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Tis paper proposes a two-level metaheuristic consisting of lower- and upper-level algorithms for the job-shop scheduling
problem with multipurpose machines. Te lower-level algorithm is a local search algorithm used for fnding an optimal solution.
Te upper-level algorithm is a population-based metaheuristic used to control the lower-level algorithm’s input parameters. With
the upper-level algorithm, the lower-level algorithm can reach its best performance on every problem instance. Most changes of
the proposed two-level metaheuristic from its original variants are in the lower-level algorithm. A main purpose of these changes
is to increase diversity into solution neighborhood structures. One of the changes is that the neighbor operators of the proposed
lower-level algorithm are developed to be more adjustable. Another change is that the roulette-wheel technique is applied for
selecting a neighbor operator and for generating a perturbation operator. In addition, the proposed lower-level algorithm uses an
adjustable delay-time limit to select an optional machine for each operation. Te performance of the proposed two-level
metaheuristic was evaluated on well-known benchmark instances. Te evaluation’s results indicated that the proposed two-level
metaheuristic performs well on most benchmark instances.

1. Introduction

Te job-shop scheduling problem (JSP) is a well-known
NP-hard optimization problem [1–3]. JSP involves
scheduling jobs onto machines in order to minimize
makespan, i.e., the schedule’s length. Each job consists of a
number of operations, where each operation must be
processed on a predetermined machine with a pre-
determined processing time. To complete each job, all of its
operations must be processed in the sequence from the frst
to the last operations. JSP has many variants and related
problems, such as [4–7]. One of the well-known variants of
JSP is the job-shop scheduling problem with multipurpose
machines (MPMJSP) [8–10]. MPMJSP is defned as a
generalized variant of JSP. An only diference between
them is that each operation in JSP has only one pre-
determined machine, while each operation in MPMJSP
may have more than one optional machine. Tis diference
makes MPMJSP be closer to the real-world applications in

modern factories than JSP because, nowadays, most ma-
chines have been developed for multiple tasks.

In this paper, the research’s objective is to develop a
high-performing algorithm for MPMJSP. To do so, this
paper proposes a two-level metaheuristic, based on the
framework of [5, 11, 12], consisting of upper- and lower-
level algorithms. Te upper-level algorithm is a population-
based metaheuristic that acts as a parameter controller for
the lower-level algorithm. Te upper-level algorithm’s
population consists of the parameter-value combinations of
the lower-level algorithm. In a parameter-value combina-
tion, each parameter’s value is iteratively changed by a sum
of two changeable opposite-direction vectors. Te directions
of the frst and the second vectors are toward and away from,
respectively, the memorized best-found value. Te lower-
level algorithm is a local search algorithm searching for an
optimal solution of the being-solvedMPMJSP problem. Like
other metaheuristics, the lower-level algorithm cannot
perform its best on all instances with a single combination of
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input-parameter values. Tis drawback can be overcome
when its input parameters are controlled by the upper-level
algorithm.

Te proposed two-level metaheuristic is modifed from
its original variant [12], where the main diferences are in
their lower-level algorithms. Teir lower-level algorithms
both search for an optimal solution in hybrid neighborhood
structures via their optional operators. Teir optional
neighbor operators are similarly modifed from the tradi-
tional operators (i.e., swap, insert, and reverse) by limiting a
distance between positions of two members selected in a
solution-representing permutation. However, while the
lower-level algorithm of [12] has only three levels of the
distance limit, the distance limit in this paper is adjustable to
any possible range. Another main diference is in their
methods of generating their hybrid neighborhood struc-
tures. To generate each neighbor solution-representing
permutation, the lower-level algorithm of [12] uses a given
probability to select one of two neighbor operators. Instead,
the proposed lower-level algorithm uses the roulette-wheel
method [13] to select one from three neighbor operators. In
this paper, the roulette-wheel method is also applied to select
multiple optional operators for generating a perturbation
operator. A purpose of using the roulette-wheel method is to
diversify more on the hybridization of the neighborhood
structure.

As mentioned, each operation in MPMJSP has one or
more optional machines. Te lower-level algorithm
proposed in this paper uses the delay-time limit (δ), as its
input parameter, to make a criterion of selecting a ma-
chine for each operation. Tis use of δ is diferent from
the uses of δ in the other researches, e.g., [10, 11, 14–17].
While the proposed lower-level algorithm uses δ to select
a machine for each operation, the other researches use δ
to select an operation into a timetable. A method of
generating a schedule of the proposed lower-level algo-
rithm is briefy presented as follows: First, an appearance
order of all operations in a solution-representing per-
mutation is used as a priority order for all operations.
Ten, every operation is assigned one-by-one into a
schedule by the given priority order. When being
assigned, each operation must be processed on the ma-
chine that satisfes δ, and it must be started as early as the
machine can.

Te remainder of this paper is divided into fve sections.
Section 2 describes MPMJSP and reviews the previous re-
searches relevant to the proposed two-level metaheuristic.
Section 3 describes the proposed two-level metaheuristic in
detail. Section 4 shows experiment’s results of evaluating the
proposed two-level metaheuristic’s performance. Section 5
then analyzes and discusses the experiment’s results. Finally,
Section 6 concludes the research’s fndings.

2. Preliminaries

In this section, the description of MPMJSP is given in
Section 2.1, and the review on the previous researches rel-
evant to the proposed two-level metaheuristic is given in
Section 2.2.

2.1. Description of MPMJSP. Te job-shop scheduling
problem with multipurpose machines (MPMJSP) is clas-
sifed as a generalization of the job-shop scheduling
problem (JSP). An only diference between JSP and
MPMJSP is their numbers of optional machines of each
operation. Tat is, while each operation in JSP has only one
predetermined machine, each operation in MPMJSP has
one or more optional machines. MPMJSP thus becomes
JSP if each of its operations has only one optional machine.
A similar variant of MPMJSP is the fexible job-shop
scheduling problem (FJSP) [18, 19]. MPMJSP and FJSP
both are the JSP’s variants where each operation may have
more than one optional machine. However, the processing
time of an operation in FJSP may change when changing its
selected optional machine, while the processing time of
each operation in MPMJSP is fxed for all of its optional
machines. Tis means MPMJSP is a specifc FJSP where, for
each operation, all optional machines have the same
processing time.

Notation used to describe MPMJSP in this paper is
defned below:

(i) Let n denote the number of all jobs in MPMJSP.
(ii) Let m denote the number of all machines in

MPMJSP.
(iii) Let Ji denote the i-th job inMPMJSP, where i= 1, 2,

. . ., n.
(iv) LetMj denote the j-th machine in MPMJSP, where

j= 1, 2, . . ., m.
(v) Let ni denote the number of all operations of Ji.
(vi) Let Oik denote the k-th operation of Ji, where k= 1,

2, . . ., ni.

(vii) Let τik denote the processing time of Oik.

(viii) Letmik denote the number of all optional machines
of Oik, where i= 1, 2, . . ., n, and k= 1, 2, . . ., ni.

(ix) Let Eikl ∈ all optional machines ofOik that appear in
{M1, M2, . . ., Mm} and denote the l-th optional
machine of Oik, where l= 1, 2, . . ., mik. In other
words, Eikl is equivalent to theMj that owns the l-th
lowest value of j among all optional machines of
Oik. For example, suppose O12 has three optional
machines, i.e., M2, M4, and M5. Tus, E121 =M2,
E122 =M4, and E123 =M5.

MPMJSP comes with n given jobs (J1, J2, . . ., Jn) and m
given machines (M1, M2, . . ., Mm). Each job Ji consists of a
sequence of ni given operations (Oi1, Oi2, . . ., Oini

) as a chain
of precedence constraints. To complete each job Ji, Oi1 must
be fnished before Oi2 can start; Oi2 must be fnished before
Oi3 can start, and so on. Each Oik must be processed by one
of Eik1, Eik2, . . ., Eikmik

with the processing time of τik. Each
machine cannot process more than one operation at a time,
and it cannot be stopped during processing an operation. At
the beginning (i.e., time 0), all jobs have already arrived, and
all machines have not been occupied. An optimal schedule is
a feasible schedule that minimizes makespan (i.e., the
schedule’s length).
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MPMJSP was frst introduced by Brucker and Schlie [8].
Tey also proposed a polynomial-time algorithm for
MPMJSP with two jobs. MPMJSP with three jobs belongs to
NP-hard problem even if the number of all machines is two
[9]. Tabu-search algorithms were developed by [9] for
solving three sets of MPMJSP benchmark instances, i.e.,
Edata, Rdata, and Vdata. Since then, these three instance sets
have been commonly used for comparing results of diferent
algorithms on MPMJSP. To date, many algorithms have
been developed for solving MPMJSP and its closely related
problems [10, 18–21].

2.2. Previous Relevant Researches. Iterated local search is
traditionally defned as a single-solution-based meta-
heuristic that can search for a global optimal solution.
During an exploration, it uses a neighbor operator repeat-
edly to fnd a local optimum and then uses a perturbation
operator to escape the found local optimum. Note that a
perturbation operator stands for an operator that generates a
new initial solution by largely modifying a found local
optimal solution [22]. Some untraditional iterated local
search algorithms are enhanced in their performance by
using multiple initial solutions [23, 24]. Te iterated local
search algorithms have been successful on many optimi-
zation problems, including MPMJSP and FJSP [25, 26].

In iterated local search and related algorithms, there are
three operators usually used as neighbor operators and
perturbation operators. Tese three operators are the tra-
ditional swap, insert, and reverse operators [27]. To explain
thementioned operators, let u and v be two diferent integers
randomly generated from 1 to D, where D represents the
number of all members in a solution-representing permu-
tation. Te swap operator is to swap between the two
members in the u-th and the v-th positions of the permu-
tation. Te insert operator is to remove a member from the
u-th position of the permutation and then insert it back at
the v-th position. Te reverse operator is to reverse the
sequence of all members from the u-th to the v-th positions
of the permutation.

