a solution of the CID system (1)

u � − fttanh(f) +
ftt

2ft

,

v � v1tanh(f) −
v1t

2ft

−
v1x

2fx

+
v1fxt

2fxft

,

w � fttanh(f) −
ftt

2ft

.

(6)

(e nonauto-BT theorem of the CID equation (1) can be
constructed based on the aforementioned detail calculations.
Some exact solutions including the interaction between
soliton and other kinds of complicated waves can be ob-
tained by means of aforementioned nonauto-BT theorem. In
the next section, some concrete interesting examples are
given via the nonauto-BT theorem.

3. Interaction Solutions for CID System

A quite trivial straight line solution of equation (5) has the
form

f � kx + ωt, v1 � kx + ωt, (7)

where k and ω are the free constants. Substituting the trivial
solution equations (7) into (6), the exact solution of the CID
system yields

u � − ωtanh(kx + ωt),

v � − 1 +(kx + ωt)tan h(kx + ωt),

w � ωtanh(kx + ωt).

(8)

(e nontrivial solution (8) of the CID equation is given
from a quite trivial solution of equation (7).

2 Complexity



To find the interaction between one soliton and other
nonlinear waves, we can assume the solutions as one straight
line (7) plus undetermined waves. (e interaction between
one soliton and multiple resonant soliton solutions f of
equation (6) is given as

f � k0x + ω0t + a0 ln 1 + 􏽘
n

i�1
exp kix + ωit( 􏼁⎡⎣ ⎤⎦, (9)

where k0, ki and ωi are arbitrary constants while a0 and ω0
are determined by the relations

a0 � ±
1
2
,

ω0 � ∓
ωn

2
.

(10)

(e solution v1 of equation (6) has the following form

v1 � Aft, (11)

with the arbitrary constant A. Equations (5a) and (5b) will
become one equation by substituting the relation (11) to (5).
It demonstrates that equations (5a) and (5b) transform into a
consistent system by means of the relation (11). (e solution
of the CID equation can be obtained by substituting
equations (9) and (11) into (6). By selecting
n � 1, a0 � (1/2),ω0 � − (ω1/2), the solution of the CID
equation reads

u �
ω1 tanh k0x − ω1/2( 􏼁t +(1/2)ln k1x + ω1t( 􏼁( 􏼁 − exp k1x + ω1t( 􏼁􏼂 􏼃

2 1 + exp k1x + ω1t( 􏼁􏼂 􏼃
,

v �
− ω1A tanh k0x − ω1/2( 􏼁t +(1/2)ln k1x + ω1t( 􏼁( 􏼁 + exp k1x + ω1t( 􏼁􏼂 􏼃

2 1 + exp k1x + ω1t( 􏼁􏼂 􏼃
,

(12)

and w � − u from the nonauto-BT theorem. Figures 1 and 2
display the special interaction solution with the parameters
selected as k0 � (1/8), k1 � (1/3), A � 10. (e parameter ω1
is chosen as 1/2 and − 1/2 in Figures 1 and 2, respectively.(e
amplitude of v can be controlled with the parameter A. (e
amplitudes in Figures 1(b) and 2(b) are larger than
Figures 1(a) and 2(a) due to A � 10. Figures 1(a) and 2(a) are
the types of bright (ω1 > 0) and gray (ω1 < 0) two front
waves for u, and vice versa for v.

Similar to the form of equation (9), the interaction
between one soliton and cnoidal periodic waves reads as

f � k0x + ω0t + F(X), X � kx + ωt, (13)

where k0, ω0, k and ω are all the free constants. Substituting
the expression (13) into (5), we obtain the standard elliptic
function equation of F1(X)

F
2
1X − 4F

4
1 + a1F

3
1 + a2F

2
1 + a3F1 + a4 � 0, F1 � FX, (14)

with

a1 �
8C2

ω
−
8ω0

ω
,

a2 �
16ω0C2

ω2 −
4ω2

0

ω2 −
4C

2
2

ω2 −
C1ω

2

4
,

a3 �
8ω2

0C2

ω3 −
8ω0C

2
2

ω3 −
C1ωω0

2
,

a4 � − C1ω
2
0 −

16ω2
0C

2
2

ω4 ,

(15)

and C1 and C2 are arbitrary constants. (e interaction
between one soliton and cnoidal periodic waves f in
equation (5) can be written as [22, 23].

f � k0x + ω0t + a0 EllipticPi(JacobiSN(kx + ωt, m), n, m),

(16)

where k0,ω0, a0, k,ω, n and m are constants and EllipticPi
is the third incomplete elliptic integrals. (e interaction
between a soliton and cnoidal periodic waves f satisfies
(5) with the parameter n � 0. Besides the solution v1
of equation (11), one can also get other solutions of
the field v1 by the transformation v1 � V1(X). (e or-
dinary differential equation (ODE) is obtained from
equation (5)

V1XX −
a0 2a0kωF1 + kω0 + k0ω( 􏼁

a0ωF1 + ω0( 􏼁 a0kF1 + k0( 􏼁
F1XV1X

+
a
2
0ω 2a0kωF1 + kω0 + k0ω( 􏼁

a0ωF1 + ω0( 􏼁
2

a0kF1 + k0( 􏼁
F
2
1X

⎡⎣

−
a0ω

a0ωF1 + ω0
F1XX􏼣V1 � 0.

(17)

(e solution of V1 can be obtained directly by solving
ODE (17)

v1 � V1(X) � C3 a0ωF1 + ω0( 􏼁

+ C4 a0ωF1 + ω0( 􏼁 􏽚
a0kF1 + k0( 􏼁

a0ωF1 + ω0( 􏼁
dX.

