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'eory of networks serves as a mathematical foundation for the construction and modeling of chemical structures and com-
plicated networks. In particular, chemical networking theory has a wide range of utilizations in the study of chemical structures,
where examination and manipulation of chemical structural information are made feasible by utilizing the numerical graph
invariants. A network invariant or a topological index (TI) is a numerical measure of a chemical compound which is capable to
describe the chemical structural properties such as melting point, freezing point, density, pressure, tension, and temperature of
chemical compounds. Wiener initiated the first distance-based TI which is considered to be the most important TI to preserve the
chemical and physical properties of chemical structures. Later on, degree-based TI was introduced to find the π-electron energy of
molecules. Recently, connection number-based TIs are studied which are more efficient than degree and distance-based TIs. In
this paper, we compute the connection number-based TIs of the structure of crystal cubic carbons which are one of the most
significant and interesting composites in modern resources of science due to the involvement of carbon atoms.

1. Introduction

Mathematical chemistry, the field of theoretical chemistry,
utilizes the mathematical tools to explain and predict
chemical structures and complicated networks. Chemical
network theory (NT) is a field of mathematical chemistry in
which we use methods of network theory to mathematically
represent the chemical phenomena of molecular chemical
structures. NT is used to describe, develop, analyze, and
comprehend the molecular structures and their character-
istics. In chemical NT, chemical structures are incorporated
by vertices and edges, where the vertices (nodes) speak to the
atoms while the edges speak to the bonds between the atoms.
'is theory plays an important function in the realm of
chemical sciences.

Chemical NT uses network theoretic invariants to restrict
the molecular structure into a unique number that reveals the
electronic structures, structural sections, and energy of atoms.
Interpreting themolecular structural information with the help
of these TIs is gaining popularity among the researchers over
the years. 'e research work in the area of chemical NT re-
garding the topological utilizations nanostructures, poly-
phenylene dendrimer nanostars, tree like polyphenylene,
carbon nanocones, extremal pentagonal chains, spiro hexag-
onal systems, and polyomino chains can be seen in [1–3].'ese
chemical applications inspired us to investigate TIs of some
novel chemical networks. A huge number of early medication
studies indicate that substantial internal linkages exist between
the pharmacology and biomedical properties of drugs and their
subatomic compositions. 'e topological descriptors such as
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Zagreb indices (ZIs) and modified ZIs were defined to be used
in the investigation of medication subatomic structures, which
are very helpful for medicinal and pharmaceutical research.

'ere are many chemical substances that are beneficial
for the survival of living things. 'e basic components that
help in the formation of cells in living beings are oxygen,
nitrogen, hydrogen, and carbon. 'e essential component
for the human life is carbon. It is important for the pro-
duction of proteins, carbohydrates, and nucleic acids. It is
also essential for plant development in the form of carbon
dioxide. It is found in the form of carbonates and bicar-
bonates in oceans, as a good conductor of electricity, and in
the form of limestone in rocks. 'e particles of carbon may
connect in distinct ways, which are referred to as allotropes
of carbon. Carbon atom is well recognized in the shape of
diamond, graphite, bucky balls, etc. 'e structure of distinct
carbon allotropes is represented in Figure 1. In the structure
of crystal cubic carbon, the carbon atoms are piled tightly
together whichmake it a very strongmaterial.'ere are wide
ranging utilizations of carbon allotropes (for details, we refer
the readers to [4–6]).

'e Wiener index initiated by Wiener in 1947 while
researching the boiling point of paraffin was the funda-
mental TI [7]. Gutman [8] initiated degree-based TIs.
Following that, researchers investigated a variety of distance-
based descriptors in chemical fields which helped them to
interpret the chemical molecular information of chemical
structures such as freezing and melting point, flammability,
stability, and density. For more information, see [9, 10].

