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This work identifies the influence of chaos theory on fractional calculus by providing a theorem for the existence and stability of
solution in fractional-order gyrostat model with the help of a fixed-point theorem. We modified an integer order gyrostat model
consisting of three rotors into fractional order by attaching rotatory fuel-filled tank and provided an iterative scheme for our
proposed model as a working rule of obtained analytical results. Moreover, this iterative scheme is injected into algorithms for a
system of integer order dynamical systems to observe Lyapunov exponents and a bifurcation diagram for our proposed fractional-
order dynamical model. Furthermore, we obtained five equilibrium points, including four unstable spirals and one saddle node,
using local dynamical analysis which acted as self-exciting attractors and a separatrix in a global domain.

1. Introduction

System of ordinary differential equations [1]

x = f(xp). 1

Is called the dynamical system, and a parameter 8 € R in
the velocity vector field is termed as bifurcation parameter if
system (1) changes its topological structure with the vari-
ation in parameter values, whereas the process of changing
in qualitative structures is known as bifurcation. There are
several types of bifurcation including saddle node [2], Hopf
[3-7], and zero-Hopf [8-11]. The bifurcation diagram [12]
for the parameter makes it easy for predicting the type of
bifurcation and existence of chaos in system (1). Chaos has a
vital role in engineering [13-17], medical [18-20], aero-
nautics [14, 21] and fluid dynamics [22-24]. Apart from the
above cited applications, its great influence can also be found
in fractional calculus [25-27] and reference therein. Dy-
namical systems based on ordinary differential equations
with an integer order, y = 1, describe velocity vectors, but for
fractional order, y € (0, 1), researchers aim to target velocity

vectors and replace it by differential equation with order
between 0 and 1. Several discretization techniques such as
fractional linear multistep [28], Adam [29], predictor-cor-
rector [30], and Adam-Bashforth/Moulton [31] are used to
solve fractional-order dynamical systems since decade, but
the most flexible scheme with fast convergence in solving
nonlinear problems is the variation iteration method (VIM).
This technique was used for integer order dynamical sys-
tems, but later on modified for fractional-order systems by
introducing Lagrangian multiplier [32] into it. Many re-
searchers have enhanced its importance by using it in several
engineering-based complex problems, such as in 2006, the
variation iteration scheme was utilized for fractional-order
systems by Odibat and Momani [33], whereas new develop-
ment in the VIM was carried by Wu and Baleanu [32] in 2013
to overcome its limitation. Recently in 2021, Kumar and Gupta
[34] worked on application of the VIM in a fuzzy-based system.

It has been observed from the above-cited work and our
knowledge from the literature that dynamical systems re-
lated to spacecrafts or its attached devices such as beam and
gyrostat have never been considered for the existence of
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solution and self-exciting attractors in a fractional-order form.
Therefore, we have restructured the gyrostat chaotic system
[35] into a fractional order along with the addition of a rotatory
liquid-filled tank to discuss its unique solution, bounds, and
stability using the fixed point theory. Moreover, for bringing
novelty into our work, a variation iteration scheme has been
used in our proposed fractional-order system to observe chaos
into it. For this purpose, several algorithms such as by Wolf
et al. [36] and the bifurcation diagram [37] were modified by
injecting the VIM iteration scheme into these algorithms.
Finally, analyzing local dynamics of our proposed model,
trajectories around five equilibrium points with four unstable
spirals and a single saddle node motivated us to search for self-
exciting attractors with a separatrix in a global domain.

The following pattern can be followed for understanding
the rest of the paper. In Section 2, the gyrostat chaotic system is
remodeled by adding rotatory liquid-filled tank and modified
into fractional order. Several theorems have been proved in
Section 3 for the existence of solution and stability. An iteration
scheme for our proposed model has been introduced in Section
4, while several applications of this scheme related to dynamical
analysis are discussed in Section 5. Finally, Section 6 comprises
concluding remarks and future target.

