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A large number of engineering problems involve several conflicting objectives, which today are often solved through expensive
simulation calculations. Methods based onmeta-models are one of the approaches to solving this group of problems. In this paper,
multiobjective optimization in the extraction system of a copper open-pit mine complex is presented by the modified-NBI
optimization method and regression meta-model. For this purpose, two objective functions of maximizing the amount of total
extraction, which is the sum of the extraction of sulfide, oxide, low-grade ores, and waste in this mine, and minimizing the
transport time of haulage according to the limitation of its storage capacity, transport equipment, and budget are considered. *e
Central Composite Design (CCD) method is used to build the Design of Experiments (DOE) for the design variables. *e
considered design variables are the number of trucks of 120 tons, 240 tons, 35 tons, and 100 tons. *e number of targets
considered in each design combination is considered the response surface. *e suitable meta-model to maximize the total
extraction rate and minimize the transport time of the haulage, two modified functions of nonlinear regression have been
determined.*e accuracy of the models for selection has been done using PRESS and R2 statistics.*emost common PRESS error
has also been used to validate the meta-models.*en the multiobjective optimization problem was solved using the modified-NBI
method. Finally, Pareto and optimal solutions using the proposed approach were presented and discussed.

1. Introduction

Mines have been considered one of the costliest and com-
plicated industries for many years, and various studies have
been done on different parts of this industry such as geology,
drilling planning, and operational processes [1]. Without a
doubt, the proper exploitation of the country’s mines is
considered an important and positive factor in economic
growth and development [2]. Because each ton of copper ore
loaded in trucks is worth nearly 100 thousand dollars [3, 4].
Mines contain several uncertain parameters that make their
modeling by traditional techniques very complicated.
Simulation models are a powerful tool for solving estimation
problems that can create flexible models for systems without
considering many assumptions [5, 6]. Considering today’s

competitive world, companies emphasize finding ways to
produce products faster, cheaper, and more effectively.
*erefore, the use of simulation techniques is increasing to
investigate system behavior and design effects on system
performance [7]. In the real world of engineering design,
optimization processes are often performed with more than
one objective, which is called multiobjective optimization
[8, 9]. Multiobjective optimization for an engineering
problem involves several extensive evaluations of each ob-
jective in the design space, which leads to a large number of
simulation runs, each run requiring hours of computation to
find the optimal solution through optimization-based
simulation. Despite the high execution time required for
simulation calculations, it can be accepted that all compu-
tational time costs should be spent on simulation based on
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multiobjective optimization to find a set of optimal solu-
tions. *is is while all the results obtained from an opti-
mization implementation may not be acceptable, in which
case it is necessary to make corrections such as changing the
formulation, parameters, and constraint [10, 11].

One of the strategies for quick and accurate estimation of
complex and expensive models is the simulation-based
optimization meta-modeling approach [2]. *e meta-
models develop a relationship between the input variables
and the response level to predict the simulation calculation
model [12]. Meta-models are mathematical estimation
models for simulation models [13, 14]. Various meta-model
methods have been developed to solve optimization prob-
lems based on meta-models. Response surface method
(RSM) or polynomial regression [15], Kriging [16], and
artificial neural networks [17] are several known functions.
Various studies have compared different meta-models in
terms of accuracy, efficiency, stability, and effectiveness. But
by reviewing the literature, we can conclude that there is no
specific method superior to other techniques in terms of
performance, and the choice of meta-model is chosen ar-
bitrarily [18, 19]. Usually, in related studies, low-order
polynomials such as quadratic polynomials are used, in
which the unknown coefficients are obtained by minimizing
the error of the residuals between the fitted values and the
value of the objective function [20]. *e response surface
method is a set of statistical and mathematical methods that
can optimize probabilistic functions such as simulation
models. Recently, the response surface method has been
widely used in the field of engineering to design a new
product or redesign a product or develop a new product [7].
For example, Dengiz et al. [5], by presenting a response
surface meta-model based on analytical modeling to increase
productivity in the automotive industry in Turkey, were able
to increase the daily production rate by 15%. Amouzgar et al.
[12] considered a potential advantage for Meta model-based
multiobjective optimization in machining operations. *e
multiobjective optimization method based on the meta
model has been useful in reducing the calculation time in
this study. In addition, it can find more infinite points as a
solution than other existing methods.

*erefore, the tendency to use meta-models in multi-
objective optimization is very important. Because, in engi-
neering problems, generally more than one goal is
considered, and considering that the goal functions conflict
with each other, there is no optimal solution for them, but
instead, a set called Pareto solutions. It seems that multi-
objective optimization based on a meta-model is an effective
approach both in multiobjective optimization and in the
design of complex products, whose main goal is to determine
a suitable functional relationship between input and output
in the system. *erefore, in this paper, for the simulation-
based optimization framework, an estimated function is
substituted for the complex simulationmodel.*erefore, the
main contribution of the paper is as follows:

(i) Presenting a comprehensive framework for multi-
objective simulation optimization based meta-
modeling in an open-pit mine,

(ii) Determining an optimal production plan through
effective haulage equipment control,

(iii) Controlling the duration of using effective haulage
equipment in open-pit mine.

*e paper is organized as follows: Section 2 presents
literature review. Section 3 presents research methodology.
For this purpose, the definitions, concepts, and details of the
modified-NBI, multiobjective optimization method, for-
mulated problem structure, and the meta-modeling method
are explained. Section 4 presents statistical analysis, opti-
mization of themathematical model, and sensitivity analysis.
Section 5 presents managerial insight. Finally, Section 6
contains conclusions and some suggestions for future re-
search studies.