Gutman and Trinajstic [11] examined the new notion of
the first ZI in 1975. Gutman et al. [12] then pioneered the
unique concept of second ZI in 1975. Due to the vast span of
their applications, these classical ZIs are very important in
the study of chemical NT. Later on, Furtula and Gutman [13]
proposed the notion of third ZI, which is also known as the
forgotten index since it was discovered after a lengthy period
of time. Nikolic et al. [14] investigated modified ZI in 2003.
In 2018, Yang et al. [15] found some degree-based ZIs of the
crystal cubic carbon structures. Gao et al. [16] and Zahid
et al. [17] computed the ZIs of crystal cubic carbon struc-
tures. Further, Zhang and Naeem [18] found the metric
dimension of these structures of carbon atom. Moreover,
Yang et al. [19] computed the vertex Szeged index of the
structure of cubic crystals. Furthermore, Arockiaraj et al.
[20] and Abraham et al. [21] explored the topological
properties of other types of three-dimensional structures.
Recently, Ali and Trinajstić [22] initiated a novel conception
of connection number (CN) which is the cardinality of those
nodes having length two from a certain vertex. 'ey com-
puted all the ZIs on connection bases instead of degrees of
the vertices and reported that the connection-based Zagreb
indices (CBZIs) have larger ability to forecast the physical
and chemical properties of molecular structures of chemistry
than that of degree-based indices. After the initiation of
CBZIs, all the researchers started working on measuring the
properties of chemical structure with the help of these
CBZIs. Cao et al. [23] computed ZCIs of molecular graphs.
Sattar et al. [24–26] just discovered the CBZIs of dendrimer
nanostars. Further, Ali et al. [27] estimated modified CBZIs for

T-sum graphs in 2020. Haoer et al. [28] introduced the
multiplicative leap ZIs. Javaid et al. [29] computed connection-
based multiplicative ZIs (CBMZI) for various wheel networks.
Du et al. [30] computedmodified CBZIs for alkanes. Yang et al.
[31] investigated the molecular characteristics of cubic carbon
crystal formations. 'e motivation to this article is as follows.

(1) TIs, the numerical measure of a chemical compound,
can describe the properties of chemical structure
such as melting point, freezing point, density,
pressure, tension, and temperature of chemical
compounds.'ese TIs have much importance due to
their wide range of applicability in reticular chem-
istry. 'ey are efficient enough to characterize the
topology of molecular compounds.

(2) Crystal cubic carbon structures are one of the im-
portant chemical structures due to the involvement
of primary carbon element in it.

(3) Connection-based ZIs are more appropriate to an-
ticipate the chemical and physical properties of
chemical compounds than all the other introduced
ZIs found in literature.

In this paper, we calculate the CBMZIs of crystal cubic
carbon structure which is the most important allotrope of
carbon. We find first CBMZI, second CBMZI, third CBMZI,
and fourth CBMZI. We also compute the modified CBMZI,
namely, modified first CBMZI, modified second CBMZI,
and modified third CBMZI. 'is paper is organized as
follows. Section 2 defines the basic definitions which are
compulsory to understand and are helpful for the compu-
tation of main results. Section 3 consists of general ex-
pressions to compute the CBMZIs of structure of crystal
cubic carbon. Section 4 draws the conclusions of this article.

2. Primary Definitions

'is section involves the basic definitions which are helpful
for the further calculations.

Definition 1 (see [11]). Let G � (H(G),T(G)) be a net-
work, where H(G) denotes the set of vertices and T(G)

denotes the set of edges, respectively. 'en, the degree-based
ZIs are defined as

(1) 􏽢Z1(G) � 􏽐h∈H(G)(dG(h))2 � 􏽐ht∈T(G)(dG(h) + dG

(t)),
(2) 􏽢Z2(G) � 􏽐ht∈T(G)(dG(h) × dG(t)),

where dG(h) and dG(t) show the degree of vertices h

and t, respectively.

Definition 2 (see [22]). For a network G, connection-based
Zagreb indices (CBZIs) are given as

(1) Z1C􏽥I(G) � 􏽐h∈H(G)(τG(h))2,
(2) Z2C􏽥I(G) � 􏽐ht∈T(G)(τG(h) × τG(t)),

where τG(h) and τG(t) indicate the connection
number (CN) of vertices h and t, respectively. 'ese
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CBZIs are known as first CBZI and second CBZI,
respectively.

Definition 3 (see [22, 27]). For a network G, the modified
CBZIs can be given as

(1) Z1C
∗􏽥I(G) � 􏽐ht∈T(G)(τG(h) + τG(t)) � 􏽐h∈H(G)

(dG(h) τG(t)),
(2) Z2C

∗􏽥I(G) � 􏽐ht∈T(G)[dG(h)τG(t) + dG(t)τG(h)],
(3) Z3C

∗􏽥I(G) � 􏽐ht∈T(G)[dG(h)τG(h) + dG(t)τG(t)].

'ese modified CBZIs are known as the modified first
CBZI, modified second CBZI, and modified third CBZI,
respectively.