2. Modeling of Gyro Chaotic System
Attached with Fuel-Filled Tank

Gyrostat is a device consisting of rotors, used as an at-
tachment in larger objects for bringing stability in their
dynamics with the passage of time. The system of three-
dimensional ordinary differential equations for the gyrostat
model is designed by Qi et al. [35]:

I.x Z(Iy - Iz)yz = yh, +zh, =T, + L,
Iyy=(IZ—IX)zx—zhx+xhz—Ty+Ly, (2)
Iz :(Ix - Iy)xy —xh,+yh, =T, +L,

where X = [xyz]" is the angular velocity vector,
I=1[I,1,,1,] are the principal moments of inertia of the
gyrostat in the body axis frame, H = [h,,h,, h,] are con-
stants of total angular momentum, whereas L = [L,, L, L,]
and T = [Tx,Ty,TZ] are external and disturbed torques
applied on the gyrostat, respectively.

A tank, rotating about an angle 0 at desired point
(x,79,z) (shown in Figure 1), is attached with an originally
disturbed gyrostat system given in (2). It is observed that
L=(L,L,L,) isa vector of external forces applied on the
gyrostat. Therefore, we have attached a tank containing fuel
which exert external forces on the gyrostat due to rotation of
the attached tank with respect to z— axis about angle 0 at
desired point (X,,z). Hence, we replaced L with

R=R_(0)d(x), (3)

where R = (R, R, R,), R, (0) is the rotation matrix for z—
axis and d (x) is a desired point about which one can rotate
the attached tank. Therefore, using vector T in ((2) [38]) and
R given in (3) into (2), we obtain the following equation:
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FIGURE 1: Spacecraft attached with partially filled fuel tank and
three rotors. This figure is reproduced from the work of Sabir et al.
[7] with the assumption that the third rotor is rotating about z-axis.

1£9"x =(IJ, - Iz)yz = yh, +zh, — px + X cos () — ysin (6),
c — _
Iy@yy = (I, - I,)zx + xh, + p,y + Xsin (0) + ycos (6),
1$9"z = (Ix - Iy)xy —xh, —u,z+7,
(4)

System (4) is a fractional-order mathematical represen-
tation of the model given in Figure 1 in which y is the
fractional number between 0 and 1 exclusive, u = (u,,u , u,)
is a damping constant vector, while X, I, and H are defined in
equation (2). Moreover, system (4) shows chaotic behavior for
X =[0.1,0.1,0.1], I=[0.85,0.45,0.2], u=[6,642, 5.8],
H =10, 0.57416,2, 38], and R= [-20, 2, 20]. The phase por-
trait of system (4) with given initial and parameter values can
be seen in region 10 of Figure 2.

3. Existence and Stability of Solution

In this part of our paper, we determined results based on the
existence theory for system (4) using the fixed point theorem
with Banach space. Therefore, basic definitions and important
lemmas are considered for the understanding of this work.

Definition 1 (see [39]). The integral of fractional order y0 for
a function @ is given by

S (t) = %y) JO - (ndy . (5)

Definition 2 (see [39]). The Caputo fractional derivative of
order y0 of a continuous function @ is given by
CY 1 Jt n-y-1(n)
Do) =—— t- () dn , 6
(t) T ) L= (n)dn (6)
where n = [y] + L.
Following two lemmas have importance in achieving the

solutions of the systems consisting of fractional differential
equations.
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F1GURE 2: Existence of chaos in clockwise and anticlockwise directions.