A common drawback of most metaheuristics is that their
performance is dependent on their parameter-value settings.
To overcome such a drawback, many applications use upper-
level algorithms to control parameters of their solution-
searching algorithms [11, 12, 14, 15, 28–31]. Some of them,
e.g., [5], require more than two levels of algorithms for very
complicated problems; however, most of them require only
two levels. For solving JSP, there are two two-level meta-
heuristics acting as adaptive iterated local search algorithms
[11, 12]. In each of the two-level metaheuristics, the upper-
level algorithm controls the lower-level algorithm’s input
parameters, while the lower-level algorithm is a local search
algorithm searching for an optimal job-shop schedule.

UPLA and MUPLA are the upper-level algorithms in
[11, 12], respectively; they both are population-based al-
gorithms searching in real-number search spaces. In each of
them, the population is a number of the parameter-value
combinations of the lower-level algorithm. In a parameter-
value combination, each parameter’s value is iteratively

changed by a sum of two changeable opposite-direction
vectors. Te frst vector’s and the second vector’s directions
are toward and away from, respectively, the memorized best-
found value. In only MUPLA, each parameter-value com-
bination includes a diferent start operation-based permu-
tation; thus, the two-level metaheuristic of [12] has a
multistart property.

LOLA, the lower-level algorithm in [11], is a local search
algorithm exploring in a solution space of parameterized-
active schedules (i.e., hybrid schedules [16]). Its input pa-
rameters (i.e., a delay-time limit, a scheduling direction, a
perturbation operator, and a neighbor operator) are con-
trolled by UPLA, its upper-level algorithm. Because the
delay-time limit (δ) is one of the input parameters con-
trolled, UPLA then can control the solution space’s size of
parameterized-active schedules. Such a control of δ follows
in the successes of the two-level PSOs of [14, 15]. Other
techniques of controlling δ can also be found in literature.
For example, the value of δ in [10] is dependent on the
number of jobs and the number of machines, while the value
of δ in [17] is dependent on the algorithm’s iteration index.
In addition, the PSO in [32] controls the value of δ by using
the concept of self-adaptive parameter control [28].

LOSAP, the lower-level algorithm in [12], is a local
search algorithm searching in a probabilistic-based hybrid
neighborhood structure. By a given probability, LOSAP
randomly uses one from two predetermined operators to
generate a neighbor solution-representing permutation. In
other words, based on the given probability, LOSAP can
switch between the two given operators anytime during its
exploration. While the search performance of LOLA [11] is
mainly based on its special solution space, that of LOSAP is
mainly based on its hybrid neighborhood structure. LOSAP
has multiple optional operators for its perturbation and
neighbor operators. Tese optional operators are modifed
from the traditional operators by limiting the distance of v

from u. For generating v in LOSAP, there are three optional
distance-limit levels: [u− 4, u+ 4], [u− (D/5), u+ (D/5)], and
[1, D].

3. Proposed Two-Level Metaheuristic

For solving MPMJSP, this paper proposes the two-level
metaheuristic consisting of the lower- and upper-level al-
gorithms. In this section, MPM-LOLA and MPM-UPLA
represent the lower-level algorithm and the upper-level
algorithm, respectively. Te description of MPM-LOLA is
given in Section 3.1, and the description of MPM-UPLA is
given in Section 3.2.

3.1. MPM-LOLA. MPM-LOLA, as a variant of LOLA [11]
and LOSAP [12], is a local search algorithm exploring in a
hybrid neighborhood structure. Similar to LOLA and
LOSAP, MPM-LOLA generates its neighborhood structure
by using multiple optional operators. However, there are
many changes of MPM-LOLA from its older variants. Al-
though MPM-LOLA uses the delay-time limit (δ) like LOLA
does, it uses δ in diferent way and purpose. While LOLA
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uses δ to select an operation, MPM-LOLA uses δ to select an
optional machine for each operation. In the remaining other
parts, MPM-LOLA is more similar to LOSAP than LOLA.
Te major changes of MPM-LOLA from LOSAP are sum-
marized below:

(i) While the LOSAP’s solution-decoding method
generates JSP’s solutions, the MPM-LOLA’s solu-
tion-decoding method generates MPMJSP’s
solutions.

(ii) MPM-LOLA is similar to LOSAP in that its optional
operators are modifed from the traditional oper-
ators by limiting the distance of v from u. However,
while LOSAP has only three levels of distance limit,
the distance limit of MPM-LOLA is adjustable to
any possible range.

(iii) Unlike LOSAP, MPM-LOLA applies the roulette-
wheel method to select a neighbor operator. It also
applies the roulette-wheel method to select optional
operators for generating a perturbation operator.

For the purpose of clarifcation, the description ofMPM-
LOLA is divided into two parts: a description of its solution-
decoding method and a description of its overall procedure.
Te solution-decoding method is described in Section 3.1.1,
and the overall procedure is described in Section 3.1.2.

3.1.1. Solution-Decoding Method. MPM-LOLA decodes a
solution-representing permutation into a schedule by using
the delay-time limit (δ) and the tiebreak criterion (TB). Note
that TB is used only if there is more than one optional
machine that satisfes δ. In this paper, every solution-rep-
resenting permutation is in a form of the operation-based
permutation [33, 34]. An operation-based permutation is a
permutation of numbers 1, 2, . . ., n where the number i (i� 1,
2, . . ., n) appears ni times. Remind that n and ni denote the
number of all jobs and the number of all operations of the job
Ji, respectively. In the permutation, the number i in its k-th
appearance represents the operation Oik. Ten, a schedule is
constructed by scheduling all operations one-by-one in the
order given by the permutation. Each operation must be
processed by its optional machine that satisfes δ and TB, and
it must be started as early as this machine can. It is noticed
that the use of δ in this paper is diferent from those in the
other researches, e.g., [10, 11, 14–16].WhileMPM-LOLAuses
δ to select an optional machine for each operation, the other
researches use δ to select an operation into the timetable.

As mentioned above, δ ∈ [0, 1) and TB ∈ {lowest, highest}
are used to select an optional machine for each operation. If
δ = 0, each operation must be processed on its optional
machine that can start processing earliest. When the value of
δ is assigned larger, the maximum delay-time allowed for
each operation is then longer; consequently, it may increase
the number of optional machines that satisfy δ for each
operation. If there is more than one optional machine that
satisfes δ, then TB is required as a tie breaker. If TB is
selected to be lowest, the lowest-indexed optional machine
that satisfes δ is selected; otherwise, the highest-indexed
optional machine that satisfes δ is selected.

Algorithm 1 presents the solution-decoding method
used by MPM-LOLA. Te algorithm uses δ and TB, as its
input parameters, to transform an operation-based per-
mutation into an MPMJSP’s solution. Note that Algorithm 1
may return a diferent schedule from the same operation-
based permutation if the values of δ and TB are changed.
Notation used in Algorithm 1 is defned below:

(i) Let D denote the number of all operations in the
being-solved MPMJSP instance. Tus,
D= n1 + n2 + . . .+ nn, where ni is the number of all
operations of the job Ji (i= 1, 2, . . ., n).

(ii) Let U denote the sequence of operations trans-
formed from the operation-based permutation.

(iii) Let Φ denote the schedule transformed from U.

(iv) Let Oi′k′ denote the k′-th operation of the job Ji′,
and it represents the as-yet-unscheduled operation
that is currently in its turn to be scheduled.

(v) Let mi′k′ denote the number of all optional ma-
chines of Oi′k′.

(vi) Let Ei′k′l denote the l-th optional machine of Oi′k′,
where l= 1, 2, . . ., mi′k′.

(vii) Let E denote the chosen machine for processing
Oi′k′. Tis machine must be chosen from all Ei′k′l
(l= 1, 2, . . ., mi′k′).

(viii) Let δ be a real number within [0, 1) and denote the
delay-time limit.

(ix) Let TB ∈ {lowest, highest} denote the tiebreak
criterion for selecting an optional machine to
process Oi′k′. It is used only if there is more than
one optional machine that satisfes δ. If
TB= lowest, let E be the machine with the lowest l
from all Ei′k′l (where l= 1, 2, . . .,mi′k′) that satisfy δ.
If TB= highest, let E be the machine with the
highest l from all Ei′k′l (where l= 1, 2, . . .,mi′k′) that
satisfy δ.

(x) Let τi′k′ denote the processing time of Oi′k′.
(xi) Let σM denote the minimum of the earliest

available times of all optional machines of Oi′k′.
(xii) Let σJ denote the earliest possible start time of Oi′k′

in the job Ji′. Tis means σJ is equal to the fnished
time ofOi′k′– 1. IfOi′k′ has no immediate-preceding
operation, then σJ is equal to 0.

(xiii) Let σ denote the earliest possible start time of Oi′k′.
It is equal to the maximum between σM and σJ.

3.1.2. Procedure of MPM-LOLA. MPM-LOLA generates its
neighborhood structure based on multiple optional opera-
tors. Tese optional operators consist of d-swap, d-insert, d-
reverse, D-swap, D-insert, and D-reverse operators. Note
that D-swap, D-insert, and D-reverse are identical to the
traditional swap, insert, and reverse operators, respectively.
Notation and terminologies used to defne the mentioned
operators are given below:
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(i) Let u and v be integers used to point at the two
member positions in an operation-based
permutation.

(ii) Let d denote a distance limit of v from u. It is used
for specifying d-swap, d-insert, and d-reverse.

(iii) Let D denote the number of all members in the
solution-representing permutation, which equals
the number of all operations in the MPMJSP in-
stance. Tus, D= n1 + n2 + . . .+ nn, where ni is the
number of all operations of the job Ji.

(iv) d-swap is to swap two members in the u-th and the
v-th positions in the permutation. Let u be ran-
domly selected from 1 to D. Ten, let v be ran-
domly selected from max(1, u – d) to min(u+ d, D)
except u.

(v) d-insert is to remove a member from the u-th
position in the permutation and then insert it into
the v-th position. Let u be randomly selected from
1 to D. Ten, let v be randomly selected from
max(1, u – d) to min(u+ d, D) except u.

