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In consideration of that the correlation between any two assets of the asset pool is always stochastic in the actual market and that
collateralized debt obligation (CDO) pricing models under nonhomogeneous assumptions have no semianalytic solutions, we
designed a numerical algorithm based on randomized quasi-Monte Carlo (RQMC) simulation method for CDO pricing with
stochastic correlations under nonhomogeneous assumptions and took Gaussian factor copula model as an example to conduct
experiments. ,e simulation results of RQMC and Monte Carlo (MC) method were compared from the perspective of variance
changes. ,e results showed that this numerical algorithm was feasible, efficient, and stable for CDO pricing with stochastic
correlation under nonhomogeneous assumptions. ,is numerical algorithm is expected to be extended to other factor Copula
models for CDO pricing with stochastic correlations under nonhomogeneous assumptions.

1. Introduction

Collateralized debt obligation (CDO) is one of the most
typical securitized assets in credit derivative markets, and its
pricing has always been the focus of scholars. In the pricing
process of CDO, the reduced model is widely used for
establishing default distribution of a single reference entity,
factor Copula methods are the mainstream of joint default
distribution of asset portfolio [1, 2], and the spread of each
tranche of CDO can be calculated according to the principle
of arbitrage-free pricing [3].

,e Gaussian factor Copula model is usually considered
to be the standard model for CDO pricing, but its correlation
coefficient is a deterministic parameter. In fact, the stochastic
correlation copula is closer to themarket [3].,erefore, some
scholars extended the constant correlation coefficient to a
stochastic one. Burtschell et al. [4] provided a thorough
analysis of the three-state stochastic correlation model with
homogeneity and obtained the semianalytical pricing for-
mula. Yang et al. [5] proposed a semianalytical method for

the credit spreads of each CDO tranche under the conditions
of homogeneity and stochastic correlations based on single-
factor Copula model with mixed distribution.

As we can see, the above literature is all based on the
assumption of homogeneity. However, it is difficult to meet
the requirements of homogeneity in actual markets and the
arbitrage-free pricing models under nonhomogeneous as-
sumptions have no semianalytical solutions [6]. ,erefore, it
might be a good idea to resort to numerical methods.

Monte Carlo (MC) is one of the most common numerical
methods [7, 8]. However, this method has a certain di-
mension disaster problem. Quasi-Monte Carlo (QMC)
[9, 10] is an extension of MC, and it is usually superior toMC
in dealing with high-dimensional problems. Furthermore, by
introducing a randomized component into the QMC
method, the randomized quasi-Monte Carlo (RQMC)
method can effectively improve the cycle problem [11], which
usually has higher convergence order than MC and QMC.
Some scholars applied RQMC to option pricing [12–14].
Johansson et al. [12] studied the pricing of American options
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using RQMC and found that RQMC could reduce both the
variance and the bias of the option. Amal et al. [13] applied
array-RQMC for option pricing under a stochastic volatility
process, and the empirical results showed that it could bring
very significant variance reductions compared with MC. He
[14] found that RQMC had a better rate of convergence in
financial option pricing.

Qu et al. [15] introduced RQMC into the CDO pricing
based on a single-factor Copula framework and nonho-
mogeneous hypothesis and achieved good results. However,
only the constant correlation coefficient was considered in
the model. To our knowledge, there have been no further
reports of RQMC being used to solve the CDO pricing
issues. In view of this, we intend to design a numerical
algorithm for the CDO pricing with stochastic correlations
based on RQMC and Gaussian factor Copula model under
the conditions of nonhomogeneous assumptions and con-
duct empirical research.We try to provide some ideas for the
pricing problem with stochastic correlations under the
nonhomogeneous assumptions in the credit derivative
markets.

,e rest of this paper is organized as follows: Some
preliminary knowledge is introduced in Section 2. In the
following section, the concrete algorithm process is given
based on RQMC. ,e empirical study is carried out in
Section 4. Finally, the conclusion and the discussion are
presented in Section 5.