Lemma 1 (see [39]). Assume @ € C(0, 1), then the solution
of fractional differential equation

TG D) = () + ¢+ eyt +o-

We begin our work by introducing ®,, ®,, and ®; on the
right side of equation (4) and for convenience, we use the
following notions:

x(t), x(0), @, (¢, x, ¥,2),
X =1 y@®xo =1 y0), ¥t x() =1 ®,(tx, y,2),
z (1), z(0), @; (¢, %, ¥,2),
(10)
and
@, (0,x(0), (0),2(0)),
¥y =1 @,(0,x(0), y(0),2(0)), (11)
@5 (0,x(0), y(0),2(0)),
System (4) can be rewritten, using (5) as
‘D] = ¥ (L x (D).t € [0,7], 1)
x(0) = xo

According to Lemma 2, problem (12) can be converted
into an integral equation

- b ' AV
X0 =05y J, - ¥ Onxopan .13

Definition 3. Let us consider X = C([0, 7] a Banach space
under the suitable norm

Ixll = sup{lxl: x € X}, (14)
te]
and the operator is defined as
20 =+ [, G0 Yoo, as)

where 0<t<7{c0 and ] =
sumptions are true:

[0, 7]. Then, the following as-

3
“9@"a(t) =0, (7)
Of order y0 is
Q) =co+cit++c, ", ¢ eRi=0,2,...,n-1
(8)

Lemma 2 (see [39]). Let us consider @ € C(0,1), with a
derivative of fractional order y, then

+cn,1t"71, C;ER,i=02,...,n— 1L 9)

[(A;)] There exists a positive constant )0 such that
W (2, x (1)) = ¥ (6, X (1) < g [x (8) = (B)]. (16)

[(A,)] The following inequality holds for positive
constants My, Gy )0:

W (& x (D) < Mylx| + Gy. (17)

Theorem 1. Let us consider that 1'{I'(y+1) and as-
sumption (A,) is satisfied. Then, there exists a unique solution
of system (4) with the contraction of operator T.

Proof. Let y, e X, then one has

ey 7l = sup iy, + j (t = )" ¥ (pax ()l

T(y)

—(Xo Gy )J t—n" ¥ X(n))dn)l

1 T 5
T Jo (&= )"~ (g, () = ¥ (. X ()Nl
<LJT(t— Yl oy () =7 ()]
Ty Jo g MwlX\n) —x\
ST +1)ux l.

(18)

This shows that 7 is a contraction. Hence, our desired
result is obtained, that system (4) has a unique solution. [

Theorem 2. The integral equation (8) has at least one so-
lution if w{G(y) under the assumptions of A, and A,.

Proof. For existence of a solution for operator 1, it is enough
to show that 7 is completely continuous, and there exists an



element y € X such that y = §7(y) for & € (0, 1). Therefore,
our proof will pass through three steps for achieving our
desired results. O

Step 1. Let us consider a sequence y, — x in X and for
each t € J, we have

1 t
Ty, — 1Yl = +— t—n)"" ' (n, d
lx. — x| up Ixo ) JO (t =" " (n,x, (m)dn

1t -
—<X0 + o) JO (t=n)" 1‘I’(f1,)c(f1))ﬂlf1>|

S% j (=)' (1 1, () =¥ (1 x ()| dl
0

)
(19)
Hence, 1y, approaches 7y as time ¢ tends to infinity

lx, - TX" — Oasn — oo0. (20)

Equation (20) identifies continuity of an operator 7.

1 (o
|ty () - 1x ()] = |X0+m JO (t2

Complexity

Step 2. Let us consider a bounded set B, = {y € X: [lxll <r},
where r is a positive real number. Then, for any y € B,, we
have

llzxll = sup

te]

Yo * T, )j t—n" ¥ X(ﬂ))dW’

<to+ iy t | @ iy

Mylxl + Gy JT
<Xo+ ry) (t

(21)
n'dny

Myr + Gy)T¥
<xo+ (Myr +Gy)t"
I'(y+1)
Hence, 7 maps a bounded set into a bounded set.
Step 3. The image of a bounded set under 7 is equi-

continuous in X.
Let t,<t, in J and x € B,, we have

— )" (1, x ()