(vi) d-reverse is to reverse the positions of all members
from the u-th to the v-th positions in the per-
mutation. Let u be randomly selected from 1 to D.
Ten, let v be randomly selected frommax(1, u – d)
to min(u+ d, D) except u.

(vii) D-swap is to swap twomembers in the u-th and the
v-th positions in the permutation. Let u and v be
two diferent integers randomly selected from 1 to
D.

(viii) D-insert is to remove a member from the u-th
position in the permutation and then insert it into
the v-th position. Let u and v be two diferent
integers randomly selected from 1 to D.

(ix) D-reverse is to reverse the positions of all members
from the u-th to the v-th positions in the per-
mutation. Let u and v be two diferent integers
randomly selected from 1 to D.

Before an execution, eight MPM-LOLA’s input pa-
rameters must be assigned values. Te frst input param-
eter, denoted by P, is the start operation-based
permutation. Te remaining seven input parameters
consist of two parameters for specifying a perturbation
operator, three parameters for generating its neighbor
operators, and two parameters for selecting an optional
machine. In MPM-LOLA, the perturbation operator is to
randomly use one fromD-swap,D-insert, andD-reverse on
the start operation-based permutation n times (remind that
n denotes the number of all jobs). In each of these n random
selections, the roulette-wheel technique is applied to select
one from D-swap, D-insert, and D-reverse. Te probabil-
ities of selecting D-swap and D-insert in the roulette wheel
are the second and the third input parameters of MPM-
LOLA, respectively. Consequently, the probability of
selecting D-reverse is unity subtracted by the sum of the
probabilities of selecting D-swap and D-insert.

Te fourth to the sixth input parameters are used to
generate MPM-LOLA’s neighbor operators (i.e., d-swap, d-
insert, and d-reverse). Te fourth input parameter, denoted
by d, is the distance limit of v from u for specifying d-swap,
d-insert, and d-reverse.Ten, MPM-LOLA uses the roulette-
wheel technique to randomly select one from d-swap, d-
insert, and d-reverse to generate a neighbor solution-rep-
resenting permutation. In the roulette wheel, the proba-
bilities of selecting d-swap and d-insert are the ffth and the
sixth input parameters, respectively. Te probability of
selecting d-reverse is thus unity subtracted by the sum of the
probabilities of selecting d-swap and d-insert.

Te delay-time limit (δ) and the tiebreak criterion (TB)
are the MPM-LOLA’s seventh and eighth input parameters,
respectively. Tese two input parameters are used to select
an optional machine for each operation in constructing a
schedule. Tus, instead of using δ and TB by MPM-LOLA
itself, MPM-LOLA transfers the values of δ and TB into its
solution-decoding method (Algorithm 1).

Te overall procedure of MPM-LOLA is given in Al-
gorithm 2. Notation used in Algorithm 2 is defned below:

Step 1. Receive a δ’s value, a TB’s value, and an operation-based permutation needed to be transformed fromMPM-LOLA (Algorithm
2).
Step 2. Transform the operation-based permutation taken from Step 1 into U by changing the number i in its k-th appearance into the
operation Oik (i� 1, 2, . . ., n; k� 1, 2, . . ., ni). For example, the operation-based permutation (3, 2, 3, 1, 1, 2) is transformed into U �

(O31, O21, O32, O11, O12, O22).
Step 3. Transform U into Φ by using Steps 3.1 to 3.6.
Step 3.1. Let Φ⟵ an empty schedule, and let t⟵ 1.
Step 3.2. Let Oi′k′ ⟵ the leftmost as-yet-unscheduled operation in U.
Step 3.3. Find σM, σJ, and σ of Oi′k′.
Step 3.4. Let E⟵ the machine, chosen from all Ei′k′l (l� 1, 2, . . .,mi′k′), that can start processing not-later-than σ + δτi′k′. If there is

more than one machine that can be chosen as E, then choose one of them that has the lowest l if TB� lowest; otherwise, choose one of
them that has the highest l.

Step 3.5. Modify Φ by assigning E to process Oi′k′. In the schedule, let E start processing Oi′k′ as early as possible.
Step 3.6. If t<D, then t⟵ t+ 1 and repeat from Step 3.2. Otherwise, go to Step 4.

Step 4. Return Φ as the complete schedule to MPM-LOLA (Algorithm 2).

ALGORITHM 1: Solution-decoding method.
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(i) Let D denote the number of all operations in the
being-solved MPMJSP instance. Tus, D= n1 +
n2 + . . .+ nn, where ni is the number of all oper-
ations of the job Ji.

(ii) Let d denote the distance limit of v from u in the
operation-based permutation for specifying d-
swap, d-insert, and d-reverse.

(iii) Let ρS and ρI, which are real numbers within [0, 1),
denote the probabilities of selectingD-swap andD-
insert, respectively. Tus, the probability of
selecting D-reverse is 1 – ρS – ρI.

(iv) Let ρNS and ρNI, which are real numbers within [0,
1), denote the probabilities of selecting d-swap and
d-insert, respectively. Tus, the probability of
selecting d-reverse is 1 – ρNS – ρNI.

(v) Let δ, which is a real number within [0, 1), denote
the delay-time limit for selecting an optional
machine for each operation.

(vi) Let TB ∈ {lowest, highest} denote the tiebreak
criterion for selecting an optional machine for each
operation.

(vii) Let P denote the start operation-based permutation.
(viii) Let P0 denote the current best-found operation-

based permutation. An initial P0 is generated from
P via the perturbation operator.

(ix) Let S0, which is decoded from P0, denote the
current best-found schedule. In addition, Make-
span(S0) stands for the makespan of S0.

(x) Let P1 denote the current neighbor operation-
based permutation.

(xi) Let S1, which is decoded from P1, denote the
current neighbor schedule. In addition, Make-
span(S1) stands for the makespan of S1.

3.2. MPM-UPLA. MPM-UPLA is an upper-level algorithm
of the proposed two-level metaheuristic. It uses the same
framework of the upper-level algorithms of [11, 12]. MPM-
UPLA is thus a population-based search algorithm that acts
as a parameter controller. It evolves the MPM-LOLA’s in-
put-parameter values, so that MPM-LOLA can return its
best performance on every single MPMJSP instance. At the
t-th iteration, the MPM-UPLA’s population consists of N
combinations of the MPM-LOLA’s input-parameter values,
i.e., C1(t), C2(t), . . ., CN(t). In short, let a parameter-value
combination stand for a combination of the MPM-LOLA’s
input-parameter values. Let Cg(t) ≡ (c1g(t), c2g(t),

. . . , c9g(t)) denote the g-th parameter-value combination
(where g = 1, 2, . . .,N) in the population at the t-th iteration.
It represents the value combination of the MPM-LOLA’s
input parameters, i.e., P, ρS, ρI, d, ρNS, ρNI, and TB.

Te delay-time limit, δ, is an important MPM-LOLA’s
input parameter controlled by MPM-UPLA. However, the
value of δ is not assigned as a member in Cg(t), but it is
controlled by the MPM-UPLA’s iteration index, t. At the
frst MPM-UPLA’s iteration (t� 1), the value of δ is set to be
0.0 for MPM-LOLA. For every next 50 MPM-UPLA’s it-
erations, the value of δ is increased by 0.2 for MPM-LOLA.
Tis setting of δ was based on the result of a preliminary
study of this research. It found that the control of δ using the
MPM-UPLA’s iteration index usually performs better than
the control of δ using Cg(t).

Te transformations from the Cg(t)’s members into
MPM-LOLA’s parameter values are described below:

(i) Let c1g(t) represent P. In other words, P is directly
equal to c1g(t) in the transformation.

(ii) Let c2g(t), c3g(t), and c4g(t) ∈R be used together to
determine the values of ρS and ρI. Teir transfor-
mations are given in (1) and (2).

Step 1. Receive values of its eight input parameters (i.e., P, ρS, ρI, d, ρNS, ρNI, δ, and TB) from MPM-UPLA (Algorithm 3).
Step 2. Generate P0 from P by using Steps 2.1 to 2.4.
Step 2.1. Let r⟵ 1.
Step 2.2. Randomly generate p∼U[0, 1).
Step 2.3. Modify P by using D-swap if p < ρS, D-insert if ρS≤ p < ρS + ρI, and D-reverse otherwise.
Step 2.4. If r< n, let r⟵ r + 1 and repeat from Step 2.2. Otherwise, let P0⟵ P and go to Step 3.

Step 3. Execute Algorithm 1, with the taken values of δ and TB, for transforming P0 into S0.
Step 4. Find a local optimal schedule by using Steps 4.1 to 4.5.
Step 4.1. Let tL⟵ 0.
Step 4.2. Randomly generate p∼U[0, 1).
Step 4.3. Generate P1 from P0 by using d-swap if p < ρNS, d-insert if ρNS≤ p < ρNS + ρNI, and d-reverse otherwise.
Step 4.4. Execute Algorithm 1, with the taken values of δ and TB, for transforming P1 into S1.
Step 4.5. Update P0, S0, and tL by using Steps 4.5.1 to 4.5.3.

Step 4.5.1. If Makespan(S1)<Makespan(S0), then let P0⟵ P1 and S0⟵ S1, and repeat from Step 4.1.
Step 4.5.2. If Makespan(S1)�Makespan(S0), then let P0⟵ P1 and S0⟵ S1, and repeat from Step 4.2.
Step 4.5.3. If Makespan(S1)>Makespan(S0), then let tL⟵ tL + 1. If tL<D2, repeat from Step 4.2; otherwise, go to Step 5.

Step 5. Return P0 and S0 as the fnal (best-found) operation-based permutation and the fnal (best-found) schedule, respectively, to
MPM-UPLA (Algorithm 3).