2. Literature Review

Multiobjective optimization is one of the attractive research
fields in the branch of optimization methods, especially the
use of interactive methods. However, a small number of
researches in the literature on multiobjective optimization
based on the simulation of interactive algorithms has been
done. *is is although using a lot of evolutionary algorithms
has been seen. For example, Syberfeldt et al. [21] presented
an evolutionary algorithm-based method for simulation-
based multiobjective optimization in a manufacturing
problem to improve cell manufacturing in VOLVO in
Sweden. *e results have shown that by using simulation
and evolutionary algorithms, it is possible to increase the
amount of cell usage and also reduce the delay components.
In another study, Syberfeldt et al. [22] presented a simu-
lation-based multiobjective optimization using evolutionary
algorithms for the personnel planning system of the post
office in Sweden. *e purpose of this study is to determine
the best work schedule for personnel to reduce working time
and administrative work pressure.*eNSGA-II algorithm is
used for multi-objective optimization. *e results of this
research show that the algorithm can be easily implemented
in optimization. Moussavi et al. [23] presented an integer
multiobjective programming problem to implement an
ergonomic work cycle in a truck assembly production
system. *e main goal of this study is to balance the
workload of workers and reduce the production cycle time in
the study. *is model is programmed using Goal Pro-
gramming and solved using the Gurobi algorithm. *e
results show that the proposed model can optimize for both
purposes. Amouzgar et al. [12] provide an effective frame-
work for multiobjective optimization for metal cutting
machining processes. *e goal of multiobjective optimiza-
tion is to minimize the tool-chip temperature and wear
depth while maximizing the removal rate. In this study, by
performing a knowledge discovery and data weighting style,
the nondominated solutions are analyzed using data mining
techniques to gain a deep understanding of the metal cutting
process. Das and Pratihar [24] presented an approach to
increase the accuracy of the solutions of multiobjective
optimization evaluation algorithms. In this study, after
obtaining a set of Pareto points using a weighted
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multiobjective evaluation algorithm, it is used in a neural
system. *en, using this neural system, modified Pareto
solutions are obtained. *e presented algorithm provides
analysts with valuable information for analyzing engineering
problems. Karmellos et al. [25] compared multiobjective
optimization frameworks for the design of energy distri-
bution systems under uncertainty. For this purpose, they
presented twomultiobjectivemodels for the design of energy
system distribution to identify places in need of heating,
cooling, and electricity, taking into account uncertainty
parameters such as energy price, interest rate, solar radia-
tion, wind speed, and energy demand. *e results of the
research show that by using this method, the decision maker
can make an informed choice to determine the energy
distribution system under conditions of uncertainty. Russell
and Taghipour [26]; a new solution method using multi-
objective optimization is presented to solve the complex
scheduling problem in low-volume production systems. For
this purpose, using integer multiobjective linear mathe-
matical programming models, the scheduling problem in
low-volume production systems has been modeled. *e
models presented in this paper have been used for com-
patibility in the real world in a case study in the aerospace
industry, through which the reliability of the models is
confirmed. Zhang et al. [27] have used multiobjective op-
timization to determine concrete mix ratios with several
objectives and under nonlinear constraints. In this study, an
optimization method based on machine learning using
metaheuristic algorithms is presented. *e results show that
the multiobjective optimization model can help as a design
guide to facilitate decision-making before the construction
stage.

As mentioned above simulation-based optimization is
an efficient method. *e idea of optimization based on
simulation is presented to find optimal or near-optimal
solutions. Choosing a suitable approach for optimization
depends on the characteristics of the problem [28]. In terms
of choosing the approach, we classify optimization based on
simulation into two types. *e first type is a common op-
timization that generally considers one or more objective
functions based on several constraints that can be linear or
non-linear. For example, Dengiz and Belgin [7] presented a
simulation-based optimization for a painting production
line in the automotive industry using response surface
methodology. *e Meta-model estimated in this study can
reduce the deviation in results and current costs in the
system. Shishvan et al. [28] have presented a new approach
for simulation optimization to solve the problems of
transportation and job-shop scheduling. Based on the ob-
tained results, the quality of the obtained solutions increases
compared to other considered algorithms. Burak and
Kumral [29] presented a simulation-based optimization for
a truck-shovel system in an open pit mine. For this purpose,
aimed to maximize the use of the truck-shovel system. *is
approach has a good ability to increase the productivity of
the truck-shovel system. Based on this approach, the
movement of materials in the system increases by 6 k tons.
Jahangiri et al. [13] presented a simulation-based optimi-
zation approach to evaluate the emergency department of a

public hospital in Iran during the pandemic of COVID-19.
By using variables influencing the flow of patients’ admis-
sion, they determined the optimal combination of resources
to obtain the minimizing waiting time for patients. Moniri-
Morad et al. [30] developed a simulation-based optimization
algorithm to determine the most optimal handling equip-
ment by considering influencing factors such as availability
and maintenance analysis, production scheduling, material
flow rates, and random environmental and operational
phenomena. *e proposed method is used to size the
transportation fleet in one step by developing a parallel
combination of mixed integer programming and discrete
event simulation. Finally, the proposed approach has been
implemented in the Sungun copper mine complex in Iran.
*e second type is hierarchical optimization based on
simulation. Generally, these types of issues are divided into
two levels. At the high level, the main goal is considered, and
at the low level, the number of influencing variables to
achieve the high-level goal is considered. For example,
Nageshwaraniyer et al. [3] presented a simulation-based
two-level hierarchical optimization framework for time
scheduling in a coal mine. At the top level, the direct flow of
coal from the pit to the trains is considered, and the problem
of scheduling the machines is solved at this stage. At the low
level, using OptQuest®, an optimization problem has been
solved to determine haulage variables such as trains, trucks,
and conveyors. Based on the obtained results, the travel and
loading time of trucks has decreased and the rate of using
machines has increased. In Table 1, above mentioned lit-
erature categorized.