(Xo J (t - ﬂ)yl‘l’(ﬂ,x(ﬂ))dﬂ)l

1

_ h -l
= (Y)<J (t, = )" Y (n,x(n)dn

+Jt (t, — )" " (. x ()~ Jol (t, —n)y'l‘P(ri,x(n))dn)l

<L Jtl (t - ,7)7’*1 + (t - ;7)”’1\{'(;7 x(m)dn + J.t2 (t - ,7))'*
—r(y) 0 2 1 > : 2

Myt + Gy Jtz -l _Jtl -l
Sr(y+1){0(tz )" dn =) (6 -n)" s

Ast, — t, then [ty (t,) — T} (t,)| — 0, and thus, 7 is
continuous and bounded. Hence, |y (t,) — 7y (t))] — 0
shows uniform continuity of 7. Therefore, steps 1 — 3 show
that 7 is completely continuous.

lxll = sup [6T (x)I

te]

= )
S);‘}"XO T(y)
=% *T)

Mylxl + Gy
=TT )

Il <xo + Ty+ D)

(22)
W (o x ()
Myt + Gy y
F(V"’ 1) {t2 tl}'
Step 4. Finally, we have to show that B ={ye X: y =

07 (x)} for some § € [0, 1], is bounded. Let y € 98 and for any
t, we have

J (t—m)"™ " (1, x ()]
j (x= )" W () asd <1, (23)

j (r-n)'dy

(Mylixll + Gy)7"
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Simplifying inequality (19) yields
Xl (y+1) +Gyt¥

T(y+1) - Myt (24)

Ixll <

This shows that the defined set % is bounded. Hence
using Schaefer’s theorem [40], system (4) has at least one
solution.

For achieving stability, a negligible perturbation pa-

rameter 6(t) can be included in §* Df)((t) such that

(1-y)

‘X(t) —(X0+[\P(t,x(t))—‘l’o] 6()

Theorem 3. Gyrostat system (4) achieves Ullam-Hyers
stability if Ly 1 and assumption A,, together with Lemma 3 is
satisfied.

ly (1) = (Y) ()] =|x(t) _<X0 +[Y(t,x (1) - ¥,]

5
(i) §"DYx (1) = W (£, x (1)) + 6(¢)
(ii) 18(t)|<¢ for €0
Lemma 3. Solution of the perturbed problem
0 Dix (1) =¥ (LX) + 0 () =y (25)
Satisfies the following relation:
y t
+—— 1| Y, dn || < Lye. 26
56 |, Yorxom n) . (26)

Proof. Let y € X be any solution and ye€ X is a unique
solution, then

(1—)/)+ 4 J

— % d
50 60 W (n,x (1) n)‘

0

q0 —(XO ¥ 0 - o] G g JOW(W,X(U))dn)I
1- ! 27
+|(X0+[‘I’(t,)((t))—‘1’0](GTy))})+G)()y) JO‘I’(W,X(r]))dq> (27)
1 _ t
—(xo + [ (t,3(1) - ¥ (G(y))/) +$y) JOT(W,X(W))dn>>|
<Lye+ Lylly = xll.
This implies th
1s 1mplies that . 3X(t) . A/X(t) _ho, (29)
= ¥
I =2l < 1-Ly & (28) where &, W, and h are linear, nonlinear, and source

Hence, solution of the proposed system (4) is

Ullam-Hyers stable.

4. Variational Iterative Scheme for System (4)

An iterative scheme, variational iterative method (VIM), is
introduced in this section using successive approximations
of the solution for rapid convergence and analytical results
discussed in Section 2.