ALGORITHM 2: MPM-LOLA’s procedure.
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ρS �
max 0, c2g(t) 

max 0, c2g(t)  + max 0, c3g(t)  + max 0, c4g(t) 
, (1)

ρI �
max 0, c3g(t) 

max 0, c2g(t)  + max 0, c3g(t)  + max 0, c4g(t) 
. (2)

(iii) Let c5g(t) ∈R be used to determine the value of d. In
its transformation, let d be equal to the rounded
integer from 1+Dc5g(t), where D is the number of
all operations in the MPMJSP instance. After that,
reassign d= 1 if d< 1, and reassign d=D if d>D.

(iv) Let c6g(t), c7g(t), and c8g(t) ∈R be used together to
determine the values of ρNS and ρNI. Teir trans-
formations are given in (3) and (4).

ρNS �
max 0, c6g(t) 

max 0, c6g(t)  + max 0, c7g(t)  + max 0, c8g(t) 
, (3)

ρNI �
max 0, c7g(t) 

max 0, c6g(t)  + max 0, c7g(t)  + max 0, c8g(t) 
. (4)

(v) Let c9g(t) ∈R be used to determine the value of TB.
In its transformation, let TB= lowest if c9g(t) < 0.5,
and let TB=highest if c9g(t) ≥ 0.5.

Te overall procedure of MPM-UPLA is given in Al-
gorithm 3. Notation used in Algorithm 3 is defned below:

(i) Let N denote the number of all parameter-value
combinations in the MPM-UPLA’s population.

(ii) Let Cg(t) ≡ (c1g(t), c2g(t), . . . , c9g(t)) denote the
g-th parameter-value combination (where g = 1, 2,
. . ., N) in the MPM-UPLA’s population at the t-th
iteration.

(iii) Let Score(Cg(t)) denote the performance score of
Cg(t). Note that the lower the performance score,
the better the performance.

(iv) After executing MPM-LOLA with the parameter
values given by Cg(t), let its fnal (best-found)
operation-based permutation and fnal (best-
found) schedule be denoted by Pfg(t) and Sfg(t),
respectively.

(v) LetMakespan(Sfg(t)) denote the makespan of Sfg(t).
(vi) Let Cbest≡ (c1best, c2best, . . ., c9best) denote the best

parameter-value combination ever found by the
population. In addition, let Score(Cbest) denote the
performance score of Cbest.

(vii) Let Sbest denote the best schedule ever found by the
population.

4. Experiment’s Results

In this paper, an experiment was conducted to compare
MPM-UPLA’s results with those of TS, PSO, and CP. Let TS,
PSO, and CP represent the tabu-search algorithm [9], the
particle swarm optimization algorithm [10], and the ILOG

constraint programming optimizer [20], respectively. Tese
three algorithms were chosen because they perform well on
the same benchmark instance sets used in this paper’s ex-
periment. In Sections 4 and 5, let MPM-UPLA stand for the
whole two-level metaheuristic, i.e., MPM-UPLA combined
with MPM-LOLA. Te reason is that MPM-UPLA uses
MPM-LOLA as its component when solving MPMJSP.

In the comparison, this paper’s experiment used three
benchmark instance sets, i.e., Edata, Rdata, and Vdata, taken
from [9, 20, 21]. Each instance set consists of 66 instances,
modifed from the well-known JSP benchmark instances
[35–39]. Te diference among the three instance sets is the
number of optional machines of each operation in their
instances. In Edata, the average number of optional ma-
chines of each operation is 1.15, and the maximum number
of optional machines of each operation is 2 or 3. In Rdata,
the average number and the maximum number of optional
machines of each operation are 2 and 3, respectively. In
Vdata, the average number and the maximum number of
optional machines of each operation are 0.5m and 0.8m,
respectively (where m= the number of all machines in an
instance).

Te parameter settings of MPM-UPLA used in the ex-
periment are shown below:

(i) Te population of MPM-UPLA consisted of three
parameter-value combinations (i.e., N� 3 in
Algorithm 3).

(ii) Te stopping criterion of MPM-UPLA was to stop
when any of the below conditions was satisfed:

(a) Te 1,000-th iteration (i.e., t� 1,000 in Algo-
rithm 3) was reached.

(b) Te 150-th minute of computational time was
reached.

(c) Te known optimal solution was found. If the
optimal solution has been yet unknown, its
lower bound [20, 21] was used instead.

(iii) MPM-UPLA was coded in C# and executed on an
Intel® Core™ i7-3520M @ 2.90GHz with RAM of
4GB (3.87GB useable).

(iv) For each instance, MPM-UPLA was executed fve
trials with diferent random-seed numbers.

With the above settings, the experiment’s results on Edata,
Rdata, and Vdata are presented in Tables 1 to 3, respectively.
Tese tables frst show the name, size, and best-known solution
value of each instance.Te best-known solution value, given by
literature, stands for the upper bound of the optimal solution
value. For each instance, each table then shows the best-found
solution values of TS [9], PSO [10], CP [20], and MPM-UPLA.
Te best-found solution values of TS, PSO, and CP are their
best solution values taken from their original articles [9, 10] and
[20], respectively. For MPM-UPLA, its best-found solution
value on each instance is aminimumof the best-found solution
values from its fve trials in this experiment. Each table also
shows an average of the best-found solution values, the average
number of used iterations, and the average computational time
from the MPM-UPLA’s fve trials on each instance.

Complexity 7



Notation and terminologies used for each instance in
Tables 1 to 3 are given as follows:

(i) Let Instance column present the name of each
instance.

(ii) Let n and m denote the number of all jobs and the
number of all machines, respectively, in the
instance.

(iii) Let a solution denote an MPMJSP’s schedule, and
let a solution value denote a makespan of an
MPMJSP’s schedule.

(iv) Let BKS column present the best-known solution
value given by literature, e.g., [20, 21]. If the best-
known solution value has been proven to be an
optimal solution value, it is presented without
parentheses. Otherwise, it is an upper bound of the
optimal solution value and is presented within
parentheses.

(v) If the best-found solution value of MPM-UPLA is
better than the best-known solution value given by
literature, let the best-found solution value of
MPM-UPLA become the new best-known solution
value. When such a case occurs, an arrow symbol
(⟶) is given in front of the value.

(vi) Let Best represent the best-found solution value of
each algorithm. Best of MPM-UPLA was taken
from the fve trials in this experiment. Bests of TS,
PSO, and CP were taken from [9, 10] and [20],

respectively. N/A means the best-found solution
value does not appear in the original article.

(vii) Let Avg represent the average of the best-found
solution values of the fve trials of MPM-UPLA.

(viii) Let No of Iters and Time stand for the average
number of iterations and the average computa-
tional time (in HH:MM:SS format), respectively,
until the MPM-UPLA’s stopping criterion is met.

For each instance set, Table 4 shows Avg %BD of each
algorithm on each instance category. Of each algorithm,%BD
of each instance denotes a percent deviation of the best-found
solution value from the best-known solution value.Ten, Avg
%BD denotes an average of %BDs of all instances in their
category. In Table 4, each instance is classifed into one of 13
instance categories, based on its source and size.Te details of
these 13 categories are given below:

(i) M6-20 consists of three instances, i.e., M6, M10,
and M20.

(ii) LA1-5 consists of fve 10-job/5-machine instances,
i.e., LA1, LA2, . . ., LA5.

(iii) LA6-10 consists of fve 15-job/5-machine in-
stances, i.e., LA06, LA07, . . ., LA10.

(iv) LA11-15 consists of fve 20-job/5-machine in-
stances, i.e., LA11, LA12, . . ., LA15.

(v) LA16-20 consists of fve 10-job/10-machine in-
stances, i.e., LA16, LA17, . . ., LA20.

Step 1. Receive a value of N and a stopping criterion from a user. Let t⟵ 1, δ⟵ 0.0, and Score(Cbest)⟵+∞.
Step 2. Generate Cg(t) ≡ (c1g(t), c2g(t), . . . , c9g(t)), where g � 1, 2, . . ., N, by using Steps 2.1 to 2.4.
Step 2.1. Let g⟵ 1.
Step 2.2. Randomly generate c1g(t) from any possible operation-based permutation.
Step 2.3. Randomly generate c2g(t), c3g(t), . . . , c9g(t) ∼ U[0, 1).
Step 2.4. If g<N, let g⟵g + 1 and repeat from Step 2.2. Otherwise, go to Step 3.

Step 3. Evaluate Score(Cg(t)), and update Cbest and Sbest by using Steps 3.1 to 3.6.
Step 3.1. Let g⟵ 1.
Step 3.2. Transform Cg(t) into the values of P, ρS, ρI, d, ρNS, ρNI, and TB.
Step 3.3. ExecuteMPM-LOLA (Algorithm 2) with the last-updated values of P, ρS, ρI, d, ρNS, ρNI, TB, and δ in order to receive Pfg(t)

and Sfg(t).
Step 3.4. Let Score(Cg(t))⟵Makespan(Sfg(t)).
Step 3.5. If Score(Cg(t))≤ Score(Cbest), then let Cbest⟵Cg(t), Score(Cbest)⟵ Score(Cg(t)), and Sbest⟵ Sfg(t).
Step 3.6. If g<N, let g⟵g + 1 and repeat from Step 3.2. Otherwise, go to Step 4.

Step 4. Update Cg(t + 1) , where g � 1, 2, . . . , N, by using Steps 4.1 to 4.5.
Step 4.1. Let g⟵ 1.
Step 4.2. Let c1g(t + 1)⟵Pfg(t).
Step 4.3. If (t + 1) mod 50� 0, let δ⟵ δ + 0.2. After that, reassign δ⟵ 0.999 if δ ≥ 1.0.
Step 4.4. If (t + 1) mod 50 � 0, randomly generate c2g(t + 1), c3g(t + 1), . . . , c9g(t + 1) ∼ U[0, 1). Otherwise, generate cqg(t + 1),

where q � 2, 3, . . . , 9, by using the below equation. Let u1 and u2 ∼ U[0, 1).

cqg(t + 1) �

cqg(t) + 0.05u1 − 0.01u2 if cqg(t)< cqbest,

cqg(t) − 0.05u1 + 0.01u2 if cqg(t)> cqbest,

cqg(t) + 0.01u1 − 0.01u2 if cqg(t) � cqbest.