Definition 4 (see [29]). For a network G, first CBMZI,
second CBMZI, third CBMZI, and fourth CBMZI can be
defined as

MZ1C􏽥I(G) � 􏽙
h∈H(G)

τG(h)( 􏼁
2
, (1)

MZ2C􏽥I(G) � 􏽙
ht∈T(G)

τG(h) × τG(t)( 􏼁, (2)

MZ3C􏽥I(G) � 􏽙
h∈H(G)

dG(h)τG(h)( 􏼁, (3)

MZ4C􏽥I(G) � 􏽙
ht∈T(G)

τG(h) + τG(t)( 􏼁. (4)

(a) (b) (c) (d)

(e) (f ) (g)

(h)

Figure 1: (a) Diamond. (b) Graphite. (c) Lonsdaleite. (d) C60. (e) Fullerite. (f ) C70. (g) Amorphous carbon. (h) Carbon nanotube with
single wall.
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Definition 5 (see [29]). For a network G, modified first
CBMZI, modified second CBMZI, and modified third
CBMZI can be defined as

MZ1C
∗􏽥I(G) � 􏽙

ht∈T(G)

dG(h)τG(t) + dG(t)τG(h)􏼂 􏼃, (5)

MZ2C
∗􏽥I(G) � 􏽙

ht∈T(G)

dG(h)τG(h) + dG(t)τG(t)􏼂 􏼃,

(6)

MZ3C
∗􏽥I(G) � 􏽙

ht∈T(G)

dG(h)τG(h) × dG(t)τG(t)􏼂 􏼃.

(7)

3. Connection-Based Multiplicative Zagreb
Indices of Crystal Cubic Carbon Structure

'e carbon’s valency allows it to form a wide range of al-
lotropes. Carbon is well recognized in the forms of graphite,
bucky balls, diamond, etc. Graphite is the smooth, dark-
colored substance found in lead of pencil. Diamonds, on the
other hand, are extremely hard, typically clear, colorless, and
extremely valuable jewels. Both of these structures are made

up of carbon atom. In both of these structures, the carbon
atom is piled differently and that is why both of these
structures are very different to each other. Diamond is a
tremendously strong substance made up of carbon atoms
stacked densely together in a cubic crystal form. 'e strong
bonds between the carbon atom make this structure very
strong. 'ere are many utilizations of these allotropes of
carbon (for details, see [32]).

In this section, we deal with the computation of CBMZIs
of this significant allotrope of carbon, namely, crystal cubic
carbon structure (CCC(j)), where j≥ 1 is the level of the
structure. Figure 2 depicts the molecular structure of rare
stone cubic carbon structure CCC(j) for the first level. For
the next level, new 3D squares are linked at every terminal
vertex of degree 3 of the previous first layer. Figure 3 depicts
the second level of CCC(j). Furthermore, the same tech-
nique is repeated to obtain the next level, and so on. Let
G � CCC(j) be a molecular network of CCC(j) for j≥ 2.
Molecular networks of CCC(j) for j � 2 and j � 3 are
shown in Figures 3 and 4, where we label the nodes (vertices)
with their CNs. In Figures 5–7, we label the vertices with
their degrees. 'e cardinality of vertices and edges in
CCC(j) is presented separately below.

|H(CCC(j))| � 8 +(8)
2

􏽘

j

k�2
23 − 1􏼐 􏼑

k−2
,

|T(CCC(j))| � 4 3 + 2 􏽘

j−2

k�0
23 − 1􏼐 􏼑

k
+ 24 23 − 1􏼐 􏼑

j− 2
+ 24 􏽘

j

k�3
23 − 1􏼐 􏼑

k−3⎡⎢⎣ ⎤⎥⎦.

(8)

For our convenience, we divide the structure of G into
three categories as given below.

(1) Basic cube: the cube which lies in the center of the
molecular network of CCC(j) is considered to be
basic cube.

(2) Outer layer of cubes: the layer of cubes in which
every cube has seven vertices with CN 6 is considered
to be the outer layer of cubes.

(3) Central layer of cubes: the layer of cubes which is not
the outer layer of cubes is said to be central layer of
cube.

Theorem 1. Consider a network G � CCC(j) for j≥ 2.0en,
the first CBMZI is equal to

MZ1C􏽥I(G) � [36]
8 23− 1( )

j−1

×[81]
8 23− 1( )

j−2

×[144]
8+(8)2􏽐

j

k�2 23− 1( )
k−2

− 82 23− 1( )
j−2( 􏼁

. (9)

Proof. In order to find the first CBMZI, we classify the
collection of vertices based on their CNs into three classes.
We have

H1 � h ∈H: τG(h) � 6􏼈 􏼉,

H2 � h ∈H: τG(h) � 9􏼈 􏼉,

H3 � h ∈H: τG(h) � 12􏼈 􏼉.