3. Research Methodology

3.1. Problem Statement. Sarcheshmeh open-pit copper mine
complex is located in the Kerman Province, southeast of
Iran. Sarcheshmeh is a large open copper mine, considered
to be the second largest copper deposit worldwide. It is
located at 65 kilometers off the southwest of Kerman city and
50 kilometers from south of Rafsanjan. *e average altitude
of the region is about 2600m, and the highest spot is ap-
proximately 3000m. *e extracted deposits can be catego-
rized into four groups:

(1) Sulfide ore (grade of copper greater than 0.7%)
(2) Oxide ore (grade of copper between 0.25% and 0.7%)
(3) Low grade ore (grade of copper between 0.15% and

0.25%)
(4) Waste (grade of copper less than 0.15%)

*e proportion of the amount of these rocks to the whole
amount is 45%, 5%, 44%, and 6%, respectively. Based on the
different kinds of ore, a transportation strategy and the way
of storing ores would be chosen. *e first kind of mineral
substance, sulfide ore, is transferred to a crusher station.
*ere is a crusher machine with a capacity of 60,000 tons per
day. *en, the substance is moved to harp copper storage
with the capacity of 150,000 tons. After harping, the sub-
stance is stored in a soft copper storage. Oxide ore, low grade
ore, and waste are transferred to their respective dumping
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station. *e conceptual model of the haulage system at
Sarcheshmeh copper complex is demonstrated in Figure 1.

In order to transport ores, a number of trucks are
assigned to the loading station. *e mineral substance is
loaded onto a truck with a shovel, and when the truck is
filled, it is led to a dump.*emain purpose of this research is
determining the optimal number of haulage system
equipment especially number of trucks in order to maximize
sulfide ore andmaximize loaded ores in the trucks according
to equipment and storage capacity and budget. *e key
resources in the Sarcheshme copper mine are as follows:

(1) Truck 120 Tons (X1)

(2) Truck 240 Tons (X2)

(3) Truck 35 Tons (X3)

(4) Truck 100 Tons (X4)

Currently, Sarcheshmeh open copper mine has nine
trucks of 35 tons, 36 trucks of 100 tons, 20 trucks of 120 tons,
and two trucks of 240 tons. Trucks which are used to transfer
oxide ore and wastes are varied between 35 tons and 100
tons. Moreover, 120 tons to 240 tons’ trucks are used to
move sulfide and low-grade ore. It is possible to assign each
shovel to every kind of ores. *e hourly operating costs of
trucks are shown in Table 2.

In this paper, the application of the simulation modeling
approach using the Arena software® to model the haulage
system in the Sarchesmeh copper open-pit mine, which was
developed by Eskandari et al. [1] is considered. In the de-
veloped model for all cases, there is no unacceptable dif-
ference between the results at the 95% confidence level. So
we conclude that the model was built correctly. To run the
model, it is first necessary to determine the simulation
parameters such as length and number of repetitions. *e
working schedule of the haulage system in the Sarcheshmeh
copper mine is 24 days a month. *erefore, the length of
each repetition is 1 month. *e number of repetitions is
determined by considering the half-width of trucks as the
main value for measuring system performance. *e results
show that the number of repetitions should be considered

10. To achieve stability in the system, a warm-up period is
considered. Experiments show that after four days of the
warm-up period, the performance of the system shows a
steady state. In Table 3, we show the lower bound, the upper
bound, and the current bound of trucks. *e mentioned
settings are included in the model and implemented on a
personal computer with Intel Core i3 1.8GHz CPU speci-
fications and 4GB RAM.

Based on the previous information, the managers of the
Sarcheshmeh copper mine complex tend to optimize the
combination of key haulage resources based on two objective
functions: maximizing the total extraction amount, which is
the sum of the extraction amount of sulfide, oxide, low-grade
ores, and waste in this mine and minimizing the travel time of
the haulage. Find the relocation according to the storage ca-
pacity limit and the haulage and budget considered. *e op-
timization problem is mathematically formulated as follows:

maxf1 X1; X2; X3; X4( ,

minf2 X1; X2; X3; X4( ,

subject to,



4

i�1
cixi ≤B,



4

i�1
ci
′xi ≤C,

Li ≤xi ≤Uifori � 1; 2; 3; 4,

xiinteger.

(1)

Equation (1) is an integer multiobjective optimization
problem.*e functions of this problem are unknown and we
do not have an analytical mode. *ey must be evaluated
through simulation according to the proposed framework. ci

is the cost of each truck. B is the total available budget. ci
′ is

the capacity of each key resource. C is the total storage
capacity in the system. Li and Ui are respectively the lower
and upper bounds of resources in the mine complex.

Table 1: Literature review.

Author
Optimization Design of

experiment Meta-model Objective
function

Meta-heuristic Exact LHS 2k CCD ANN Kriging Regression Multi Single
Syberfeldt et al. [21] ∗ ∗
Dengiz and Belgin [7] ∗ ∗ ∗ ∗
Syberfeldt et al. [22] ∗ ∗
Moussavi et al. [23] ∗ ∗
Amouzgar et al. [12] ∗ ∗ ∗
Shishvan et al. [28] ∗ ∗ ∗
Pratihar [24] ∗ ∗ ∗
Karmelos and Mavrotas [25] ∗ ∗
Rassel and Taghipour [26] ∗ ∗
Zhang et al. [27] ∗ ∗
Jahangiri et al. [13] ∗ ∗ ∗
Moniri-Morad et al. [30] ∗
*is research ∗ ∗ ∗ ∗
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3.2. Preliminary Definitions. In this subsection of the re-
search, the preliminary definition of the concepts that will be
used in the following is considered.

Definition 1. Multiobjective optimization problem (MOP)
A multiobjective optimization problem (MOP) is shown

in the following equation:

min f1(x), . . . , fp(x) , p≥ 2,

s.t,

g(x)≤ 0,

h(x) � 0,

x
l
i ≤ xi ≤x

u
i i � 1, . . . , N,

(2)

where, F: RN⟶ Rp; h: RN⟶ Reandg: Rn⟶ Ri are
twice continuously differentiable mappings and
xl

i ∈ (R∪ −∞{ })
N, xu

i ∈ (R∪ ∞{ })
N, N being the number of

variables, p the number of objectives, and e and i the number
of equality and inequality constraint.