4.1. Working Rule. To express the VIM, we consider general
nonlinear differential equation as

functions, while the corrector function for (29) is considered
as

Tower () = 1, (B) + jOAm)(:z;c(n) + Ty () — h()dn .
(30)

A in (30) is defined as (-1)" (t - g)"il/l"(n), whereas
is used as a restricted value with o/ = 0. Then, the exact
solution can be obtained as

x(®) = lim x, (f). (31)

System (4) can be discretized using VIM as



Xpp = X, — JY(Iggyxn —(I}, - Iz)ynzn + yuh, = z,h, + px, — Xcos (0) + 7sin(9)),
Y1 = Yn — jy(lggyyn - (Iz - Ix)ann - xnhz “HyYn— xsin (6) - 7‘:05(6))’

Zpe = Zp — J”(ISQZVz —(Ix - I},)xny,1 + X0, + 2, + E),

where x(0) = x,, ¥(0) = y,, and z(0) = z,,.

where

For n = 2, we have

The values of p' giy and ¢, i = 1,2,3 in (35) are given in
Appendix A. In the next section, we have discussed system
(4) analytically and qualitatively. For numerical simulations,
our designed algorithm is used to plot Lyapunov exponents
and bifurcation diagram in integer order as well as frac-
tional-order chaotic systems.

Key =Ky (L+1) —(Iy - Iz)ylz1 + y1h, = z1hy, + pexo = Xcos (6) + ysin (6),

K

yl

Forn=0,1
x'k, Kea oy HxKa 2y
- + ) X, = X + X' — >
MRy | T T+ DT TRy
¥ Kyo Ky1 2
_ YR ]y =yt ",
yl—yo+r(y+1)> 20T (p+1)y Ty+1)
Zykzl _ Kz2 y (A“z_hy)Kzl 2y
Z1=2p+——— | %2=%* - z 5
T(y+1) F(y+1) r2y+1)

[k, = ~(Iy - Iz)yoz0 + yoh, = 2ohy, + pxo = Xcos (6) + ysin (6),

= (I, = I.)zgxo = Xoh, — 4,y — Xsin () — yicos (0),

Ky = Ly(l + Iy) —(I, = I.)zy%, = x,h, — p, y, — Xsin (6) - ycos (6),

K, = ~(Ix - Iy)xoyo + xohy +U,z0 — 2,

| K, =L, (1+1,) —(Ix - I},)xly1 +x1hy, + 2, - 2.

x3—x0+r(y+1)

B y
A y3_y0+1—‘(y+1)y +

plix p2Ix 5 p3/x 3,

- X X7,
Ty+1) T(Gy+l)

2/y 2y 3/y 3y

rey+1) TGy+1)

2= zp+ ¢l/z S G2/z 2y ¢3/z =
I'(y+1) r2y+1) rGy+1)

5. Dynamical Analysis

Complexity

(32)

(33)

(34)

(35)

The fractional-order dynamical system exhibits chaos for some
values of fractional term, y, but using a hit and trial method for
such purpose is difficult to investigate chaos in dynamical
systems. Therefore, we plotted the bifurcation diagram for
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system (4) with respect to fractional term, y. A noisy dense area
is observed in Figure 3 that illustrates occurrence of chaos in
the fractional-order gyrostat system beginning with y = 0.86.

In section 2, we used the concept of the fixed point
theory to obtain at least one solution of system (4). Hence,
for fixed points, we consider the following function @;, i =
1,2,3 equals to zero:

o =(Iy —Iz)yz— yh, +zh, - p.x + xcos(6) — ysin () = 0,

,

@3

After fixing all parameters given in section (1), then we
solve equation (36) to get the following five equilibrium
points:

[ E, =[-0.819,3.141,3.352]",

E, = [-11.078, 14.8464,-6.79773]",

E, =[12.445,-15.8945,-11.4255]", (37)
E, = [11.5523,22.4277,20.1731]",

| E; = [~12.4328,-23.1278,24.5096] .

A

In Theorem 4 local dynamical analysis of system (4) is
used for observing trajectories around equilibrium points
(27).

Theorem 4. A gyrostat chaotic system (4) is composed of five
equilibrium points, in which E, is the saddle node and E, 5 ,
are all unstable saddle spirals. Moreover, these spirals lead to
four attractors and one saddle node E| that act as a separatrix
as t extends.