(10)

'e cardinalities of H1, H2, and H3 are

|H1(G)| � 8 × 23 − 1􏼐 􏼑
j− 1

,

|H2(G)| � 8 × 23 − 1􏼐 􏼑
j− 2

,

|H3(G)| � 8 +(8)
2

􏽘

j

k�2
23 − 1􏼐 􏼑

k− 2
− 82 23 − 1􏼐 􏼑

j− 2
.

(11)
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Figure 2: CCC(1) along with the labeling of CN 6 on the vertices of all the cubes.
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Figure 3: CCC(2) along with the labeling of CNs 6, 9, and 12 on the vertices of all the cubes.
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Figure 4: CCC(3) along with the labeling of CNs 6, 9, and 12 on the vertices of all the cubes.
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Figure 5: CCC(1) along with the labeling of degree 3 on the vertices of all the cubes.
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Now, by using equation (1), we get

MZ1C􏽥I(G) � 􏽙
h∈H(G)

τG(h)( 􏼁
2
,

� 62􏽨 􏽩
H1(G)| |

× 92􏽨 􏽩
H2(G)| |

× 122􏽨 􏽩
H3(G)| |

,

� 62􏽨 􏽩
8 23− 1( )

j−1( 􏼁
× 92􏽨 􏽩

8 23− 1( )
j−2( 􏼁

× 122􏽨 􏽩
8+(8)2 􏽐

j

k�2 23− 1( )
k−2

− 82 23− 1( )
j−2( 􏼁

,

� [36]
8 23− 1( )

j−1( 􏼁
×[81]

8 23− 1( )
j−2( 􏼁

×[144]
8+(8)2 􏽐

j

k�2 23− 1( )
k−2

− 82 23− 1( )
j−2( 􏼁

,

� [36]
8 23− 1( )

j−1

×[81]
8 23− 1( )

j−2

×[144]
8+(8)2 􏽐

j

k�2 23− 1( )
k−2

− 82 23− 1( )
j−2( 􏼁

.

(12)

□
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Figure 6: CCC(2) along with the labeling of degrees 3 and 4 on the vertices of all the cubes.
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Theorem 2. Consider a networkG � CCC(j) for j≥ 2.�en,
the second CBMZI is equal to

MZ2CĨ(G) � [36]
72 23− 1( )j−2 ×[54]24 23− 1( )j−2 ×[108] 8∑j−2

k�0 23− 1( )k( ) ×[144] 12+96∑j

k�3 23− 1( )k−3( ). (13)

Proof. Firstly, we divide the edges into four classes with
respect to their CNs. We have

C1 � T(6,6)(G) � ht ∈T: τG(h) � 6, τG(t) � 6{ },
C2 � T(6,9)(G) � ht ∈T: τG(h) � 6, τG(t) � 9{ },
C3 � T(9,12)(G) � ht ∈ T: τG(h) � 9, τG(t) � 12{ },
C4 � T(12,12)(G) � ht ∈ T: τG(h) � 12, τG(t) � 12{ }.

(14)
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Figure 7: CCC(3) along with the labeling of degrees 3 and 4 on the vertices of all the cubes.
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To find second CBMZI, we find the cardinalities of above
partitioned edges. For this, we first find the number of edges
in basic cube, outer layer of the vertices, and central layer of
the cubes. After some simple calculation, we have

total edges in basic cube � 12,

total edges in outer layer � 96 23 − 1􏼐 􏼑
j− 2

,

total edges in central layer � 96 􏽘

j

k�3
23 − 1􏼐 􏼑

k− 3
.

(15)

'e edges which are not the part of any cube are con-
sidered to be free edges. 'e total number of free edges is
8􏽐

j−2
k�0(2

3 − 1)k. Now, we compute |T(6,6)(G)|. As from the
network of G, we can observe that (6, 6)−type edges only
exist in the outer layer of the cubes. After some easy cal-
culation, we get

|T(6,6)(G)| � 72 × 23 − 1􏼐 􏼑
j− 2

. (16)

Now, we compute |T(6,9)(G)|. Similar to (6, 6)−type
edges, (6, 9)−type edges also lie only in outer layer of the
cubes. 'us, we have

|T(6,9)(G)| � 96 23 − 1􏼐 􏼑
j− 2

− 72 23 − 1􏼐 􏼑
j− 2

,

� 24 23 − 1􏼐 􏼑
j− 2

.