Definition 2. Pareto Set
If none of the objective functions can be improved by a

feasible solution without worsening at least one of the

Table 2: Hourly operating cost of trucks (cost unit) [1].

Truck (tons) Depreciation Overhead
Repair Maintenance

Gas Lubricants Other Total
Spare parts Salary Spare parts Salary

35 11 0 1 0 2 1 0 3 4 22
100 21 1 2 1 5 1 1 5 9 45
120 32 1 4 1 7 1 1 8 15 69
150 30 1 4 1 7 1 1 8 16 67
240 43 2 5 1 10 2 2 11 43 118

Table 3: Number of trucks combination at each type.

Type Combination (lower bound,
current, upper bound)

Truck 120 tons (12, 20, 28)
Truck 240 tons (3, 4, 5)
Truck 35 tons (9, 15, 25)
Truck 100 tons (25, 36, 45)
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Figure 1: *e conceptual model of the haulage system at sarcheshmeh copper mine.
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other objectives, then a nondominated or Pareto optimal
solution is feasible in the design space. *e set of feasible
solutions that are nondominated is also called the Pareto
optimal or nondominated set. If there is a solution that
does not belong to this set, it is called a dominated
solution.

Definition 3. Convex hull of individual minima (CHIM)
Let x∗i be the respective global minimizers offi(x), i �

1, . . . , n over x ∈ C. Let F∗i � F(x∗i ), i � 1, . . . , n). Let ϕ be
the n × n matrix whose ith column is F∗i − F∗ sometimes
known as the pay-offmatrix.*en the set of points in Rn that
are convex combinations of F∗i − F∗,
ϕβ: β ∈ Rn; 

n
i�1 βi � 1, βi ≥ 0  is referred to as the convex

hull of individual minima [31].

Definition 4. Meta-Model
A meta-model or surrogate model is a mathematical

approximation of a simulation model. *erefore, meta-
model is an abstract model for simulation model.

Definition 5. Validation of meta-model
Validation means whether the model is designed cor-

rectly or not. *ere are various methods to provide the
validity of the meta-models. In this paper, we use the most
common PRESS error is the root mean square PRESS
denoted as RMSEPRESS Calculated by

��������
PRESS/n

√
where, n is

number of test points selected to evaluate the model. It is
obvious that a value of zero for RMSE is the optimal desired
value.

3.3. Solution Approach

3.3.1. Meta-Modeling Approach. *e main elements of the
proposed framework are meta model-based optimization
[32] in the form of identifying the shape of the meta
model, designing experiments to adapt the Meta model,
performing simulation experiments, fitting the Meta
model, and verifying its accuracy, and optimization
considering the meta model in the problem.*e algorithm
for finding a suitable meta model is shown below. We have
used this algorithm for multi-objective optimization
based on simulation, the steps of which are fully presented
in the next sections. (Algorithm1)

In the first step of the algorithm, a discrete event sim-
ulation model is developed. If the built model has the
necessary validity, we go to the next step; otherwise, the
model is accompanied by modifications to obtain the nec-
essary validity. In the second step, a suitable design for an
experiment is developed. In the third step, the scenarios
designed in step 2 are implemented in the simulation model
developed in step 1 to determine the dependent variable of
the model. In the fourth step, the best meta model is selected
and its unknown coefficients are determined by performing
statistical analysis. In this step, we should run the simulation
model to determine the response surface for fitting the meta-

model. *en, from the data, we obtain an approximate value
for the parameter value of the meta-model. Finally, we
evaluate these estimates using mathematical and statistical
criteria. *e fifth step is the answer to the question of
whether the meta model built in the fourth step can suffi-
ciently predict the performance of the system or not. In the
case of lack of validity, we go to step 2 and change the design
of the experiment or go back to step 4 and change the type of
meta model. In the sixth step, by applying management
constraints, a set of nondominant solutions for the multi-
objective optimization problem is obtained using the
modified-NBI method. In the seventh step, we will compare
the obtained results with the existing situation to identify the
improved level.

3.3.2. Modified Normal-Boundary Intersection (Modified-
NBI)Method. *e first goal of the modified-NBI method is
to determine the Pareto frontier by solving an optimi-
zation problem for multiobjective optimization problems
with a continuous or piecewise Pareto frontier. *is goal is
accomplished in two stages in this method. *e first step is
to use the modified CHIM in the optimization problem
compared to the original NBI algorithm. *e second step
is to control the iterations of the optimization problem,
which are solved by the modified CHIM. According to the
modified-NBI algorithm, it is necessary to normalize the
objective functions. *erefore, all objective functions have
a minimum value of zero and a maximum value of one. If
the objective function is unlimited or its maximum value
cannot be determined, the user can impose an upper limit
value on the algorithm. *e first step in the modified-NBI
is to use the modified CHIM, which is described below
[33]. *e second step of the modified-NBI method is to
control the iterations while solving the optimization
problem to obtain the Pareto frontier. One of the methods
used to solve the optimization problem is the quasi-
Newton method. Using this method, a relative minimum
is obtained for a multi-objective optimization problem.
*is method has differences compared to meta-heuristic
method such as genetic algorithm (GA) that are based on
primary populations such as genetic algorithm (GA). For
example, a GA requires the selection of parameters such as
population size, type of crossover and probability, mu-
tation probability, and number of generations. Also, due
to the random nature of population-based methods, even
with the same settings, similar answers are often not
produced. Hence, these algorithms are often run many
times to obtain a reliable set of solutions. *e modified-
NBI optimization method involves choosing only one
parameter to influence the number of generated Pareto
points. In addition, similar results are produced each time.
*erefore, the algorithm does not need a large number of
execution times.