⎧⎪⎨

⎪⎩

Step 4.5. If g<N, then let g⟵g + 1 and repeat from Step 4.2. Otherwise, go to Step 5.
Step 5. If the stopping criterion is not met, then let t⟵ t+ 1 and repeat from Step 2. Otherwise, return Sbest as the fnal result to the
user.

ALGORITHM 3: MPM-UPLA’s procedure.
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Table 1: Results on Edata.

Instance n, m BKS Best of TS [9] Best of PSO [10] Best of CP [20]
MPM-UPLA

Best Avg No of Iters Time
M6 6, 6 55 57 55 55 55 55.0 1 < 1 sec.
M10 10, 10 871 917 892 877 873 875.0 1000 0:26:10
M20 20, 5 1088 1109 1116 1088 1090 1090.2 1000 0:31:11
LA1 10, 5 609 611 609 609 609 609.0 1 < 1 sec.
LA2 10, 5 655 655 655 655 655 655.0 3 < 1 sec.
LA3 10, 5 550 573 567 567 550 550.0 89 0:00:19
LA4 10, 5 568 578 582 568 568 568.0 25 0:00:05
LA5 10, 5 503 503 503 503 503 503.0 1 < 1 sec.
LA6 15, 5 833 833 833 833 833 833.0 1 < 1 sec.
LA7 15, 5 762 765 765 765 762 762.0 377 0:04:02
LA8 15, 5 845 845 845 845 845 845.0 3 0:00:01
LA9 15, 5 878 878 878 878 878 878.0 1 < 1 sec.
LA10 15, 5 866 866 866 866 866 866.0 1 < 1 sec.
LA11 20, 5 1103 1106 1103 1106 1103 1103.0 246 0:05:09
LA12 20, 5 960 960 960 960 960 960.0 1 0:00:02
LA13 20, 5 1053 1053 1053 1053 1053 1053.0 1 0:00:01
LA14 20, 5 1123 1151 1123 1123 1123 1123.0 2 0:00:02
LA15 20, 5 1111 1111 1111 1111 1111 1111.0 2 0:00:03
LA16 10, 10 892 924 893 904 892 892.0 4 0:00:07
LA17 10, 10 707 757 707 707 707 707.0 3 0:00:04
LA18 10, 10 842 864 847 843 842 842.0 250 0:06:00
LA19 10, 10 796 850 820 799 796 796.0 161 0:04:20
LA20 10, 10 857 919 859 857 857 857.0 6 0:00:11
LA21 15, 10 1009 1066 1057 1044 1021 1025.0 1000 1:42:08
LA22 15, 10 880 919 912 887 882 883.2 1000 1:39:29
LA23 15, 10 950 980 994 950 950 950.0 68 0:06:38
LA24 15, 10 908 952 939 913 909 909.2 1000 1:39:33
LA25 15, 10 936 970 974 955 945 945.2 1000 1:31:55
LA26 20, 10 1106 1169 1173 1143 1115 1123.0 543 2:30:09
LA27 20, 10 1181 1230 1247 1188 1182 1188.8 552 2:30:12
LA28 20, 10 1142 1204 1195 1153 1149 1149.0 566 2:30:08
LA29 20, 10 1107 1210 1175 1128 1124 1130.2 555 2:30:08
LA30 20, 10 (1193) 1253 1262 1241 1220 1223.4 551 2:30:19
LA31 30, 10 (1532) 1596 1620 1552 1541 1541.0 195 2:30:31
LA32 30, 10 1698 1769 1743 1698 1698 1698.0 2 0:01:19
LA33 30, 10 1547 1575 1578 1560 1547 1547.0 2 0:01:22
LA34 30, 10 1599 1627 1662 1609 1608 1608.8 259 2:30:09
LA35 30, 10 1736 1736 1736 1736 1736 1736.0 1 0:01:06
LA36 15, 15 1160 1247 1202 1160 1160 1161.8 307 1:49:22
LA37 15, 15 1397 1453 1425 1397 1397 1397.0 41 0:11:14
LA38 15, 15 1141 1185 1209 1146 1143 1148.2 424 2:30:18
LA39 15, 15 1184 1226 1220 1184 1186 1187.4 423 2:30:14
LA40 15, 15 1144 1214 1197 1174 1150 1153.6 391 2:30:05
ABZ5 10, 10 1167 N/A N/A 1176 1167 1167.0 235 0:06:08
ABZ6 10, 10 925 N/A N/A 925 925 925.0 35 0:00:49
ABZ7 20, 15 (610) N/A N/A 638 619 621.0 150 2:30:44
ABZ8 20, 15 (637) N/A N/A 654 648 650.0 152 2:30:37
ABZ9 20, 15 644 N/A N/A 668 655 656.6 155 2:30:26
CAR1 11, 5 6176 N/A N/A 6176 6176 6182.0 723 0:03:37
CAR2 13, 4 6327 N/A N/A 6455 6432 6433.6 1000 0:05:05
CAR3 12, 5 6856 N/A N/A 6856 6856 6875.8 780 0:04:25
CAR4 14, 4 7789 N/A N/A 7789 7789 7789.0 1 < 1 sec.
CAR5 10, 6 7229 N/A N/A 7229 7229 7229.0 41 0:00:15
CAR6 8, 9 7990 N/A N/A 8478 7990 7990.0 62 0:00:33
CAR7 7, 7 6123 N/A N/A 6123 6123 6123.0 6 0:00:01
CAR8 8, 8 7689 N/A N/A 7689 7689 7689.0 9 0:00:04
ORB1 10, 10 977 N/A N/A 988 977 977.0 223 0:06:25
ORB2 10, 10 865 N/A N/A 870 865 865.0 53 0:01:21
ORB3 10, 10 951 N/A N/A 960 952 952.0 1000 0:26:46
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Table 2: Results on Rdata.

Instance n, m BKS Best of TS [9] Best of PSO [10] Best of CP [20]
MPM-UPLA

Best Avg No of Iters Time
M6 6, 6 47 47 47 47 47 47.0 1 < 1 sec.
M10 10, 10 686 737 724 686 686 686.0 29 0:01:10
M20 20, 5 1022 1028 1025 1024 1022 1022.0 22 0:00:46
LA1 10, 5 (571) 574 574 573 571 571.0 1000 0:04:50
LA2 10, 5 529 535 534 534 530 530.8 1000 0:04:51
LA3 10, 5 477 481 480 478 478 478.0 1000 0:05:43
LA4 10, 5 502 509 506 504 502 502.8 878 0:04:31
LA5 10, 5 457 460 459 458 457 457.6 648 0:03:03
LA6 15, 5 799 801 800 799 799 799.0 15 0:00:13
LA7 15, 5 749 752 750 750 749 749.0 158 0:02:38
LA8 15, 5 765 767 767 766 765 765.0 183 0:02:54
LA9 15, 5 853 859 854 854 853 853.0 100 0:01:29
LA10 15, 5 804 806 806 805 804 804.0 274 0:03:55
LA11 20, 5 1071 1073 1072 1072 1071 1071.0 3 0:00:07
LA12 20, 5 936 937 936 936 936 936.0 2 0:00:04
LA13 20, 5 1038 1039 1039 1038 1038 1038.0 2 0:00:03
LA14 20, 5 1070 1071 1070 1071 1070 1070.0 4 0:00:07
LA15 20, 5 1089 1093 1090 1091 1089 1089.0 67 0:02:21
LA16 10, 10 717 717 732 717 717 717.0 2 0:00:05
LA17 10, 10 646 646 654 646 646 646.0 1 0:00:02
LA18 10, 10 666 674 694 666 666 666.0 72 0:02:49
LA19 10, 10 700 725 730 703 700 701.2 534 0:22:48
LA20 10, 10 756 756 756 757 756 756.0 1 0:00:03
LA21 15, 10 (829) 861 916 845 844 846.6 617 2:30:04
LA22 15, 10 (753) 790 839 775 772 774.6 754 2:30:05
LA23 15, 10 (832) 884 892 857 850 856.2 665 2:30:04
LA24 15, 10 (801) 825 870 818 821 823.0 723 2:30:06
LA25 15, 10 (782) 823 858 805 802 804.0 785 2:30:04
LA26 20, 10 (1059) 1086 1114 1074 1067 1068.2 218 2:30:31
LA27 20, 10 (1087) 1109 1141 1101 1095 1098.4 249 2:30:15
LA28 20, 10 (1077) 1097 1135 1084 1083 1086.0 227 2:30:07
LA29 20, 10 (996) 1016 1046 1006 1003 1004.6 258 2:30:08
LA30 20, 10 (1072) 1105 1148 1087 1087 1090.2 257 2:30:15
LA31 30, 10 ⟶1520 1532 1549 1525 1520 1523.2 61 2:16:01
LA32 30, 10 (1658) 1668 1691 1664 1659 1660.4 65 2:30:56
LA33 30, 10 (1498) 1511 1530 1502 1498 1500.2 70 2:30:47
LA34 30, 10 (1536) 1542 1556 1542 1536 1537.2 70 2:31:01
LA35 30, 10 (1550) 1559 1577 1556 1551 1551.8 73 2:31:01
LA36 15, 15 1023 1054 1119 1034 1026 1033.0 213 2:30:17
LA37 15, 15 1062 1122 1190 1084 1084 1086.0 219 2:30:21
LA38 15, 15 954 1004 1063 973 976 976.0 249 2:30:18
LA39 15, 15 1011 1041 1131 1018 1024 1025.2 258 2:30:26
LA40 15, 15 955 1009 1057 984 977 984.0 169 2:30:33
ABZ5 10, 10 954 N/A N/A 962 959 960.0 1000 0:48:07
ABZ6 10, 10 807 N/A N/A 807 807 807.0 4 0:00:08
ABZ7 20, 15 (527) N/A N/A 544 547 548.8 57 2:32:24

Table 1: Continued.