(17)

Next, we find the number of edges with CNs (9, 12). We
can see that only the free edges have CNs (9,12). 'e total
number of free edges is 8􏽐

j−2
k�0(2

3 − 1)k. 'us, we have

|T(9,12)(G)| � 8 􏽘

j−2

k�0
23 − 1􏼐 􏼑

k
. (18)

Lastly, we compute |T(12,12)(G)|. It can be easily ob-
served from the network of G that basic cube and central
layer of cubes contain all those edges which have CNs
(12,12). 'us, the total number of (12, 12) edges must be the
sum of edges of basic cube and the edges of central layer of
the cubes. Hence, we have

|T(12,12)(G)| � 12 + 96 􏽘

j

k�3
23 − 1􏼐 􏼑

k− 3
. (19)

Adding all types of edges gives the cardinality of edges of
G. Now, by using equation (2), we have

MZ2C􏽥I(G) � 􏽙
ht∈T(G)

τG(h) × τG(t)( 􏼁

� [6 × 6]
T(6,6)(G)| | ×[6 × 9]

T(6,9)(G)| | ×[9 × 12]
T(9,12)(G)| | ×[12 × 12]

T(12,12)(G)| |

� [6 × 6]
72 23− 1( )

j−2( 􏼁
×[6 × 9]

24 23− 1( )( )
j−2

×[9 × 12]
8􏽘

j−2
k�0 23− 1( )

k( 􏼁
×[12 × 12]

12+96􏽐
j

k�3 23− 1( )
k−3( 􏼁

� [36]
72 23− 1( )

j−2

×[54]
24 23− 1( )

j−2

×[108]
8􏽐

j−2
k�0 23− 1( )

k( 􏼁
×[144]

12+96􏽘
j

k�3 23− 1( )
k−3( 􏼁

.

(20)

□
Theorem 3. Consider a network G � CCC(j) for j≥ 2.0en,
the third CBMZI is equal to

MZ3C􏽥I(G) � [18]
8× 23− 1( )

j−1

×[36]
8× 23− 1( )

j−2

×[48]
8+(8)2􏽐

j

k�2 23− 1( )
k−2

− 82 23− 1( )
j−2

. (21)

Proof. Before computing third CBMZI, we make the classes
of vertices on the bases of their degrees. We have only two
classes of vertices on the basis of degrees of vertices.

H
d
1(G) � h ∈H: dG(h) � 3􏼈 􏼉,

H
d
2(G) � h ∈H: dG(h) � 4􏼈 􏼉.

(22)

Now, we make the partitions of vertices with respect to
the degrees and CNs of the vertices. We have

H1′(G) � h ∈H: dG(h) � 3, τG(h) � 3􏼈 􏼉,

H2′(G) � h ∈H: dG(h) � 4, τG(h) � 9􏼈 􏼉,

H3′(G) � h ∈H: dG(h) � 4, τG(h) � 12􏼈 􏼉.

(23)
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'e cardinalities of these vertices are given in the
following:

H1′(G)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 8 × 23 − 1􏼐 􏼑
j− 1

,

|H2′(G)| � 8 × 23 − 1􏼐 􏼑
j− 2

,

|H3′(G)| � 8 +(8)
2

􏽘

j

k�2
23 − 1􏼐 􏼑

k− 2
− 82 23 − 1􏼐 􏼑

j− 2
.

(24)

By using equation (3), we get

MZ3C􏽥I(G) � 􏽙
h∈H(G)

dG(h)τG(h)( 􏼁

� [3 × 6]
H1′(G)| | ×[4 × 9]

H2′(G)| | ×[4 × 12]
H3′(G)| |

� [3 × 6]
8× 23− 1( )

j−1
|
×[4 × 9]

8× 23− 1( )
j−2

|
×[4 × 12]

8+(8)2􏽘
j

k�2 23− 1( )
k−2

− 82 23− 1( )
j−2( 􏼁

� [18]
8× 23− 1( )

j−1

×[36]
8× 23− 1( )

j−2

×[48]
8+(8)2 􏽐

j

k�2 23− 1( )
k−2

− 82 23− 1( )
j−2( 􏼁

.