(18)
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(e interaction between solitons and cnoidal periodic
waves can happen in the ocean [22].(e results are useful for
explaining ocean phenomena.

4. Nonlocal Symmetry and BT for CID System

Based on the truncated Painlevé analysis of the CID
equation, the Laurent series expansion of u, v andw reads [9]

u �
u1

ϕ
+ u0, v �

v1
ϕ

+ v0, w �
w1

ϕ
+ w0, (19)

where ϕ, u0, u1, v0, v1, w0, and w1 are functions in a
neighborhood of the noncharacteristic singular manifold. By
substituting the expansion (19) into (1) and vanishing the
coefficients of ϕ independently, one obtains

u1 � − ϕt,

v1 � Aϕt,

w1 � ϕt.

(20)

and

u0 �
ϕtt

2ϕt

,

v0 � − A
ϕtt

2ϕt

,

w0 � −
ϕtt

2ϕt

,

(21)

with an arbitrary constant A. (e field ϕ satisfies the fol-
lowing Schwarzian CID form

ϕ; t􏼈 􏼉x � 0, (22)

where ϕ; t􏼈 􏼉 is the Schwarzian derivative.
By the definition of residual symmetry [21], the nonlocal

symmetry of the CID equation is given by the truncated
Painlevé analysis (19).

σu
� − ϕt,

σv
� Aϕt,

σw
� ϕt.

(23)

(e nonlocal symmetry (23) can be obtained by the
Möbious transformation [54–56]. (e Schwarzian form (22)
is invariant under the Möbious transformation [9]

ϕ⟶
aϕ + b

cϕ + d
, ad≠ bc. (24)

By selecting d � 1, b � 0, c � − ϵ in equations (24) and
(22) possesses the symmetry

σϕ � aϕ + aϕ2. (25)

(e nonlocal symmetry (23) will be given by substituting
the Möbious transformation symmetry (25) into the sym-
metry equation of (21).

For Lie’s first principle, the initial value problem related
to the nonlocal symmetry (23) is
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Figure 1: (e propagation for u (bright) and v (gray) is plotted in (a) and (b), respectively.
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Figure 2: (e propagation for u (gray) and v (bright) is plotted in (a) and (b), respectively.
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du

dϵ
� − ϕt, u|ϵ�0 � u,

dv

dϵ
� Aϕt, v|ϵ�0 � v,

dw

dϵ
� ϕt, w|ϵ�0 � w.

(26)

(e initial value problem of (26) exists in the function ϕ
and its differentiation so it is difficult to solve [21]. To solve
the initial value problem (26), one introduces a new field to
remove the differentiation of ϕ. To eliminate the differen-
tiation, the new field satisfies the following relation

ϕt � g. (27)

(e symmetry for the prolonged systems (1), (21), and
(27) gives

σu
� − g, σv

� Ag, σw
� g, σϕ � − ϕ2, σg

� − 2ϕg. (28)

(e nonlocal symmetry (23) in the original space
x, t, u, v, w{ } is localized to a Lie point symmetry (28) in the
prolonged space x, t, u, v, w,ϕ, g􏼈 􏼉. (e corresponding
vector form is

V � − g
z

zu
+ Ag

z

zv
+ g

z

zw
− ϕ2

z

zϕ
− 2ϕg

z

zg
. (29)

For the prolonged CID systems (1), (21), and (27), the
initial value problem reads as

du

dϵ
� − g, u|ϵ�0 � u,

dv

dϵ
� Ag, v|ϵ�0 � v,

dw

dϵ
� g, w|ϵ�0 � w,

dϕ
dϵ

� − ϕ2, ϕ|ϵ�0 � ϕ,

dg

dϵ
� − 2ϕg, g|ϵ�0 � g.

(30)

(e auto-BT theorem of the enlarged CID systems is
constructed by solving the aforementioned initial value
problem (30).

Auto-BT 1eorem. If u, w, v, ϕ and g are a solution to the
enlarged CID systems, then u, v, w, ϕ and g are also a so-
lution to the enlarged CID systems

u � u −
ϵg

β(ϵϕ + 1)
,

v � v +
ϵAg

β(ϵϕ + 1)
,

w � w +
ϵg

β(ϵϕ + 1)
,

ϕ �
f

1 + ϵϕ
,

g �
g

(1 + ϵϕ)
2,

(31)

with an arbitrary group parameter ϵ. (e new solution can
be obtained by means of the old solution and the afore-
mentioned auto-BT theorem.

5. Conclusions

In summary, the CTEmethod has been successfully applied
to the CID equation. A nonauto-BT theorem is derived by
using the CTE method. It demonstrates that the CID
system possesses the CTE solvability property. Abundant
interaction between solitons and other types of solitary
waves for the CID system is studied by means of the
nonauto-BT theorem. One obtains two relations of the
solutions between v1 and f for equations (11) and (18). (e
types of bright and gray two front waves for u and v are
plotted in Figures 1 and 2. Based on the Painlevé analysis,
the nonlocal symmetry is constructed. (e initial value
problem and the auto-BTrelated by the nonlocal symmetry
are obtained by introducing a new field. In the meanwhile,
interactions between solitons and other types of waves can
be constructed by the symmetry reductions related to
nonlocal symmetry. Besides the classical integrable sys-
tems, the study of nonlocal symmetry systems has become
an important subject in nonlinear science [57, 58]. (ese
aspects of the nonlocal CID system are worthy of study in
the future.
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