Let us show through mathematical formulation how
any such boundary point can be found by solving an
optimization problem. Given β, that ϕβ shows a point in
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the CHIM. Suppose that n represent the normalization
unit to the CHIM simplex pointing towards the origin.
*en, ϕβ + tn, t ∈ R shows the set of points on that normal.
*erefore, normal points and boundary of F closet to the
origin are the global solution according to the following
problem:

max t,

s.t,

ϕβ + tn � F(x),

g(x)≤ 0,

h(x) � 0,

x
l
i ≤xi ≤x

u
i i � 1, . . . , N.

(3)

*evector constrain ϕβ + tn � F(x) ensures that the point
x is actually mapped by F to a point on the normal. While the
remaining constraints ensure feasibility of x. Instead of ϕβ +

tn � F(x) we can useF(x)≤ u + tv. Where, v is normal vector
and u is point of origin of the normal which are user-defined
values. *e general algorithm of the modified NBI optimiza-
tion mathematical method is written below. (Algorithm2)

In the first stage, the objective functions are placed
between the minimum value of zero and the maximum value
of one. *erefore, we determine the objective functions in
the interval [0; 1]. *is causes the Pareto frontier to be
placed inside a bound box. In the second step, a V is selected
for each pair in this step to generate the space of Pareto
points. In the third step, the first optimization problem with
the starting minimum point for f1; t � 1; β � 0 starts. If at
the end of optimization t � 0; β � 1, then go to step 4.
Because in this case, a Pareto point has been estimated.
Otherwise, use t + V and β + V as starting points for the next
optimization, and this step is repeated. In the fourth step, if
the estimated Pareto set needs more accuracy, a smaller Vm

is used to generate more Pareto points and we return to step
3. Otherwise, we go to step 5. In the fifth step, for N> 2, we
use different values in [0, 1]in order to construct the values
of objective functions to determine the results of multiple
objectives. *en we return to step 1 and determine the
objective functions in the interval [0; 1]. If all combinations
are determined, we stop. Otherwise, go to step 6. In the sixth
step, based on the described filter [34], the set of inferior

Pareto points is removed from the set of generated Pareto
points. In the seventh step, choose the best solution from the
Pareto set as the optimal solution. For this, choose a range
for V for more precision of the generated Pareto set and
repeat steps 2 to 6 for all V values in the range. In Figure 2,
research solution approach framework are shown.

4. Computational Results

In this paper, using the proposed framework, the multi-
objective optimization of the extraction rate and travel time
of moving equipment in a copper mine based on a meta
modeling approach has been done. *e central composite
design is used for sampling and determining the objective
values. In this paper, maximizing the amount of total ex-
traction, which is the sum of the extraction of sulfide, oxide,
low-grade rocks, and waste in this mine, and minimizing the
travel time of hauling according to the limitations of its
storage capacity, haulage, and budget are our goals. In
addition, we have considered only several important sources
such as 120-ton trucks, 240-ton trucks, 35-ton trucks, and
100-ton trucks in the mining complex and used other
sources such as shovels is ignored. Because these resources
do not directly affect our goals or have little effect on the
existing process steps in the copper mining complex.
*erefore, by not considering these sources, the size of the
design space may decrease. Our approach starts with the
design of the operational process of the copper mining
complex through the discrete event simulation model. In
multi-objective optimization, meta model-based simulation
using design of experiment (DOE) is used to analyze sce-
narios. *e design of experiments is used as a valuable set of
mathematical techniques for statistical modeling and sys-
tematic analysis of a problem with the desired answer to
optimize variables [35]. *e first step for creating a meta
model in the DOE section is the selection of input variables
and their considered levels in the system limitation. *ese
variables and their levels are shown in Table 4.

*ese variables (X1; X2; X3; X4) are independent vari-
ables that are used as the input value of the simulation model
to make the dependent variables of the extraction rate of
minerals and the duration of moving trucks. Distances
(X1; X2; X3; X4) is 17, 5, 21 and 21, respectively, which is

Input: Objectives, Variables and Parameters
Output: Meta Model and a non-dominated set
//Start//
Step1: Simulation Model Development
Step 2: Design of Experiment (DOE)
Step 3: Run Simulation Model Experiment
Step 4: Fit the Meta Model
Step 5: Meta Model Validation
Step 6: Apply optimization algorithm
Step 7: Quality of Results
//Finish//

ALGORITHM 1: Meta modelling algorithm.
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considered for each combination. By using a regression
meta-model, instead of 17 × 5 × 21 × 21 � 37485 combina-
tions for only one objective and 2 × 37485 for both objec-
tives, all combinations of input variables can be shown. A
central composite design (CCD) with 25 experiments for
both objectives is employed for this purpose. CCD is the
most famous design of the response surface method. A CCD
consists of a two-stage fractional or full factorial design with
central points to which several points called noncenter
points have been added. If the distance of the center of the
design to the factorial points is considered to be ± 1 for each
variable, the distance of the center of the design to the
noncentered points will be ± α where |α|> 1. *e reason for
using this design is the proper estimation of curvature in the

system model. *en, each combination in this plan is re-
peated 10 times, and the average of each performance is
determined as the dependent variable. *en, the best and
most qualitative meta model is selected through statistical
analysis.

*e problem consists of two objectives: maximizing the
extraction rate of mineral stones and minimizing the time
of moving haulage in the mine. Both goals are calculated
using simulation results. Before fitting, we must determine
the accuracy of the functions for each objective. Using R2

and P value statistics for candidate meta models, the best
prediction function is selected for each of the objectives.
*e R2 statistic indicates the difference between the ex-
perimental and predicted values. *e higher the value, the
more significant it means that there is no significant dif-
ference between these two values. In Table 5, the validation
of the candidate models for each objective has been
examined.