2. Methodology

2.1. Arbitrage-Free Pricing Model. First, we give some
symbols used in this paper and their meanings are shown in
Table 1.

According to the principle of arbitrage-free pricing, for
them-th tranche, the discounted expectation of premium leg
(PL) and default leg (DL) should be equal, i.e.,

E PL am−1, am (  � E DL am−1, am ( , m � 1, 2, . . . , M. (1)

In the continuous case, they can be expressed as follows:

E PL am−1, am (  � E 
T

0
smEm(t)e

− rftdt  ≈ sm Am + Bm( , (2)

E DL am−1, am (  � E 
T

0
e

− rftdLm(t)  ≈ Cm. (3)

From equations (1)–(3), we have

sm �
Cm

Am + Bm

m � 1, 2, . . . , M. (4)

2.2. Gaussian Factor Copula Model with Stochastic
Correlations. In Gaussian factor Copula model with sto-
chastic correlations, the yield rate Xi(i � 1, 2, . . . , n) of the
i-th asset is determined by a common factor F and a special
factor Zi(i � 1, 2, . . . , n), namely,

Xi �
��
ρi


F +

�����
1 − ρi


Zi, i � 1, 2, . . . , n, (5)

where F and Zi(i � 1, 2, . . . , n) are independent of each
other and they are all subject toN(0, 1); ρi(i � 1, 2, . . . , n) are
stochastic correlation coefficients between Xi(i � 1, 2, . . . ,

n) and F, and it is independent of F and Zi(i � 1, 2, . . . , n);
Xi(i � 1, 2, . . . , n) is also independent of each other when F
and ρi(i � 1, 2, . . . , n) are conditions. ,e distribution
functions of F, Zi, and Xi are denoted as GF, GZi

, and GXi
,

respectively, where i � 1, 2, . . . , n.

Now, we consider the case that the random variable ρi of
equation (5) is in two states.

State 1. When ρi � ρi(i � 1, 2, . . . , n), equation (5) can be
written as

Xi �
��
ρi

√
F +

�����
1 − ρi


Zi i � 1, 2, . . . , n. (6)

,e probability of this state is p.

State 2. When ρi � ηi(i � 1, 2, . . . , n), we have

Xi �
��
ηi

√
F +

�����
1 − ηi


Zi i � 1, 2, . . . , n. (7)

In this case, the probability is 1 − p.
We point out that in this paper, we use corresponding

superscript symbols (1) and (2) to indicate States 1 and 2,
respectively.

For them-th tranche, according to equation (4), we have

s
(1)
m �

C
(1)
m

A
(1)
m + B

(1)
m

, m � 1, 2, . . . , M, (8)

s
(2)
m �

C
(2)
m

A
(2)
m + B

(2)
m

, m � 1, 2, . . . , M. (9)

Now, let us take State 1 as an example to illustrate.
In State 1, according to the reduced model, the accu-

mulative probability of the i-th asset defaulting before t
(1)
i

can be written as

Q
T

(1)

i

t
(1)
i  � 1 − e

−λ(1)

i
t
(1)

i , (10)

where λ(1)
i is the default intensity of the i-th asset andT(1)

i is
default time. For the i-th asset, we know that the default
correlation of yield rate X

(1)
i can be reflected by the cor-

relation of default time T
(1)
i , so we can assume that the

relationship between T
(1)
i and X

(1)
i can be described as

P X
(1)
i ≤x

(1)
i  � P T

(1)
i ≤ t

(1)
i , (11)

namely,

G
X

(1)

i

x
(1)
i  � Q

T
(1)

i

t
(1)
i . (12)

,en, according to equations (10)–(12), t
(1)
i can be obtained:

t
(1)
i � Q

−1
T

(1)

i

G
X

(1)

i

x
(1)
i   � −

ln 1 − G
X

(1)

i

x
(1)
i  

λ(1)
i

. (13)
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By substituting t
(1)
i into equations (2) and (3), s(1)

m (m �

1, . . . , M) can be obtained by equation (8).
Similarly, the corresponding default time t

(2)
i in State 2

can be obtained as follows:

t
(2)
i � Q

−1
T

(2)

i

G
X

(2)

i

x
(2)
i   � −

ln 1 − G
X

(2)

i

x
(2)
i  

λ(2)
i

, (14)

where λ(2)
i is default intensity of the i-th asset in State 2.