Instance n, m BKS Best of TS [9] Best of PSO [10] Best of CP [20]
MPM-UPLA

Best Avg No of Iters Time
ORB4 10, 10 984 N/A N/A 1016 984 984.0 255 0:06:47
ORB5 10, 10 842 N/A N/A 865 842 842.0 215 0:05:27
ORB6 10, 10 958 N/A N/A 1004 958 958.0 93 0:02:48
ORB7 10, 10 387 N/A N/A 387 389 389.0 1000 0:26:27
ORB8 10, 10 894 N/A N/A 894 894 894.0 15 0:00:23
ORB9 10, 10 933 N/A N/A 933 933 933.0 121 0:03:14
ORB10 10, 10 933 N/A N/A 937 933 933.0 226 0:06:02
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Table 2: Continued.

Instance n, m BKS Best of TS [9] Best of PSO [10] Best of CP [20]
MPM-UPLA

Best Avg No of Iters Time
ABZ8 20, 15 (540) N/A N/A 555 561 565.2 67 2:31:02
ABZ9 20, 15 (539) N/A N/A 562 555 565.2 68 2:31:18
CAR1 11, 5 (5035) N/A N/A 5057 5050 5053.4 1000 0:07:21
CAR2 13, 4 (5986) N/A N/A 5987 5986 5986.0 1000 0:05:45
CAR3 12, 5 (5623) N/A N/A 5626 5625 5629.2 1000 0:10:00
CAR4 14, 4 (6515) N/A N/A 6518 6515 6515.2 1000 0:07:25
CAR5 10, 6 5615 N/A N/A 5764 5680 5691.4 1000 0:09:24
CAR6 8, 9 6147 N/A N/A 6147 6147 6147.0 17 0:00:12
CAR7 7, 7 4425 N/A N/A 4432 4425 4430.6 803 0:04:07
CAR8 8, 8 5692 N/A N/A 5692 5692 5692.0 99 0:00:54
ORB1 10, 10 746 N/A N/A 763 746 746.0 20 0:00:40
ORB2 10, 10 696 N/A N/A 703 696 698.4 807 0:32:37
ORB3 10, 10 712 N/A N/A 720 715 716.0 1000 0:44:29
ORB4 10, 10 753 N/A N/A 753 753 753.0 8 0:00:22
ORB5 10, 10 639 N/A N/A 643 639 639.0 325 0:15:04
ORB6 10, 10 754 N/A N/A 766 754 754.0 145 0:05:35
ORB7 10, 10 302 N/A N/A 302 302 303.4 866 0:38:49
ORB8 10, 10 639 N/A N/A 651 641 641.0 1000 0:42:24
ORB9 10, 10 694 N/A N/A 694 694 694.0 33 0:01:27
ORB10 10, 10 742 N/A N/A 750 742 743.4 847 0:41:27

Table 3: Results on Vdata.

Instance n, m BKS Best of TS [9] Best of PSO [10] Best of CP [20]
MPM-UPLA

Best Avg No of Iters Time
M6 6, 6 47 47 47 47 47 47.0 1 < 1 sec.
M10 10, 10 655 655 655 655 655 655.0 1 0:00:01
M20 20, 5 1022 1023 1024 1023 1022 1022.0 4 0:00:10
LA1 10, 5 570 573 571 570 570 570.2 431 0:02:30
LA2 10, 5 529 531 530 529 529 529.0 134 0:00:43
LA3 10, 5 477 482 479 478 477 477.8 875 0:04:58
LA4 10, 5 502 504 504 502 502 502.0 345 0:01:48
LA5 10, 5 457 464 460 458 457 457.4 527 0:02:43
LA6 15, 5 799 802 799 799 799 799.0 6 0:00:05
LA7 15, 5 749 751 750 750 749 749.0 103 0:01:47
LA8 15, 5 765 766 766 766 765 765.0 96 0:01:39
LA9 15, 5 853 854 855 854 853 853.0 28 0:00:28
LA10 15, 5 804 805 805 804 804 804.0 124 0:02:04
LA11 20, 5 1071 1073 1071 1071 1071 1071.0 1 0:00:03
LA12 20, 5 936 940 936 936 936 936.0 1 0:00:03
LA13 20, 5 1038 1040 1038 1038 1038 1038.0 4 0:00:08
LA14 20, 5 1070 1071 1070 1070 1070 1070.0 2 0:00:03
LA15 20, 5 1089 1091 1090 1090 1089 1089.0 36 0:01:21
LA16 10, 10 717 717 717 717 717 717.0 1 0:00:02
LA17 10, 10 646 646 646 646 646 646.0 1 0:00:02
LA18 10, 10 663 663 663 663 663 663.0 1 0:00:02
LA19 10, 10 617 617 619 617 617 617.0 3 0:00:10
LA20 10, 10 756 756 756 756 756 756.0 1 0:00:02
LA21 15, 10 (802) 826 819 804 817 822.2 501 2:30:08
LA22 15, 10 (735) 745 755 736 755 756.4 536 2:30:11
LA23 15, 10 (812) 826 828 815 826 831.2 533 2:30:06
LA24 15, 10 (775) 796 790 775 793 797.4 589 2:30:06
LA25 15, 10 (753) 770 775 756 768 770.2 562 2:30:08
LA26 20, 10 (1053) 1058 1058 1054 1073 1075.8 267 2:30:24
LA27 20, 10 1084 1088 1091 1084 1106 1110.2 260 2:30:20
LA28 20, 10 1069 1073 1076 1070 1091 1094.6 253 2:30:20
LA29 20, 10 (994) 995 1003 995 1010 1013.6 241 2:30:18
LA30 20, 10 (1069) 1071 1078 1072 1085 1093.8 222 2:30:17
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(vi) LA21-25 consists of fve 15-job/10-machine in-
stances, i.e., LA21, LA22, . . ., LA25.

(vii) LA26-30 consists of fve 20-job/10-machine in-
stances, i.e., LA26, LA27, . . ., LA30.

(viii) LA31-35 consists of fve 30-job/10-machine in-
stances, i.e., LA31, LA32, . . ., LA35.

(ix) LA36-40 consists of fve 15-job/15-machine in-
stances, i.e., LA36, LA37, . . ., LA40.

(x) ABZ5-6 consists of two 10-job/10-machine in-
stances, i.e., ABZ5 and ABZ6.

(xi) ABZ7-9 consists of three 20-job/15-machine in-
stances, i.e., ABZ7, ABZ8, and ABZ9.

(xii) CAR1-8 consists of eight instances, i.e., CAR1,
CAR2, . . ., CAR8.

(xiii) ORB1-10 consists of ten 10-job/10-machine in-
stances, i.e., ORB1, ORB2, . . ., ORB10.

In addition to the 13 categories, Table 4 includes four
more instance categories, i.e., M6-LA40, SM-M6-LA40, M6-
ORB10, and SM-M6-ORB10. Tese additional categories
were used for comparing performance of the algorithms. SM
in SM-M6-LA40 and SM-M6-ORB10 indicates that these

categories contain only small-to-medium instances. Let
instances be defned as small-to-medium instances if their
nm< 150 and large instances otherwise (where n� the
number of jobs and m� the number of machines). Te
details of these four additional categories are given below:

(i) M6-LA40 consists of the frst 43 instances of all 66
instances, starting from M6 to LA40. Tese 43 in-
stances were used by TS [9] and PSO [10] in their
original articles.

(ii) SM-M6-LA40 consists of all 23 small-to-medium
instances from M6-LA40.

(iii) M6-ORB10 consists of all 66 instances, starting
fromM6 to ORB10.Tese 66 instances were used by
CP [20] in its original article.

(iv) SM-M6-ORB10 consists of all 43 small-to-medium
instances from M6-ORB10.

5. Result Analysis and Discussion

Tis section analyzes and discusses the results shown in
Section 4. Like Section 4, MPM-UPLA in this section stands
for the whole two-level metaheuristic, i.e., MPM-UPLA

Table 3: Continued.

Instance n, m BKS Best of TS [9] Best of PSO [10] Best of CP [20]
MPM-UPLA

Best Avg No of Iters Time
LA31 30, 10 1520 1521 1524 1522 1538 1540.6 82 2:31:00
LA32 30, 10 (1658) 1658 1664 1661 1681 1686.6 79 2:31:10
LA33 30, 10 (1498) 1498 1503 1500 1511 1519.2 79 2:31:12
LA34 30, 10 1535 1536 1541 1537 1557 1561.4 84 2:30:49
LA35 30, 10 1549 1553 1555 1551 1563 1570.8 74 2:31:05
LA36 15, 15 948 948 955 948 948 948.0 4 0:03:21
LA37 15, 15 986 986 993 986 986 986.0 54 0:49:27
LA38 15, 15 943 943 943 943 943 943.0 1 0:00:38
LA39 15, 15 922 922 945 922 922 922.0 27 0:24:02
LA40 15, 15 955 955 955 955 955 955.0 1 0:00:41
ABZ5 10, 10 859 N/A N/A 860 859 859.0 12 0:00:53
ABZ6 10, 10 742 N/A N/A 742 742 742.0 1 0:00:04
ABZ7 20, 15 (495) N/A N/A 495 535 536.0 86 2:30:44
ABZ8 20, 15 (509) N/A N/A 509 554 554.8 84 2:30:58
ABZ9 20, 15 (499) N/A N/A 500 540 541.8 85 2:31:11
CAR1 11, 5 5005 N/A N/A 5013 5007 5007.0 1000 0:08:30
CAR2 13, 4 5929 N/A N/A 5930 5929 5929.0 255 0:01:22
CAR3 12, 5 (5598) N/A N/A 5600 5601 5601.4 1000 0:10:41
CAR4 14, 4 6514 N/A N/A 6517 6514 6514.0 199 0:01:22
CAR5 10, 6 (4913) N/A N/A 4932 4935 4941.0 1000 0:11:21
CAR6 8, 9 5486 N/A N/A 5486 5486 5486.0 1 0:00:01
CAR7 7, 7 4281 N/A N/A 4281 4281 4281.0 1 0:00:00
CAR8 8, 8 4613 N/A N/A 4613 4613 4613.0 2 0:00:02
ORB1 10, 10 695 N/A N/A 695 695 695.0 1 0:00:01
ORB2 10, 10 620 N/A N/A 620 620 620.0 1 0:00:04
ORB3 10, 10 648 N/A N/A 648 648 648.0 1 0:00:02
ORB4 10, 10 753 N/A N/A 753 753 753.0 1 0:00:02
ORB5 10, 10 584 N/A N/A 584 584 584.0 1 0:00:04
ORB6 10, 10 715 N/A N/A 715 715 715.0 1 0:00:01
ORB7 10, 10 275 N/A N/A 275 275 275.0 10 0:00:32
ORB8 10, 10 573 N/A N/A 573 573 573.0 1 0:00:02
ORB9 10, 10 659 N/A N/A 659 659 659.0 1 0:00:03
ORB10 10, 10 681 N/A N/A 681 681 681.0 1 0:00:03