According to the results obtained from evaluating the
accuracy of the model, which are shown in Table 4, the
modified model has sufficient accuracy to predict perfor-
mance on both response surfaces. *erefore, it is necessary

Input: Number of significant digits
Number of initial points

Output: non-dominated set
//Start//
Step 1: Normalize objective Functions
Step 2: Generating Pareto Point
Step 3: Initiate objective function optimization
Step 4: Accurate Pareto set
Step 5: Fix objective function Values
Step 6: Remove Pareto dominated Points
Step 7: Optimal Stage
//Finish//

ALGORITHM 2: Modified-NBI algorithm.

Meta-modeling process

Build a simulation model (SM)

Design of experiment (DOE)

Run each DOE in the SM

Fitting the Meta-model

Modified-NBI process

Normalize

Generating non-dominate point

Generating Pareto set

Find the optimal point

Figure 2: Research solution approach framework.

Table 4: Predetermined parameters of experimental design.

Variable ID Variable name Minimum Maximum −α +α
X1 Trucks 120 tons 12 28 4 36
X2 Trucks 240 tons 3 5 2 6
X3 Trucks 35 tons 9 25 1 33
X4 Trucks 100 tons 25 45 15 55
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to estimate the coefficients of the significant effects of the
model in both objectives to fit the model. Statistical
analysis, effect identification, and estimated coefficients for
the total production and the trucks travel time in the copper
mine complex are presented in Table 6 and 7. *e total ore
production model F-Value of 3.24 implies significant.
*erefore, there is sufficient agreement between experi-
mental and predicted values. Also, the trucks travel time
model F value of 19.62 implies the model is significant too.
*us, there is only a 0.01% chance that an F Value this large
cloud occurs due to noise. Values of Prob>F less than 0.05
indicate model terms are significant. Also, values of
|t> 1.96| the model terms are significant. Values greater
than 0.1 indicate the model terms are not significant. Al-
though X2 in the first response and X4 in second response
are not meaningful, but used them for analysis in the
model, because these variables are the system decision
variables and we intend to calculate their optimal value in
the future.

Based on the statistical analysis, the meta-model of the
total amount of ore extraction and the total haulage
transport time are formulated as follows:

Y1 � 0.47 + 0.15X1 + 0.058X2 + 0.2X3 + 0.053X4

+ 0.069X1X2 + 0.041X
2
1 + 0.055X

2
2 − 0.064X1X2X3

+ 0.14X
2
1X2 − 0.18X

2
1X3,

(4)

Y2 � 0.71 − 0.082X1 + 0.23X2 − 0.047X3 + 0.008X4

+ 0.039X1X4 − 0.048X1X2X3 − 0.052X1X2X4

− 0.12X
2
1X2 + 0.073X1X2X3X4 − 0.015X

4
2 − 0.007X

4
4.

(5)

*e copper mine complex can use the above Meta
models to find the nondominated solutions subject to given
constraint when all functions are validating. Simulation
validity measures how well the model represents the real
world system [5].

4.1. Meta-Model Validation Results. To provide the validity
of the meta models built in our paper, we use the most
common PRESS error, which is the root mean square PRESS
denoted as RMSEPRESS Calculated by

��������
PRESS/n

√
, where, n is

number of test points selected to evaluate the model. It is
obvious that a value of zero for RMSE is the optimal desired

values [10]. In Table 8, the RMSEPRESS value obtained for
modified models and other considered models for each
objective is shown.*erefore, we conclude that the modified
models can be used as an abstraction model of the simu-
lation model.

Table 6: Estimated effects and coefficients for the total ores
production.

Term Coefficient S.E coefficient P value t value
Intercept 0.47 0.035 0.0001 13.4285
X1 0.15 0.033 0.0005 4.5454
X2 0.058 0.033 0.1010 1.7575
X3 0.20 0.033 0.0001 6.0606
X4 0.053 0.019 0.0140 2.7894
X1X2 0.069 0.023 0.0105 3
X2

1 0.041 0.019 0.0535 2.1578
X2

2 0.055 0.019 0.0140 2.8947
X1X2X3 −0.064 0.023 0.0160 −2.7826
X2

1X2 0.14 0.040 0.0038 3.15
X2

1X3 −0.18 0.040 0.0007 −4.5

Table 5: Accuracy model of responses for three candidate regression functions.

Response Function P value R2 Status

Total ores production
Linear model 0.0004 0.62 Significant

Two factor interactions model 0.0249 0.69 Significant
Modified model 0.0001 0.93 Significant> selected

Total haulage transport time
Linear model 0.0003 0.63 Significant

Two factor interactions model 0.0335 0.67 Significant
Modified model 0.0001 0.94 Significant> selected

Table 7: Estimated effects and coefficients for the haulage transport
time.

Source Coefficient S.E coefficient P value t value
Intercept 0.71 0.018 0.0001 39.4444
X1 −0.082 0.015 0.0001 5.4666
X2 0.23 0.026 0.0001 8.8461
X3 −0.047 0.015 0.0075 −3.1333
X4 0.008 0.015 0.5672 0.5333
X1X4 0.039 0.018 0.0503 2.1666
X1X2X3 0.048 0.018 0.0205 −2.6666
X1X2X4 −0.052 0.018 0.0139 −2.8888
X2

1X2 −0.12 0.032 0.0021 −6.6666
X1X2X3X4 0.073 0.018 0.0015 4.0555
X4

2 −0.015 0.003 0.0008 −5
X4

4 −0.007 0.003 0.0459 −2.3333

Table 8: Validation of the meta models.