,en, s(2)
m (m � 1, ..., M) can be obtained.

Finally, we have

sm � ps
(1)
m +(1 − p)s

(2)
m , m � 1, . . . , M. (15)

2.3. Random Sobol Sequences. Figure 1 shows the scatter
diagrams of pseudo-random sequences used in MC, Sobol
sequences used in QMC, and randomized Sobol (Sobol
scramble) sequences used in RQMC in high-dimensional
cases (125-th dimension and 126-th dimension), respec-
tively, where the number of points are all 1100.

It can be seen from Figure 1 that randomized Sobol
sequences not only maintain good uniformity but also
improve circulation problems of Sobol sequences in high
dimension. In this paper, RQMC method based on ran-
domized Sobol sequences is adopted.

In this paper, we call command equation (16) in
MATLAB to generate (n+ 1)-dimensional Sobol sequences
and (n+ 1)-dimensional randomized Sobol sequences.

P � sobolset(n + 1); P � scramble

· P, ‘Matousek AffineOwen’( ).
(16)

3. Algorithm

In this section, based on the Gaussian factor Copula model,
we design the RQMC simulation algorithm for CDO pricing
with stochastic correlations of the two states under non-
homogeneous assumptions.

First, we draw the algorithm flow chart (concise format),
as shown in Figure 2. ,e meanings of ρi, ηi, p, and ST are
shown in Step 1 of the algorithm.

Next, we give the concrete steps of the algorithm.

Step 1. Determine and input the relevant data.
Assume that there are only two values ρi and ηi for

stochastic correlation coefficients ρi and corresponding
probabilities are p and 1 − p, respectively, where i � 1, . . . , n.
In addition, we preset the total number of simulations,
denoted as ST.

Step 2. Generate randomized Sobol sequences.
(n+ 1)-dimensional randomized sequences (ε0, ε1, . . . ,

εn) are generated by command equation (16); then, we can
get corresponding sequences (G−1

F (ε0), G−1
Z1

(ε1), . . . ,

G−1
Zn

(εn)), which is a set of values (F, Z1, . . . , Zn), denoted as
(y, z1, . . . , zn).

Table 1: Symbols and their meanings.

Symbol Meaning Note
n Number of reference entities in the asset pool of CDO
Ni Nominal value of the i-th reference entity i � 1, 2, . . . , n

N Total nominal value N � 
n
i�1 Ni

Ri Recovery rate of the i-th reference entity i � 1, 2, . . . , n

li Loss of the i-th reference entity li � Ni(1 − Ri),

i � 1, 2, . . . , n

L(t) Accumulative default loss at time t L(t) � 
n
i�1 li1 Ti≤t{ },1 Ti≤t{ } �

1, if Ti ≤ t

0, if Ti > t


rf Risk-free interest rates
T Term of CDO Unit: year
τj Payment of time nodes j � 1, 2, . . . , J, τJ � T

Δτj Payment interval Δτj � τj − τj−1,j � 1, 2, . . . , J, τ0 � 0
M Total number of tranches
[am−1,am] ,e m-th tranche m � 1, 2, . . . , M

Lm(t) Loss suffered by the m-th tranche at time t Lm(t) � max L(t) − Nam−1, 0  − max L(t) − Nam, 0 , m � 1, 2, . . . , M

Em(t) Residual value of the m-th tranche at time t Em(t) � Nam − Nam−1 − Lm(t), m � 1, 2, . . . , M

sm Spread of the m-th tranche

m � 1, 2, . . . , M

sm Am
Discounted value of normal payment for promotion

of the m-th tranche

sm Bm
Accrual payment of the m-th tranche when default

occurs

Cm
Discounted value of compensation of the m-th

tranche
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Step 3. Simulate a path of yields in the two states,
respectively.