(25)

□
Theorem 4. Consider a network G � CCC(j) for j≥ 2.0en,
the fourth CBMZI is equal to

MZ4C􏽥I(G) � [12]
72 23− 1( )

j−2

×[15]
24 23− 1( )

j−2

×[21]
8􏽐

j−2
k�0 23− 1( )

k( 􏼁
×[36]

12+96􏽐
j

k�3 23− 1( )
k−3( 􏼁

. (26)

Proof. By placing the values of T(τG(h),τG(t)) in equation (4),
we have

MZ4C􏽥I(G) � 􏽙
ht∈T(G)

τG(h) + τG(t)( 􏼁, � [6 + 6]
T(6,6)(G)| | +[6 + 9]

T(6,9)(G)| | ×[9 + 12]
T(9,12)(G)| | ×[12 + 12]

T(12,12)(G)| |

� [6 + 6]
72 23− 1( )

j−2( 􏼁
×[6 + 9]

24 23− 1( )( )
j−2

×[9 + 12]
8+ 􏽐

j−2
k�0 23− 1( )

k( 􏼁
×[12 + 12]

12+96􏽘
j

k�3 23− 1( )
k−3( 􏼁

� [12]
72 23− 1( )

j−2

×[15]
24 23− 1( )

j−2

×[21]
8􏽐

j−2
k�0 23− 1( )

k( 􏼁
×[36]

12+96􏽘
j

k�3 23− 1( )
k−3( 􏼁

.

(27)

□
Theorem 5. Consider a network G � CCC(j) for j≥ 2.0en,
the modified first CBMZI is equal to

MZ1C
∗􏽥I(G) � [36]

72 23− 1( )
j−2

×[51]
24 23− 1( )

j−2

×[84]
8􏽐

j−2
k�0 23− 1( )

k( 􏼁
×[96]

12+96􏽐
j

k�3 23− 1( )
k−3( 􏼁

. (28)
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Proof. Firstly, we divide the edges into three classes with
respect to their degrees. We have

C1 � T
d
(3,3)(G) � ht ∈M : dG(h) � 3, dG(t) � 3􏼈 􏼉,

C2 � T
d
(3,4)(G) � ht ∈M : dG(h) � 3, dG(t) � 4􏼈 􏼉,

C3 � T
d
(4,4)(G) � ht ∈M : dG(h) � 4, dG(t) � 4􏼈 􏼉.

(29)

In order to calculate the modified first CBMZI, first we
need to calculate the number of edges on the basis of their
degrees of incident vertices. Initially, we calculate
|Td

(3,3)(G)|. It can be observed that (3,3)-type edges only lie

in the cubes of the outer layer. For simple calculations, we
have

T
d
(3,3)(G)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 72 23 − 1􏼐 􏼑
j− 2

. (30)

Now, we compute |Td
(3,4)(G)|. Similar to (3,3)-type

edges of G, (3,4)-type edges also exist only in the cubes of the
outer layer of G. 'e number of (3, 4)−type edges must be
equal to the total number of edges in the cubes of outer layer
minus the (3,3)-type edges present in the cubes of outer layer
of G. 'us, we have

T
d
(3,4)( outer layer of the cubes)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 96 23 − 1􏼐 􏼑
j− 2

,

T
d
(3,3)( outer layer of the cubes)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 72 23 − 1􏼐 􏼑
j− 2

,

T
d
(3,4)(G)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 96 23 − 1􏼐 􏼑
j− 2

− 72 23 − 1􏼐 􏼑
j− 2

,

� 24 23 − 1􏼐 􏼑
j− 2

.

(31)

Lastly, we compute |Td
(4,4)(G)|. One can see from the

network of G that the basic cube and central layer of cubes
have all those edges which have CNs (4,4). Also, all the free
edges are (4,4)-type edges. 'us, the total number of

(4, 4)−type edges must be the sum of edges of basic cube and
the edges of central layer of the cubes plus all the free edges.
Hence, we have

Total edges in basic cube � 12,

Number of edges in central layer � 96 􏽘

j

k�3
23 − 1􏼐 􏼑

k− 3
,

Total free edges � 8 􏽘

j−2

k�0
23 − 1􏼐 􏼑

k
,

T
d
(4,4)(G)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 12 + 96 􏽘

j

k�3
23 − 1􏼐 􏼑

k− 3
+ 8 􏽘

j−2

k�0
23 − 1􏼐 􏼑

k
.

(32)

To compute the modified first CBMZI, we split the
classified number of edges on degree bases with respect to
the number of edges on connection bases. 'e partitioning
of degree-based edges with respect to connection-based
edges is shown in Table 1.