Proof. Five equilibrium points are calculated in equation
(27). The Jacobian matrix plays a vital role in the system of
differential equations for local dynamical analysis. There-
fore, the Jacobian matrix of system (4) is

-120 5z 14 5y+ 7177
17 17 5 17 10625
238 13z 214 13x
45 9 15 9
7177 29
Y7 2500

And the Jacobian matrix for fixed parameter values at E,
is

-7.0588 -1.8142 1.5993
]IE1 =| 0.4473 14.2667 1.1842 |. (39)
3.4111 -1.6397 -29.0000

The characteristic equations of the Jacobian matrix (29)
is

A +21.79\7 — 312,44\, — 2796.9. (40)

(I, = I)zx + xh, + p,y + Xsin (6) + ycos (6) = 0, (36)
(Ix —Iy)xy—xhy - u,z+z=0.

Solution of (40) results into single positive and two
negative eigenvalues:

Ay =—2921,A1, = —6.75,A5 = 14.17. (41)
Equation (41) illustrates that two states will move away
from E;, while a single state will move inward towards

equilibria: E,, and such information shows occurrence of the
saddle. The Jacobian matrix at E, is

—-7.0588 —4.7993  5.0421
15.1078 14.2667 16.0016 |. (42)
26.8220 —-22.1560 -29.0000

]lEzz

And the corresponding characteristic equation is
A +21.79\% — 17.93), + 7361.79. (43)
Solution of (43) gives three eigenvalues with one negative
real and two complex numbers with positive real part:
Ay, = —30.37,

(44)
Ayps = 4.2871 + 14.96841.

Equation (44) describes occurrence of the unstable
spiral. In a similar fashion, one can achieve

A;, = —30.4682,
Ay = 4.3380 + 19.46414,
Ay, = —35.8534,
(45)
Ay = 7.0306 + 17.3188,,
s, = —35.8109,

Asys = 7.0094 + 20.5301..

Eigenvalues of E,, E,, and E;. In view of (45), equi-
librium points, E; , 5 are also unstable spirals.

Analytical results (29-35) are explained in Figure 4,
which illustrate trajectories of system (4) around their
equilibrium points. Five different colors are used for each
equilibrium point, which are also highlighted as a legend in
Figure 4. It is observed that E,;,s are unstable spirals
plotted in green, brown, blue, and black colors, while red
color shows the saddle node. In detail, we can see that the red
trajectory starts from E; and passes through the regions of
E,, E;, E,, and E; with the passage of time. The trajectory for
E, shows a spiral emerging from its equilibrium point and is
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FIGURE 3: Bifurcation diagram of system (4) with respect to y.

~==- Trajectories around E; @ Equili
====Trajectories around E; @
=== Trajectories around E5 @ Equilibria; E5

FIGURE 4: Trajectories of system (4) around equilibrium points.

moving away from it. After some time it has been observed
that the green trajectory is acting as a heteroclinic orbit: Es.
The same theory can be observed between E, and E;, when a
brown colored orbit starts with high unstable oscillations
and approaches to a region occupied by E,. Apart from these
four unstable spirals, one can also locate saddle node
equilibria E; in the red color, in which its trajectory passes
through regions acquired by unstable spirals and act as a
separatrix between them. For further analysis, we have
extended time for observing the trajectories around five
equilibrium points in the greater domain. It has been an-
alyzed that four unstable equilibrium points are self-exciting
attractors and occupy four basins. Moreover, the combi-
nation of all these four regions leads to the concept of a
strange attractor in system (4). Studying in more depth, it
has been also observed that the saddle node in the global
domain is busy in separating regions of self-exciting
attractors. For getting more knowledge about chaoticity in
the fractional-order gyrostat system (4), some basic results
are used for the possibility and detection of chaos. O

5.1. Lyapunov Exponents. The Lyapunov exponent is one of
the fundamental results, which help researchers in pointing

out existence of unpredictability in trajectories of their
corresponding systems. Moreover, in a three-dimensional
autonomous system of ordinary differential equations, there
exist three Lyapunov exponents A;, i=1,2,3. Now, if
(A1, A5, A5) = (+ive, 0, —ive), then it shows existence of chaos,
whereas (—ive, —ive, +ive) illustrates the existence of periodic
solutions. In Figure 5, three Lyapunov exponents can be
observed, emerging from (-9,11,-30) and leading to
(-26.51,0, 4.87), which motivated us to work further on it
and find out chaotic trajectories in it. For further investi-
gation, we have used the concept of the bifurcation diagram
[12].