Substitute y, zi(i � 1, . . . , n) obtained in Step 2 and
ρi(i � 1, . . . , n) determined in Step 1 into equation (6) to get
the corresponding values x

(1)
i (i � 1, . . . , n) of yield rates

X
(1)
i (i � 1, . . . , n) in State 1, and substitute

y, zi(i � 1, . . . , n) and ηi(i � 1, ..., n) into equation (7) to get
the corresponding values x

(2)
i (i � 1, ..., n) of yield rates

X
(2)
i (i � 1, . . . , n) in State 2.

Step 4. Generate default times in the two states, respectively.
Substitute x

(1)
i andx

(2)
i (i � 1, . . . , n) obtained in Step 3

into equations (13) and (14); then, we can obtain
t
(1)
i , t

(2)
i (i � 1, ..., n).

Step 5. Find out the actual default time in the two states.
Find out the actual default time for the two states:

t
(1)

k |t
(1)

k ∈ t
(1)
i |t

(1)
i ≤T, i � 1, . . . , n , k � 1, 2, . . . , K1  and

t
(2)

k |t
(2)

k ∈ t
(2)
i |t

(2)
i ≤T, i � 1, . . . , n , k � 1, . . . , K2 , where

K1(K1 ≤ n) and K2(K2 ≤ n) are the total number of real
default assets in the two states, respectively. Here, we agree
that t

(1)

k (k � 1, 2, . . . , K1) and t
(2)

k (k � 1, 2, . . . , K2) have
been arranged in an order from the smallest to the largest, i.e.,

t
(1)

k ≤t
(1)

k+1 k � 1, 2, . . . K1 − 1( ,

t
(2)

k ≤t
(2)

k+1 k � 1, 2, . . . K2 − 1( .
(17)

We introduce default matrices L(1) andL(2):

L
(1)

�

t
(1)

1 t
(1)

2 t
(1)

3 . . . t
(1)

K1

h
(1)
1 h

(1)
2 h

(1)
3 . . . h

(1)
K1

H
(1)
1 H

(1)
2 H

(1)
3 . . . H

(1)
K1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

L
(2)

�

t
(2)

1 t
(2)

2 t
(2)

3 . . . t
(2)

K2

h
(2)
1 h

(2)
2 h

(2)
3 . . . h

(2)
K2

H
(2)
1 H

(2)
2 H

(2)
3 . . . H

(2)
K2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(18)

where h
(1)
k (k � 1, 2, . . . K1) and h

(2)
k (k � 1, 2, . . . K2) are the

corresponding nominal values of the k-th real default in the
two states, respectively, and H

(1)
k (k � 1, 2, . . . K1) and

H
(2)
k (k � 1, 2, . . . K2) are the corresponding cumulative

nominal values of the k-th real default by time t
(1)

k and t
(2)

k ,
respectively.

Step 6. Allocate default losses for the two states.
Let b(1)

m and b(2)
m be the corresponding positions of the

maximum loss that them-th tranche can bear in L(1) andL(2),
respectively, which means that H

(1)

b
(1)
m

(1 − R) � am, H
(2)

b
(2)
m

(1 − R) � am, where am is a separation point (maximum loss
should be taken by the m-th tranche); then, the default in-
formation allocated to the m-th tranche in the two states can
be represented by the following default matrices:

L
(1)
m �

t
(1)

bm−1+1 t
(1)

bm−1+2 . . . t
(1)

bm

h
(1)
bm−1+1 h

(1)
bm−1+2 . . . h

(1)
bm

H
(1)
bm−1+1 H

(1)
bm−1+2 . . . H

(1)
bm

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

L
(2)
m �

t
(2)

bm−1+1 t
(2)

bm−1+2 . . . t
(2)

bm

h
(2)
bm−1+1 h

(2)
bm−1+2 . . . h

(2)
bm

H
(2)
bm−1+1 H

(2)
bm−1+2 . . . H

(2)
bm

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(19)

Step 7. Calculate A(1)
m , B(1)

m , C(1)
m and A(2)

m , B(2)
m , C(2)

m .
For the m-th tranche [am−1, am](m � 1, . . . , M), the

initial nominal values are E
(m)(1)

0 � E
(m)(1)

0 � Nam − Nam−1
and we can calculate the residual values of States 1 and 2 at τj:

E
(m)(1)

j � E
(m)(1)

j−1 − 
k∈Ω1

(1 − R)h
(1)
k , j � 1, . . . , J1

E
(m)(2)

j � E
(m)(2)

j−1 − 
k∈Ω2

(1 − R)h
(2)
k , j � 1, . . . , J2.