To compute the modified first CBZI, we are not con-
cerning with degrees or CNs of edges separately, instead we
are dealing with both degrees and CNs of the edges . From
Figures 4 and 7, we can see that there are total four such
partitions of edges as given below.

T(3,3)(6,6)(G) � ht ∈ T: dG(h) � 3, τG(h) � 6, dG(t) � 3, τG(t) � 6􏼈 􏼉,

T(3,4)(6,9)(G) � ht ∈ T: dG(h) � 3, τG(h) � 6, dG(h) � 4, τG(t) � 9􏼈 􏼉,

T(4,4)(9,12)(G) � ht ∈ T: dG(h) � 4, τG(h) � 9, dG(h) � 4, τG(t) � 12􏼈 􏼉,

T(4,4)(12,12)(G) � ht ∈ T: dG(h) � 4, τG(h) � 12, dG(h) � 4, τG(t) � 12􏼈 􏼉.

(33)
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By using Table 1, the cardinalities of these partitioned
vertices are displayed in Table 2.

By using equation (5), we get

MZ1C
∗􏽥I(G) � 􏽙

ht∈T(G)

dG(h)τG(t) + dG(t)τG(h)􏼂 􏼃[(4)(12) +(4)(9)]
T(4,4)(9,12)(G)| | ×[(4)(12) +(4)(12)]

T(4,4)(12,12)(G)| |

� [(3)(6) +(3)(6)]
72 23− 1( )

j−2

×[(3)(9) +(4)(6)]
24 23− 1( )

j−2

+[(4)(12) +(4)(9)]
8􏽘

j−2
k�0 23− 1( )

k( 􏼁

×[(4)(12) +(4)(12)]
12+96􏽘

j

k�3 23− 1( )
k−3( 􏼁

� [(3)(6) +(3)(6)]
T(3,3)(6,6)(G)| | ×[(3)(9) +(4)(6)]

T(3,4)(6,9)(G)| |+

� [18 + 18]
72 23− 1( )

j−2

×[27 + 24]
24 23− 1( )

j−2

+[48 + 36]
8􏽘

j−2
k�0 23− 1( )

k( 􏼁
×[48 + 48]

12+96􏽘
j

k�3 23− 1( )
k−3( 􏼁

� [36]
72 23− 1( )

j−2

×[51]
24 23− 1( )

j−2

×[84]
8􏽐

j−2
k�0 23− 1( )

k( 􏼁
×[96]

12+96􏽘
j

k�3 23− 1( )
k−3( 􏼁

.

(34)

□
Theorem 6. Consider a network G � CCC(j) for j≥ 2.0en,
the modified second CBMZI is

MZ2C
∗􏽥I(G) � [36]

72 23− 1( )
j−2( 􏼁

×[54]
24 23− 1( )

j−2( 􏼁
×[84]

8􏽐
j−2
k�0 23− 1( )

k( 􏼁
×[96]

12+96􏽐
j

k�3 23− 1( )
k−3( 􏼁

. (35)

Proof. By using equation (6), we get

MZ2C
∗􏽥I(G) � 􏽙

ht∈T(G)

dG(h)τG(h) + dG(t)τG(t)􏼂 􏼃

� [(3)(6) +(3)(6)]
T(3,3)(6,6)(G)| | ×[(3)(6) +(4)(9)]

T(3,4)(6,9)(G)| | ×[(4)(9) +(4)(12)]
T(4,4)(9,12)(G)| | ×[(4)(12) +(4)(12)]

T(4,4)(12,12)(G)| |

� [(3)(6) +(3)(6)]
72 23− 1( )

j−2( 􏼁
×[(3)(6) +(4)(9)]

24 23− 1( )
j−2( 􏼁

×[(4)(9) +(4)(12)]
8􏽘

j−2
k�0 23− 1( )

k( 􏼁

×[(4)(12) +(4)(12)]
12+96􏽘

j

k�3 23− 1( )
k−3( 􏼁

� [18 + 18]
72 23− 1( )

j−2( 􏼁
×[18 + 36]

24 23− 1( )
j−2( 􏼁

×[36 + 48]
8􏽐

j−2
k�0 23− 1( )

k( 􏼁
×[48 + 48]

12+96􏽘
j

k�3 23− 1( )
k−3( 􏼁

� [36]
72 23− 1( )

j−2( 􏼁
×[54]

24 23− 1( )
j−2( 􏼁

×[84]
8􏽘

j−2
k�0 23− 1( )

k( 􏼁
×[96]

12+96􏽘
j

k�3 23− 1( )
k−3( 􏼁

.