Objective function RMSEPRESS

Total ores extraction (Y1)

RMSEModified
PRESS � 0.16

RMSELinear
PRESS � 0.2

RMSE2FI
PRESS � 0.26

Total trucks travel time (Y2)

RMSEModified
PRESS � 0.11

RMSELinear
PRESS � 0.17

RMSE2FI
PRESS � 0.24
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4.2. Mathematical Optimization. Mathematical problem
considered as follows:

Maximize Y1( ; Textraction(x),

Minimize Y2( ; TTrucktransportation(x),

subject to,

120x1 + 240x2 + 35x3 + 100x4 ≤ 60000,

69x1 + 118x2 + 22x3 + 45x4 ≤ 3900,

12≤x1 ≤ 28,

1≤x2 ≤ 5,

5≤x3 ≤ 25,

25≤x4 ≤ 45,

xiinteger for i � 1; 2; 3; 4.

(6)

In the integer nonlinear multiobjective optimization
(INMOO) problem is considered, Y1 is the function of the
total amount of ores extraction in the open-pit mine, and its
equation is specified by the symbol Textraction in themodel. Y2
is the function of the total transportation time of haulages,
which is represented by the symbol TTrucktransportation. x is a
vector of design variables that has four components x1
number of trucks is 120 tons; x2 number of trucks is 240
tons; x3 number of trucks 35 tons; x4 *e number of trucks
is 100 tons. Both functions were obtained using the analysis
described earlier. 120x1 + 240x2 + 35x3 + 100x4 ≤ 60000 is
capacity inequality and 69x1 + 118x2 + 22x3 + 45x4 ≤ 3900
is cost inequality. *e multiobjective optimization problem
has been coded and solved through the modified-NBI
method with two meta models with Maple software.

Two-dimensional (2D) graphs have been used to show
the Pareto frontier of both objectives, where each axis
represents each objective. *e Pareto frontier represents a
surface covering all possible mass values. In engineering
applications, including the case study in this paper, the
relationship between objective functions and nondominated
solutions in the relevant space is an essential issue. Inves-
tigating the difference between each nondominated solution
and the effect of the difference in the objective functions can
help to understand the multi-objective optimization prob-
lem. According to the presented algorithm of the modified-
NBI method, in Figure 3, the values of normalized points are
shown. In Figure 3, the diagram of the normalized value
points of both objective functions is shown in two dimen-
sions. According to the normalization process, both ob-
jective functions are fixed at a value between zero and one.

Based on the optimization algorithm, 22 nondominated
points are produced, and the overall set of Pareto points is
created using these points. In Table 9, 22 nondominated
points and their objective values are shown. Also, in Figure 4
shows the diagram of the space created by these 22 points.
According to Figure 4, the convergence of the obtained
nondominant points is desirable.

Using the nondominant set created, the optimization
phase begins. After all the sets of nondominated solutions
are obtained, the best nondominated solutions are reported

as the Pareto set of the problem in Table 10. *e final Pareto
set, which includes 13 nondominated solutions out of 22
nondominated solutions, is obtained from the optimization
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Figure 3: 2D diagram of normalized value.

Table 9: Nondominated points obtained.

Row
Solutions Objective function

x1 x2 x3 x4
Objective 1
(Y1) (tons)

Objective 2
(Y2) (hourly)

1 12 5 20 45 21800 2078
2 12 4 9 45 21700 3213
3 15 5 15 45 22850 1656
4 12 5 25 45 21400 1399
5 12 3 25 45 20170 1600
6 13 5 25 45 21690 1167
7 13 4 25 45 21080 1277
8 14 3 25 45 20750 1157
9 14 1 25 45 19520 1338
10 15 3 25 45 21050 957.3
11 16 2 25 45 20720 842.2
12 17 1 25 45 20400 738.8
13 18 2 25 45 21300 492.8
14 20 1 25 45 21270 278.2
15 21 1 25 45 21270 278.2
16 22 1 25 45 21570 173.7
17 23 1 25 45 21860 89.87
18 24 2 25 45 22150 32.49
19 26 3 25 45 24250 98.41
20 16 4 25 45 21960 682.3
21 14 3 25 45 20750 1157
22 13 2 25 45 19840 1482
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Figure 4: Space of the generated nondominate points.
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of the multiobjective optimization problem. *e non-
dominated final solutions that make up the Pareto frontier
are shown in Figure 5.

*e accuracy of the solution obtained by the built models
compared to the existing situation is shown in Figure 5.
Based on the obtained results, it is clear that by using the
built model and the optimization method, appropriate so-
lutions have been obtained compared to the existing situ-
ation. In Figure 5, the red-highlighted dot shows the values
of the objective functions in the current state. According to
this situation, the value of the objective functions in all
Pareto points is better than in the existing situation.
*erefore, a designer or engineer chooses the best design of
variables that can fulfill the demands of the goals through the
Pareto frontier and the set of nondominated solutions.

4.3. Optimal Solution. *e mathematical programming
problem of INMOO is shown in equation (7). *is problem
can be converted into a mixed integer nonlinear pro-
gramming (MINLP) according to equation (8). Because, in
INMOO mode, instead of calculating an optimal solution,
we deal with a set of Pareto solutions. While we want to
choose an optimal solution from the set of Pareto solutions.
*erefore, it is necessary to convert the INMOO problem
into a MINLP problem. For this purpose, first each problem
is solved separately, and then the optimal value of each
objective function is obtained. *en, by defining the new
variable SS instead of the objective functions according to
equation (8), we convert the model into a single objective
programming problem.

Maximize Y1( ; Textraction(x),

Minimize Y2( ; TTrucktransportation(x),

subject to,

h(x) � 0,

g(x)≤ 0,

x
l
i ≤ xi ≤ x

u
i ,

xiinteger for i � 1; 2; 3; 4,

(7)

where, in above INMOO model (Y1) and (Y2) are objective
functions, h(x) and g(x) are equality and inequality, xl

i and
xu

i are lower and upper bound of decision variables.