(20)
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Figure 1: Scatter plots of different sequences.
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Here, Ω1 � k|τj−1 ≤t
(1)

k ≤ τj, b
(1)
m−1 + 1≤ k≤ b(1)

m  and
Ω2 � k|τj−1 ≤t

(2)

k ≤ τj, b
(2)
m−1 + 1≤ k≤ b(2)

m . ,en, we have

A
(1)
m � 

J1

j�1
Δτ × E

(m)(1)

j × e
− rfτj ,

B
(1)
m � 

b
(1)
m

k�b
(1)

m−1+1

t
(1)

k − t
(1)
∗  × h

(1)
k ×(1 − R) × e

− rf
t

(1)

k ,

C
(1)
m � 

b
(1)
m

k�b
(1)
m−1+1

h
(1)
k ×(1 − R) × e

− rf
t

(1)

k ,

A
(2)
m � 

J2

j�1
Δτ × E

(m)(2)

j × e
− rfτj ,

B
(2)
m � 

b
(2)
m

k�b
(2)

m−1+1

t
(2)

k − t
(2)
∗  × h

(2)
k ×(1 − R) × e

− rf
t

(2)

k ,

C
(2)
m � 

b
(2)
m

k�b
(2)
m−1+1

h
(2)
k ×(1 − R) × e

− rf
t

(2)

k ,

(21)

where t(1)
∗ and t(2)

∗ are the last coupon payment time periods
nearest to t

(1)

k and t
(2)

k in the two states, respectively.
Note: at this point, the values of A(1)

m , B(1)
m , C(1)

m and
A(2)

m , B(2)
m , C(2)

m of the m-th coupon on a path have been
calculated, where m � 1, . . . , M.

Repeat Steps 2–7 until the total number of simulations
reaches ST.

Step 8. Calculate sm(m � 1, . . . , M).
For m� 1, 2, . . ., M, we calculate the average values of

A(1)
m , B(1)

m , C(1)
m and A(2)

m , B(2)
m , C(2)

m , respectively, and denote
them as A

(1)
m , B

(1)
m , C

(1)
m and A

(2)
m , B

(2)
m , C

(2)
m in sequence.,en,

we substitute A
(1)
m , B

(1)
m , C

(1)
m into equation (8) to obtain s(1)

m

and substitute A
(2)
m , B

(2)
m , C

(2)
m into equation (9) to obtain s(2)

m .
Finally, we plug s(1)

m (m � 1, . . . , M) and s(2)
m (m � 1, . . . , M),

and the value of p into equation (15) to get
sm(m � 1, . . . , M).

,is is the end of the algorithm.

4. Empirical Study

4.1. Parameter Values. In this paper, the values of each
parameter are as follows (refer to [3]). Let n � 125, N � 1,
the nominal value and return rate of each reference entity be
all equal, respectively; that is, Ni � 1/n, Ri � R � 0.4, and
payment intervals are all Δτ � 0.25. Let rf � 0.035 and
duration T � 5 (year). CDO tranches are [0, 3%], [3%, 6%],
[6%, 9%], [9%, 12%], [12%, 22%], and [22%, 100%]. We
assume that the default intensity is equal, that is,
λ(1)

i � λ(2)
i � λ � 0.0083, and the Copula correlation coeffi-

cients of the two states are all equal, respectively; let
ρi � ρ � 0.12, ηi � η � 0.21, and the probability of state 1 be
p � 0.3. (Note: in the practical application, corresponding

values of ρi and ηi are just substituted into equations (6) and
(7), respectively; the default intensities λ(1)

i and λ(2)
i are just

substituted into equations (13) and (14), respectively; and
other steps in Section 3 are all the same.)