(36)
□

Table 1: Partitioning of degree-based edges with respect to connection-based edges.

|Td
(dG(h),dG(t))(G)| (degree based) |T(τG(h),τG(t))(G)| (connection based)

|Td
(3,3)(G)| � 72(23 − 1)j− 2 |T(6,6)(G)| � 72(23 − 1)j− 2

|Td
(3,4)(G)| � 24(23 − 1)j− 2 |T(6,9)(G)| � 24(23 − 1)j− 2

|Td
(4,4)(G)| � 8􏽐

j−2
k�0(2

3 − 1)k |T(9,12)(G)| � 8􏽐
j−2
k�0(2

3 − 1)k

|Td
(4,4)(G)| � 12 + 96􏽐

j

k�3 (23 − 1)k− 3 |T(12,12)(G)| � 12 + 96􏽐
j

k�3 (23 − 1)k− 3

Table 2: Cardinalities of partitioned edges on degree and connection bases.

T(d(h),d(t))(τ(h),τ(t))(G) |T(d(h),d(t))(τ(h),τ(t))(G)|

|T(3,3)(6,6)(G)| 72(23 − 1)j− 2

|T(3,4)(6,9)(G)| 24(23 − 1)j− 2

|T(4,4)(9,12)(G)| 8􏽐
j−2
k�0(2

3 − 1)k

|T(4,4)(12,12)(G)| 12 + 96􏽐
j

k�3 (23 − 1)k− 3
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Theorem 7. Consider a network G � CCC(j) for j≥ 2.0en,
the modified third CBMZI is equal to

MZ3C
∗􏽥I(G) � [324]

72 23− 1( )
j−2( 􏼁

×[648]
24 23− 1( )

j−2( 􏼁
×[1728]

8􏽐
j−2
k�0 23− 1( )

k( 􏼁
×[2304]

12+96􏽐
j

k�3 23− 1( )
k−3( 􏼁

. (37)

Proof. By using equation (7), we get

MZ3C
∗􏽥I(G) � 􏽙

ht∈T(G)

dG(h)τG(h) × dG(t)τG(t)􏼂 􏼃

� [(3)(6) ×(3)(6)]
T(3,3)(6,6)(G)| | ×[(3)(6) ×(4)(9)]

T(3,4)(6,9)(G)| | ×[(4)(9) ×(4)(12)]
T(4,4)(9,12)(G)| |

×[(4)(12) ×(4)(12)]
T(4,4)(12,12)(G)| |

� [(3)(6) ×(3)(6)]
72 23− 1( )

j−2( 􏼁
×[(3)(6) ×(4)(9)]

24 23− 1( )
j−2( 􏼁

×[(4)(9) ×(4)(12)]
8􏽐

j−2
k�0 23− 1( )

k( 􏼁

×[(4)(12) ×(4)(12)]
12+96􏽘

j

k�3 23− 1( )
k−3( 􏼁

� [18 × 18]
72 23− 1( )

j−2( 􏼁
×[18 × 36]

24 23− 1( )
j−2( 􏼁

×[36 × 48]
8􏽘

j−2
k�0 23− 1( )

k( 􏼁
×[48 × 48]

12+96􏽘
j

k�3 23− 1( )
k−3( 􏼁

� [324]
72 23− 1( )

j−2( 􏼁
×[648]

24 23− 1( )
j−2( 􏼁

×[1728]
8􏽘

j−2
k�0 23− 1( )

k( 􏼁
×[2304]

12+96􏽘
j

k�3 23− 1( )
k−3( 􏼁

.

(38)

□
4. Conclusion

In this study, we have found the general expressions
to compute the TIs of the allotrope of carbon,
namely, crystal structure of carbon. TIs help the re-
searchers for the examination and manipulation of
chemical structural information. Here, we have calcu-
lated various TIs, named as first CBMZI and second
CBMZI. We have also computed modified first CBMZI,
modified second CBMZI, and modified third CBMZI.
'is computational study will make it easier for the re-
searchers to understand the selected structure and will
encourage others to concentrate on the organic networks.
'e mathematical method considered here is efficient to
examine the physical and chemical properties of the
considered network.

Future Directions. In future, we are interested in computing
the connection-based Zagreb indices for other types of
chemical structures.
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