5.2. Bifurcation Leading to Chaos. For confirmation of ex-
istence of chaos in our proposed model (4), we fixed all other
parameter values except for y,. For damping coefficient, 4,
it is observed in Figure 6 that there seems no bifurcation in
system (4) fory,, € (1,3.6). The single bifurcation emerges at
#, = 3.6 and continues till 4, = 5, which changes into period
doubling bifurcation (PDB) for 5<y, <5.2. Trajectories of
our proposed system jump into the chaotic region for y,
lying in interval (5.2,6.5). One can observe symmetric
behavior in sense of bifurcation leading to chaos in Figure 6.
If we start from p, = 11, two lines can be observed that are
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E LE, = -26.51
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=
-50
0 5 10 15
Time (t)
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FIGURE 5: Lyapunov exponents of system (4).

Bifurcation diagram for damping coefficent in y-direction

150 T T T

100

50

-50

-100

-150 I 1 I |

| | | | T

Hy (rad/s)

Ficure 6: Bifurcation diagram for damping coefficient, g, in system (4).

converted into period doubling bifurcations, then period
2 — period 4 — 8 — chaotic region. This concept is
also explained with the aid of a series of phase portraits,
which confirms chaotic behavior in our proposed system.
Therefore, we have divided bifurcation diagram 5 in nine
regions and plotted phase portraits to their corresponding
values.

Figure 2 is validation of Figure 6, which explains existence
of chaos in detail by moving clockwise or anticlockwise.
Therefore, we have an indexed sequence of phase portraits for
t,- 1f we start from region 1, a spiral trajectory can be ob-
served and is expanding in regions 2 and 3. This trajectory is
converted into period doubling and period 4 bifurcations in
region 4 and 5 for y, =4 to 5.1, respectively. In region 6,
chaotic movement of trajectories can be observed, which
gradually declines to period 8 — period 4 — period 2
bifurcations by moving in the anticlockwise direction from

region 6 to 9. Similarly, if we begin in the clockwise direction,
region 9 to 1, one can see trajectory starts with period
doubling bifurcation for y, = 9.6 is gradually increasing to
period 4 — period 8 — chaos from region 9 to 6, then
decline in a symmetric way is observed from chaos to the
period doubling bifurcation till region 4 which finally shrinks
into spiral and bifurcation disappearing in region 3 to 1.

Figure 7 is the series of Lyapunov exponents corre-
sponding to each subregion of the bifurcation diagram
(plotted in Figure 6). In Figure 2, the existence of chaos in a
symmetrical way is thoroughly discussed, but in
Figures 7(a)-7(h) the same concept is explained in more
detail where for each value of the damping coeflicient y,;
there exist different values of Lyapunov exponents. More-
over, it is also observed that the Lyapunov exponent of
system (4) tends to (—ive, 0, +ive) as the damping coefficient
{4, approaches to 6.43.
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FIGURE 7: Lyapunov exponents corresponding to each subregion in Figure 6.