4.2. Result Analysis. In order to investigate the stability of
simulation results of the RQMC method and MC method,
we calculate the variances of the two simulation methods
under different simulation times and observe their changes
for each CDO tranche, respectively. We set the variation
range of simulation times from 5000 to 50000, with the step
size of 5000. For each different simulation times, we all
simulate 40 times and then calculate the corresponding
variances of MC and RQMC of each CDO tranche. ,e
variance changes of the simulation results of the two
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Generate the (n+1)-dimensional
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Figure 2: Algorithm flow chart (concise format).
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simulation methods for the pricing of each CDO tranche
with the increase in simulation times are shown in Figure 3.

On the whole, we can see from Figure 3 that the vari-
ances of the two simulation methods in six different tranches
are all decreased with the increase in simulation times, and
in each subgraph, the gaps between the two curves all reduce
gradually with the increase in simulation times. ,ese show
that the results of the two simulation methods are all
gradually stable with the increase in simulation times. It can
also be seen from Figure 3 that, compared with the MC

method, the variance changes of each CDO tranche of the
RQMC method are more gentle with the increase in sim-
ulation times. Especially, when the simulation time is rel-
atively smaller, with the increase in simulation times, the
variances of MC all decrease faster than those of RQMC in
each CDO tranche. ,is indicates that the simulation results
of the RQMCmethod are more stable than those of MC even
when the simulation time is not too large. In other words, the
RQMC method can obtain more stable results with fewer
simulation times.
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Figure 3: Variance changes of CDO pricing in each tranche with the increase in simulation times.
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From the local point of view on each tranche diagram,
when the simulation times are the same, the variances of the
RQMC method are much smaller than those of the MC
method, which indicates that the simulation results of the
RQMC method are more stable than those of the MC
method when the simulation times are the same.

Particularly, in order to compare the simulation times
required under the same variance of two simulation
methods, we carry out spline interpolations for the variances
data of the RQMC method for each subgraph in Figure 3.
Without loss of generality, in each subgraph of Figure 3, we
take the variances corresponding to 50000 simulation times
of the MC method as an example to illustrate. At this time,
the simulation times required by the RQMC method are
shown in Table 2.

We can see from Table 2, for the same variances, when
the total number of simulations of the MC method required
is 50000, in addition to the tranche [22%–100%], simulation
times of the other five tranches of the RQMC method are all
far lower than 50000. Furthermore, the RQMC method can
save about 25000 times on average and reduce the cost of the
program running effectively.

5. Conclusion and Discussion

In this paper, a numerical algorithm based on the RQMC
simulation method was designed and an empirical study
was carried out to solve CDO pricing with the stochastic
correlation problem of the two states under nonhomo-
geneous assumptions. ,e variances of RQMC simulation
results were compared with those of the MC method from
the perspective of variance changes. ,e results showed
that the algorithm designed in this paper is more stable
and reliable whether from the local view or from the global
view, and it is an efficient and stable algorithm to solve
CDO pricing with stochastic correlation problems under
nonhomogeneous conditions, which would provide the-
oretical and empirical support for solving similar
problems.

,e algorithm in this paper is only empirically analyzed
based on the Gaussian Copula model with stochastic cor-
relations under nonhomogeneous assumptions. We point
out that the algorithm can be generalized. For example,
under the framework of the algorithm, the Gaussian Copula
model in the algorithm can be replaced with other single-
factor Copula models and the algorithm still works. Of

course, for different single-factor Copula models, the
implementation of the algorithm may be more complex.

In addition, the algorithm can also be extended to CDO
pricing with three-state stochastic correlations under non-
homogeneous assumptions.

In the following study, we will further optimize the
algorithm to improve its versatility. It is also considered to
apply the numerical algorithm to the pricing of other assets
in credit derivative markets under nonhomogeneity
assumptions.
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