MaximizeS,

subject to,

Y
∗
1 × S≥Y1,

Y
∗
2 × S≥Y2,

h(x) � 0,

g(x)≤ 0,

x
l
i ≤xi ≤x

u
i ,

Sfree andxiinteger for i � 1; 2; 3; 4,

(8)

where in the aboveMINLPmodel S is objective function and
is free in sign, Y∗1 and Y∗2 are the optimal value of the
objective function, h(x) and g(x) are equality and in-
equality, xl

i and xu
i are lower and upper bound of decision

variables. Equation (8) is a nonlinear model. *e nonlinear
feature of this model is inherent and cannot be fixed. *is
model is solved using Lingo software.

Finally, an optimal solution according to the proposed
algorithm is determined among the obtained Pareto solu-
tions. In Table 11, the optimal solution is compared with the
existing situation.

According to the obtained results, with the change in the
combination of the considered resources, there was a 79%
increase in the amount of extraction and a 60% decrease in
the duration of transport the haulage. *erefore, if the
number of trucks with 120 tons (x1) changes from 20 to 12,
the number of trucks with 240 tons (x2) changes from 4 to 5,
the number of trucks with 35 tons (x3) changes from 15 to
20, and the number of trucks with 100 tons (x4) changes
from 36 to 45, the objective functions are improved.

4.4. Sensitivity Analysis. In this section, the changes in the
important parameters of the problem are examined. For this
purpose, two parameters of cost and capacity are considered.
Table 12 shows the changes of both parameters and their
effects on the objective functions.

In Figures 6 and 7 are shown the cost and capacity
changes, respectively. According to the changes in cost and
capacity, the optimality of the objective functions is dis-
turbed. For example, if the capacity decreases, the objective
function (1) (total extraction) is reduced. In addition, the
objective function (2) (transportation time of haulage) is

Complexity 11



increased. *e obtained state is opposite to the optimal
situation. Also, if the cost increases, both of function 1and 2
increased, which is the opposite to the optimal situation.
Because, function 2 is increased and it is an undesired
condition.

5. Managerial Insight

*e establishment of the optimal combination in the
Sarcheshmeh copper mine complex will improve the
amount of total extraction by controlling the number and
duration of haulage transportation. In this case, by in-
creasing the amount of extraction, economic growth will be
created in a country such as Iran.

*e presented framework can provide valuable knowl-
edge to mine managers and be used in short-term planning,
such as the mining activity in the next shift, and long-term
planning, such as the entire life of themine.*e advantage of
the proposed planning for the mine is that it facilitates good
decisions for mine redesign, mining planning, production
rate, and process method. In general, the proposed planning
process in the mine is according to Figure 8.

Table 10: Pareto points obtained.

Row
Solutions Objective function

x1 x2 x3 x4 Objective 1 (Y1) (tons) Objective 2 (Y2) (hourly)

1 12 5 20 45 21800 2078
2 12 5 25 45 21400 1399
3 13 5 25 45 21690 1167
4 13 4 25 45 21080 1277
5 14 3 25 45 20750 1157
6 14 1 25 45 19520 1338
7 15 3 25 45 21050 957.3
8 16 2 25 45 20720 842.2
9 17 1 25 45 20400 738.8
10 18 2 25 45 21300 492.8
11 22 1 25 45 21570 173.7
12 16 4 25 45 21960 682.3
13 13 2 25 45 19840 1482
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Figure 5: Space of the generated pareto points.

Table 11: Optimum and existing situation.

Situation
Variables Objectives Improvement (%)

x1 x2 x3 x4 Objective 1 (tons) (Y1) Objective 2 (hours) (Y2) (Y1) (Y2)

Existing 20 4 15 36 12152 3326 79% increase 60% decreaseOptimum 12 5 20 45 21800 2078

Table 12: Sensitivity analysis.

Parameters Shift
Objectives

Objective 1 Objective 2

Cost +1000 22976 2235
−1000 20782 1977

Capacity +2000 22892 2175
−2000 18152 2789
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6. Conclusion

In this paper, it is shown that the modified NBI method and
regression models are powerful tools for performing mul-
tiobjective optimization of physical systems such as mining
complexes. In this study, the control model of sulfide, oxide,
low-grade and wastes ores extraction and haulage

transportation time has been developed for the Sarcheshmeh
copper mining complex in Iran. *is paper explains how an
engineer or designer can easily choose the best variable
design that fully satisfies the desired objectives by deter-
mining the Pareto frontier and the set of nondominated
solutions. By using multi-objective optimization, the re-
sponse surface method (RSM), design of experiments
(DOE), simulation modeling, and optimization based on the
modified NBI mathematical method, the effect of input
variables and the effect between them have been investi-
gated. *e response surface method provides several ad-
vantages such as a large amount of information from a small
number of experiments that consume time. In addition, the
effect of interaction between factors (input variables) on the
response is easily revealed using RSM. According to the
discrete event model used in this paper, the number of trucks
of 120 tons, the number of trucks of 240 tons, the number of
trucks of 35 tons, and the number of trucks of 100 tons are
the factors that these systems are considered, and their
permissible levels are also determined. Using the modified-
NBI, the set of nondominating points has been found for the
two objectives of maximizing the amount of ore extraction
and minimizing the haulage transportation time. Compared
to the existing situation, the nondominant points obtained
are of very high accuracy in all the combinations obtained.
*e main results of the paper are as follows:

(i) Determining the best modified regression meta-
model to estimate the objective functions and
assessing validity to perform the optimization
process.

(ii) Formulation of INMOO mathematical problem to
discover nondominated solutions.

(iii) Determining 22 nondominant solutions for the
problem using the modified-NBI optimization
algorithm.

(iv) Discovering 13 Pareto solutions for the INMOO
problem.

(v) Determining an optimal solution for the MINLP
model using the proposed algorithm

In future studies, multiobjective optimization in the
mining complex can be used to rank the final nondominated
sets using multicriteria decision-making methods such as
TOPSIS. Also, multi-period model can be considered as an
attractive suggestion for further studies. [36–37].
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