12 Complexity



combined with MPM-LOLA. Te performance of MPM-
UPLA was compared with the performance of TS [9], PSO
[10], and CP [20] via three performance indicators. Tese
indicators are the number of instances achieved in fnding the
best-known solutions, the number of instances won by an
algorithm against another, and the average percent deviation
of the algorithm’s best-found solution value from the best-
known solution value (Avg %BD). Of each instance, the best-
known solution value means the best solution value found by
the published literature. An only exception is in LA31 of
Rdata, where its best-known solution value was taken from
the best-found solution value of MPM-UPLA. Te reason is
that, in LA31 of Rdata, MPM-UPLA found the better solution
than the previously published best-known solution.

For each instance set, this section separates analyses on
the frst 43 instances from those on all 66 instances. Te
reason is that the results of TS and PSO were given on only
the 43 instances in their original articles [9, 10], while the
results of CP were given on the 66 instances in its original
article [20]. In addition, this section separates analyses on
small-to-medium instances from those on all given in-
stances. Note that all instances with nm< 150 are defned as
small-to-medium instances (where n= the number of jobs
and m= the number of machines). Sections 5.1 to 5.3 show
the analyses and discussions via the three given indicators.
Ten, Section 5.4 provides an overall summary from Sec-
tions 5.1 to 5.3.

5.1. Te Number of Instances Achieved in Finding the Best-
Known Solutions. Of each instance set, this section frst
compares the number of instances achieved in fnding the
best-known solutions by MPM-UPLA with those by TS, PSO,
and CP on the frst 43 instances. Te numbers of instances
achieved by each algorithm in Edata, Rdata, and Vdata were

counted from Tables 1, 2, and 3, respectively. For the frst 43
instances, MPM-UPLA obviously outperforms the three
other algorithms on all three instance sets, especially Rdata. Of
each instance set, the comparison results are given below:

(i) For the frst 43 instances of Edata, the algorithms
TS, PSO, CP, and MPM-UPLA reach the best-
known solutions on 10, 15, 22, and 27 instances,
respectively.

(ii) For the frst 43 instances of Rdata, the algorithms
TS, PSO, CP, and MPM-UPLA reach the best-
known solutions on 4, 4, 8, and 24 instances, re-
spectively. MPM-UPLA also found a new best-
known solution value (i.e., 1520) for LA31 of Rdata.
Tis value is defned as the optimal solution value
because it equals the optimal solution value’s lower
bound given in [20].

(iii) For the frst 43 instances of Vdata, the algorithms
TS, PSO, CP, and MPM-UPLA reach the best-
known solutions on 14, 13, 23, 28 instances,
respectively.

Of each instance set, this section then compares the
number of instances achieved by MPM-UPLA with that by
CP on all 66 instances. For all 66 instances, MPM-UPLA
outperforms CP on all three instance sets, especially Rdata.
Of each instance set, the comparison results are given
below:

(i) For all 66 instances of Edata, CP and MPM-UPLA
reach the best-known solutions on 32 and 44 in-
stances, respectively.

(ii) For all 66 instances of Rdata, CP and MPM-UPLA
reach the best-known solutions on 14 and 38 in-
stances, respectively.

Table 4: Avg %BDs.

Category No. of
instances n, m

Edata Rdata Vdata

TS PSO CP MPM-
UPLA TS PSO CP MPM-

UPLA TS PSO CP MPM-UPLA

M6-20 3 Vary 3.62 1.66 0.23 0.14 2.67 1.94 0.07 0.00 0.03 0.07 0.03 0.00
LA01-05 5 10, 5 1.25 1.11 0.62 0.00 0.91 0.67 0.42 0.08 0.78 0.37 0.09 0.00
LA06-10 5 15, 5 0.08 0.08 0.08 0.00 0.37 0.18 0.10 0.00 0.20 0.12 0.08 0.00
LA11-15 5 20, 5 0.55 0.00 0.05 0.00 0.17 0.06 0.07 0.00 0.22 0.02 0.02 0.00
LA16-20 5 10, 10 5.46 0.79 0.37 0.00 0.95 2.36 0.11 0.00 0.00 0.06 0.00 0.00
LA21-25 5 15, 10 4.34 4.10 1.37 0.50 4.65 9.49 2.58 2.31 2.21 2.33 0.23 2.13
LA26-30 5 20, 10 5.92 5.64 2.16 1.06 2.30 5.53 1.15 0.83 0.30 0.70 0.11 1.82
LA31-35 5 30, 10 2.38 2.87 0.55 0.23 0.65 1.82 0.35 0.02 0.08 0.35 0.14 1.16
LA36-40 5 15, 15 5.01 3.85 0.61 0.17 4.51 11.08 1.77 1.65 0.00 0.79 0.00 0.00
ABZ5-6 2 10, 10 N/A N/A 0.39 0.00 N/A N/A 0.42 0.26 N/A N/A 0.06 0.00
ABZ7-9 3 20, 15 N/A N/A 3.66 1.64 N/A N/A 3.42 3.55 N/A N/A 0.07 8.38
CAR1-8 8 Vary N/A N/A 1.02 0.21 N/A N/A 0.42 0.19 N/A N/A 0.08 0.07
ORB1-10 10 10, 10 N/A N/A 1.39 0.06 N/A N/A 0.96 0.07 N/A N/A 0.00 0.00
M6-LA40 43 Vary 3.16 2.26 0.69 0.24 1.87 3.76 0.77 0.57 0.44 0.56 0.08 0.59

SM-M6-LA40 23 nm <
150 2.07 0.65 0.27 0.02 0.87 0.96 0.16 0.02 0.26 0.13 0.04 0.00

M6-ORB10 66 Vary N/A N/A 0.96 0.26 N/A N/A 0.87 0.57 N/A N/A 0.07 0.78
SM- M6-
ORB10 43 nm <

150 N/A N/A 0.67 0.07 N/A N/A 0.55 0.24 N/A N/A 0.04 0.01
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(iii) For all 66 instances of Vdata, CP and MPM-UPLA
reach the best-known solutions on 39 and 45,
respectively.

Tus, as a conclusion, MPM-UPLA outperforms TS,
PSO, and CP in fnding the best-known solutions on all three
instance sets, especially Rdata. On Rdata, the number of
instances achieved by MPM-UPLA is more than double the
number of instances achieved by each of the others.
Moreover, MPM-UPLA also found the new best-known
solution value on LA31 of Rdata.

5.2. Te Number of Instances Won. Tis section frst com-
pares the number of instances won by MPM-UPLA with
those by TS, PSO, and CP on the frst 43 instances of each
instance set. Note that in the frst 43 instances, there are 23
small-to-medium instances included. Te numbers of in-
stances won in Edata, Rdata, and Vdata were counted from
Tables 1, 2, and 3, respectively. For the frst 43 instances,
MPM-UPLA obviously outperforms the three other algo-
rithms on Edata and Rdata; MPM-UPLA outperforms TS
and PSO but underperforms CP on Vdata. However, when
considering only the 23 small-to-medium instances, MPM-
UPLA outperforms CP on Vdata. Of each instance set, the
comparison results are detailed below:

(i) Out of the frst 43 instances of Edata, MPM-UPLA
has 33 wins, 10 draws, and 0 losses against TS; it has
28 wins, 15 draws, and 0 losses against PSO. In
addition, it has 21 wins, 20 draws, and 2 losses
against CP.

(ii) Out of the frst 43 instances of Rdata, MPM-UPLA
has 39 wins, 4 draws, and 0 losses against each of TS
and PSO. In addition, it has 29 wins, 11 draws, and 3
losses against CP.

(iii) Out of the frst 43 instances of Vdata, MPM-UPLA
has 19 wins, 13 draws, and 11 losses against TS; it
has 18 wins, 14 draws, and 11 losses against PSO. In
addition, it has 7 wins, 21 draws, and 15 losses
against CP. However, when considering only the 23
small-to-medium instances, MPM-UPLA has 7
wins, 16 draws, and 0 losses against CP.

Ten, this section compares the number of instances
won by MPM-UPLA with that by CP on all 66 instances of
each instance set. Note that in the 66 instances, there are 43
small-to-medium instances included. For the 66 instances,
MPM-UPLA outperforms CP on Edata and Rdata, but it
underperforms CP on Vdata. However, when considering
only the 43 small-to-medium instances, MPM-UPLA ob-
viously outperforms CP on all three instance sets. For each
instance set, the comparison results are detailed below:

(i) Out of all 66 instances of Edata, MPM-UPLA has 34
wins, 29 draws, and 3 losses against CP. Out of the 43
small-to-medium instances of Edata, MPM-UPLA
has 17 wins, 24 draws, and 2 losses against CP.

(ii) Out of all 66 instances of Rdata, MPM-UPLA has 44
wins, 17 draws, and 5 losses against CP. Out of the

43 small-to-medium instances of Rdata, MPM-
UPLA has 28 wins, 15 draws, and 0 losses against
CP.

(iii) Out of all 66 instances of Vdata, MPM-UPLA has 11
wins, 35 draws, and 20 losses against CP. Out of the
43 small-to-medium instances of Vdata, MPM-
UPLA has 11 wins, 30 draws, and 2 losses against CP.