6. Conclusion and Future Work

An integer ordered dynamical system of the gyrostat was
considered by researchers since decade, and a variety of
work related to chaos was achieved with the help of sen-
sitivity in its initial conditions. But we have analyzed the
gyrostat model with modification by attaching a rotatory
cylinder and conversion into fractional order for the first
time. Several theorems were proved in this work for the
existence of solution and Ullam-Hyers stability. Moreover,
dealing with the fractional-order system does not work on
ODEA45; therefore, an iterative scheme was designed for
system (4) to attain chaos in the fractional order. Studying
local dynamics of system (4) leads to five solutions with four
unstable spirals and one saddle node, but observing tra-
jectories around these equilibrium points in global domain

- IZ) [(Ix - Iy)yl B hy] (k. +1)

acted as a self-exciting attractor and separatrix. In future, we
aim to target fractional-order dynamical systems for codi-
mension 2 bifurcations, which itself is a tedious task due to a
large number of involved parameters. Apart from bifurca-
tion, our future aim also involves application of (integer and
fractional) ordered chaotic systems in strategy-based mobile
gaming.

Appendix

Our discretization scheme is based on an iterative technique;
therefore, for n = 0 and 1, analytical work is presented in
Section 3. But increasing the number of » leads to tedious
analytic. Hence, for n =2, the leftover calculation in
equation (25) is done here:

' p)lc = KXZ(I - Ix) +(Iy - Iz)Pxpxl _px<hz - hy) ~ HxXo +§COS(9) - 7811’1(9),

2 _ —
Px = UxKx1 r(,y_'_ 1)

Ixtuxxxl + PxKx1 (IJ’

ZY
(I'(y+1))°

(A1)

Ty+1)°

[ ottty 010,01,

I'(y+ 1y

n"lxle

* T(y+1)*

p3 _ [(Iz _Ix)zl - hy] [(Ix _Iy)yl - hy]Kfcl y_y

Ty + 1y
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where
) = Kyl(l + Iy) = (I, = I)zyxy + xohy, — p, ¥, — Xsin (6) — ycos (6) Yyt Kyl 2,
T(y+1) rzy+1)
(A.2)
K21 (1 + Iz) _(Ix - Iy)ylxo + xohy _(/’lz - hy)ZO -z y (Auz - hy)Kzl 2y
Pl = zV +zy+ ~————2".
T(y+1) r2y+1)
In a similar way, the values of gg, are calculated as
(0, =%,,(1-1,) + (I, = I)A, 5, — £, h, +u,y, +Xsin (6) + ycos (6),
2 Ky1 0y [(Iy - IZ)Zl - hZ]Kyl y_ BEy O (I. - )( )leyl Y
.9}’:Ky1_r( 1)_ 2 x_r 1_ z5 (A.3)
v+ (T(y+1)) (y+1) (T'(y+ 1) .
o = (L= L)L - 1)1, - L)z - k. ]x, By
[~ (T (y +1)* rQ2y+1)
With
Ky (1+1,) —(Ix - Iy)xlyo +x,h,, +(yz - hy)zO + zz ‘s (yz hy)le 2
0y = T(y+1) O T@y+1) T
(A.4)
K (1+1) —(Iy - Iz)zly0 + Yoh, — z,hy, — p,xo — Xcos(6) + ysin(0) o MKy
Oy1 = T(y+1) 0 ry+1
Finally, the values of ¢_ are
i c;lz =Kz (1 - Iz) +(Ix - Iy)czczl G~ CZI(AMZ - hy) -z
2 :(# _n )L +(/"Z_hy)IzL X1%1 (1 x)[CZ( ) (/‘Z_hy)]yy_’czl((ly IZ)yl +hy)[czl(1x Iy)+hy]xy
AR Y (T(y + 1))’ (T (y + 1)) ’
3:x1K ( )(I X)[(Iy_lz)+hJ’]xyyy
’ (T'(y+1)*
(A.5)
where
- Ly + oo+ yoh, —((I, = 1)y, +h, )z, — Xcos (6) tysin(0) , e [y 1,
F(V+ 1) le
(A.6)
o L},(l + 1, +x1hy, =,y = (I, = I)x,2y — Xsin (6) - ycos(O)) L
o T(y+1) VN Ty 1y
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For further iterations, things were very tedious; there-
fore, we used MATLAB for further numerical calculations.
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