As a conclusion, in terms of the number of instances
won, MPM-UPLA outperforms the three other algorithms
on Edata and Rdata. For Vdata, MPM-UPLA outperforms
TS and PSO but underperforms CP. However, when con-
sidering only small-to-medium instances, MPM-UPLA
outperforms CP on Vdata.

5.3.Avg%BD. Tis section analyzes Avg %BDs in Table 4. To
do so, it frst analyzes Avg %BDs of the frst 43 instances of
each instance set. Ten, it analyzes those of the 23 small-to-
medium instances of the frst 43 instances. In Table 4, the
rows M6-LA40 and SM-M6-LA40 provide Avg % BDs of the
frst 43 instances and those of the 23 small-to-medium
instances, respectively. For Avg %BDs of the frst 43 in-
stances, MPM-UPLA outperforms the three other algo-
rithms on Edata and Rdata, but it underperforms the three
other algorithms on Vdata. When considering only the 23
small-to-medium instances, MPM-UPLA obviously out-
performs the three other algorithms on all three instance
sets. Of each instance set, the analysis results are detailed
below:

(i) For the frst 43 instances of Edata, MPM-UPLA’s
Avg %BD (i.e., 0.24%) is much better than those of
TS, PSO, and CP (i.e., 3.16%, 2.26%, and 0.69%,
respectively). Based on these 43 instances, paired t
tests concluded that the mean %BD of MPM-UPLA
is signifcantly better than those of TS, PSO, and CP
(with p values of 3×10−10, 1× 10−8, and 0.0002,
respectively). When considering only the 23 small-
to-medium instances, MPM-UPLA’s Avg %BD (i.e.,
0.02%) is also much better than those of TS, PSO,
and CP (i.e., 2.07%, 0.65%, and 0.27%, respectively).

(ii) For the frst 43 instances of Rdata, MPM-UPLA’s
Avg %BD (i.e., 0.57%) is much better than those of
TS, PSO, and CP (i.e., 1.87%, 3.76%, and 0.77%,
respectively). Based on these 43 instances, paired t
tests concluded that the mean %BD of MPM-UPLA
is signifcantly better than those of TS, PSO, and CP
(with p values of 4×10−7, 1× 10−7, and 0.00004,
respectively). When considering only the 23 small-
to-medium instances, MPM-UPLA’s Avg %BD (i.e.,
0.02%) is also much better than those of TS, PSO,
and CP (i.e., 0.87%, 0.96%, and 0.16%, respectively).

(iii) For the frst 43 instances of Vdata, MPM-UPLA’s
Avg %BD (i.e., 0.59%) is worse than those of TS,
PSO, and CP (i.e., 0.44%, 0.56%, and 0.08%, re-
spectively). However, when considering only the
23 small-to-medium instances, MPM-UPLA’s Avg
%BD (i.e., 0.00%) is better than those of TS, PSO,
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and CP (i.e., 0.26%, 0.13%, and 0.04%, respec-
tively). Based on the 23 small-to- medium in-
stances, paired t tests concluded that the mean %
BD of small-to-medium instances of MPM-UPLA
is signifcantly better than those of TS, PSO, and
CP (with p values of 0.001, 0.0007, and 0.004,
respectively).

Of each instance set, this section then compares Avg %
BDs of MPM-UPLA and CP from all 66 instances and
from their 43 small-to-medium instances. In Table 4, the
rows M6-ORB10 and SM-M6-ORB10 provide Avg %BDs
of all 66 instances and those of the 43 small-to-medium
instances, respectively. For all 66 instances, MPM-UPLA
outperforms CP on Edata and Rdata, but it underperforms
CP on Vdata. However, when considering only the 43
small-to-medium instances, MPM-UPLA obviously out-
performs CP on all three instance sets. Of each instance
set, the comparison results are detailed below:

(i) For all 66 instances of Edata, MPM-UPLA’s Avg %
BD (i.e., 0.26%) is better than CP’s Avg %BD (i.e.,
0.96%). A paired t-test concluded that the mean %
BD of MPM-UPLA is signifcantly better than the
mean %BD of CP (with p value of 0.00001). When
considering only the 43 small-to-medium instances,
MPM-UPLA’s Avg %BD (i.e., 0.07%) is also better
than CP’s Avg %BD (i.e., 0.67%).

(ii) For all 66 instances of Rdata, MPM-UPLA’s Avg %
BD (i.e., 0.57%) is better than CP’s Avg %BD (i.e.,
0.87%). A paired t-test concluded that the mean %
BD of MPM-UPLA is signifcantly better than the
mean %BD of CP (with p value of 0.00002). When
considering only the 43 small-to-medium instances,
MPM-UPLA’s Avg %BD (i.e., 0.24%) is also better
than CP’s Avg %BD (i.e., 0.55%).

(iii) For all 66 instances of Vdata, MPM-UPLA’s Avg %
BD (i.e., 0.78%) is worse than CP’s Avg %BD (i.e.,
0.07%). However, when considering only the 43
small-to-medium instances, MPM-UPLA’s Avg %
BD (i.e., 0.01%) is better than CP’s Avg %BD (i.e.,
0.04%). Based on the 43 small-to-medium instances,
a paired t-test concluded that the mean %BD of
small-to-medium instances of MPM-UPLA is sig-
nifcantly better than that of CP (with p value of
0.002).

As a conclusion, based on Avg %BDs, MPM-UPLA
obviously outperforms the three other algorithms on Edata
and Rdata, but it underperforms the three other algorithms
on Vdata. When considering only the small-to-medium
instances, MPM-UPLA outperforms the three other algo-
rithms on all three instance sets.

5.4. Overall Summary. In the number of instances achieved
in fnding the best-known solutions, MPM-UPLA outper-
forms the three other algorithms on all three sets of in-
stances. In the number of instances won, MPM-UPLA
outperforms the three other algorithms on Edata and Rdata;

MPM-UPLA outperforms TS and PSO but underperforms
CP on Vdata. However, when considering only small-to-
medium instances, MPM-UPLA outperforms CP on Vdata
in the number of instances won. In Avg %BD, MPM-UPLA
outperforms the three other algorithms on Edata and Rdata,
but it underperforms the three other algorithms on Vdata.
However, when considering only small-to-medium in-
stances, MPM-UPLA outperforms the three other algo-
rithms on Vdata. As a conclusion, MPM-UPLA usually
performs very well on the MPMJSP instances where each
operation has less than four optional machines (e.g., the
instances in Edata and Rdata). When each operation has
many optional machines (i.e., ≥ 0.5m optional machines),
MPM-UPLA usually performs well on only small-to-me-
dium instances (i.e., the instances of nm< 150).

6. Conclusion

In this paper, a two-level metaheuristic was proposed for
solving MPMJSP. Te two-level metaheuristic consists of
MPM-UPLA and MPM-LOLA as its upper- and lower-level
algorithms, respectively. MPM-UPLA, a population-based
algorithm, acts as the MPM-LOLA’s parameter controller.
MPM-LOLA is a local search algorithm, searching for an
MPMJSP’s optimal solution. MPM-LOLA has many changes
from its older variants, such as perturbation and neighbor
operators. It also uses a unique method to select an optional
machine for each operation. Te MPM-UPLA’s function is
to evolve the MPM-LOLA’s input-parameter values, so that
MPM-LOLA can perform its best for every single instance.
In this paper’s experiment, the performance of the two-level
metaheuristic was evaluated on the three instance sets, i.e.,
Edata, Rdata, and Vdata. Te experiment’s results indicated
that the two-level metaheuristic performs very well on Edata
and Rdata. For Vdata, the two-level metaheuristic usually
performs well on only the category of small-to-medium
instances. Tus, a future research should be focused to
enhance the two-level metaheuristic’s performance, espe-
cially on large instances of Vdata.
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algorithms and recombination operators for satisfability
solving in fuzzy logics,” in Proceedings of the 2013 IEEE
Congress on Evolutionary Computation, pp. 1060–1067, IEEE,
Cancun, Mexico, June 2013.

[31] P. Cortez, M. Rocha, and J. Neves, “A meta-genetic algorithm
for time series forecasting,” in Proceedings of the Workshop on
Artifcial Intelligence Techniques for Financial Time Series
Analysis, 10th Portuguese Conference on Artifcial Intelligence
(EPIA 2001), pp. 21–31, Porto, Portugal, December 2001.

[32] P. Pongchairerks, “A self-tuning PSO for job-shop scheduling
problems,” International Journal of Operational Research,
vol. 19, no. 1, pp. 96–113, 2014.

[33] M. Gen and R. Cheng, Genetic Algorithms and Engineering
Design, John Wiley & Sons, New York, NY, USA, 1997.

[34] C. Bierwirth, “A generalized permutation approach to job
shop scheduling with genetic algorithms,” OR Spektrum,
vol. 17, no. 2-3, pp. 87–92, 1995.

[35] H. Fisher and G. L. Tompson, “Probabilistic learning
combinations of local job-shop scheduling rules,” in In In-
dustrial Scheduling, J. F. Muth and G. L. Tompson, Eds.,
pp. 225–251, Prentice-Hall, Englewood, NJ, USA, 1963.

[36] S. Lawrence, Resource Constrained Project Scheduling: An
Experimental Investigation of Heuristic Scheduling Techniques
(Supplement), Carnegie Mellon University, Pittsburgh, PA,
USA, 1984.

16 Complexity



[37] D. Applegate and W. Cook, “A computational study of the
job-shop scheduling problem,” ORSA Journal on Computing,
vol. 3, no. 2, pp. 149–156, 1991.

[38] J. Adams, E. Balas, and D. Zawack, “Te shifting bottleneck
procedure for job shop scheduling,” Management Science,
vol. 34, no. 3, pp. 391–401, 1988.

[39] J. Carlier and E. Pinson, “An algorithm for solving the job-
shop problem,” Management Science, vol. 35, no. 2,
pp. 164–176, 1989.

Complexity 17




