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To solve fractional delay differential equation systems, the Laguerre Wavelets Method (LWM) is presented and coupled with the
steps method in this article. Caputo fractional derivative is used in the proposed technique. (e results show that the current
procedure is accurate and reliable. Different nonlinear systems have been solved, and the results have been compared to the exact
solution and different methods. Furthermore, it is clear from the figures that the LWM error converges quickly when compared to
other approaches. When compared with the exact solution to other approaches, it is clear that LWM is more accurate and gets
closer to the exact solution faster. Moreover, on the basis of the novelty and scientific importance, the present method can be
extended to solve other nonlinear fractional-order delay differential equations.

1. Introduction

In 1965, a mathematician named L’Hopital asked Leibniz
what would be the solution to the problem if the derivatives
and integrals were fractional order. (is L’Hopital question
has resulted in the creation of new mathematical knowledge,
but no one has been able to deal with it for a long time [1].
Mathematicians began to conduct study in the field of
fractional derivatives, integration, and the development of a
new field of fractional calculus after a period of time. In
mathematics, this domain is known as fractional calculus,
and it is a significant branch of mathematics that deals with
the study of fractional derivatives and integration. Mathe-
maticians have recently started working on fractional cal-
culus because of its wide applications in all fields of research
such as economics [2], viscoelastic materials [3], dynamics of
interfaces between soft nanoparticles and rough substrates

[4], continuum and statistical mechanics [5], solid me-
chanics [6], and many other topics.

Many natural problems can be solved using mathe-
matical formulations by transforming physical facts into
equation form. Differential equations (DEs) are a type of
equation that is used to model a variety of phenomena.
However, certain cases are too complicated to be solved
using a differential equation. In this case, the researchers
used fractional differential equations (FDEs), which are
more accurate than differential equations with order integers
in modelling the phenomenon. FDEs have realised the
importance of real-world modelling challenges in recent
years. Such as electrochemistry of corrosion [7], electrode-
electrolyte polarization [8], heat conduction [9], optics and
signal processing [10], diffusion wave [11], circuit systems
[12], control theory of dynamical systems [6], probability
and statistics [14, 15], fluid flow [16], and so on.
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Equations with delayed arguments are known as frac-
tional delay differential equations (FDDEs). Time delay,
spatial delay, step size delay, constant delay, and so on are
examples of delayed arguments. Due to various delay ar-
guments found in nature, FDDEs are classified into distinct
types. FDDEs are time delay DDEs, which are equations in
which the current time derivatives are dependent on the
solution and possibly its derivatives at a previous time. In the
last few decades, mathematicians have paid more attention
to FDDEs for modelling than simple ODEs, because a small
delay has a big impact. FDDEs are employed in a variety of
domains of mathematics, including infection diseases,
navigation control, population dynamics, circulating blood,
and the body’s reaction to carbon dioxide [17–19], as well as
some additional applications in advanced research studies.

It is necessary to develop accurate, time-efficient, and
computationally efficient numerical algorithms for solving
FDDEs. Xu and Ma [20] investigated the SEIRS epidemic
model with a saturation incidence rate and a time delay that
defined the latent period. Rihan et al. [21] investigated a
delay differential model, numerically analysed it, and
established an effective method of combining chemotherapy
with therapeutic immunotherapy in 2014. (e global sta-
bility of the Lotka–Volterra autonomous model with dif-
fusion and time delay was studied by Beretta and Takeuchi
[22]. Lv and Gao [23] used the well-known reproducing
kernel Hilbert space approach to solve neutral functional
proportional delay differential equations (RKHSM). Galach
[24] investigated the time delay in the model presented by
Kuznetsov and Taylor, where the time delay was included to
gain better compatibility with reality. Furthermore, some
researchers discussed the behaviour of delay fractional
differential equations or a system of delay fractional dif-
ferential equations, as well as their stability and analysis.
Some works, such as in [25, 26], demonstrate this style of
research.

In a number of situations, exact FDDEs solutions are
difficult to get. As a result, the researchers’ key goal is to
develop a numerical or analytical solution to FDDEs. As a
result, many strategies have been employed such as the New
Predictor Corrector Method (NPCM) [27], New Iterative
Method (NIM) [28], Adomian Decomposition Method
(ADM) [29], Backward Differentiation Formula (BDF) [30],
Chebyshev Pseudospectral Method (CPM) [31], Legen-
dre–Gauss Collocation Method (LGCM) [32],
Adams–Bashforth–Moulton Algorithm (ABMA) [33], op-
erational matrix based on poly-Bernoulli polynomials
(OMM) [34], and Runge Kutta-type Method (RKM) [35].
Overall, some of the approaches used to obtain numerical or
analytical solutions to FDDEs have low accuracy of con-
vergence, while others have great accuracy. Among all of
these approaches, the wavelet approximation family is one of
the more recent methods for locating FDDE solutions. For
the approximate solution of FDDEs systems in the current
study, we implement Laguerre Wavelets Method (LWM) in
combination with the steps method. (e proposed solution
is shown to be entirely compatible with the complexity of

such problems and to be extremely user-friendly. (e error
comparison shows that the suggested technique has a very
high level of accuracy.

(e structure of remaining paper is summarized as
follows. Section 2 defines some basic definitions related to
our present work. (e general methodology for solving
FDDEs is provided in Section 3. Section 4 presents the main
results, numerical simulations, and graphical representa-
tions.(e conclusion along with future research directions is
drawn in Section 5.

2. Preliminaries Concept

(is section introduces the basic concept and several im-
portant definitions from fractional calculus, which we will
apply in our current research.

2.1. Definition. (e following mathematical statement
demonstrates Caputo’s definition for fractional derivatives
of order δ [36, 37].

D
δξ(ψ) �

1
Γ(m − δ)

􏽚
ψ

0
(ψ − τ)

m− δ− 1ξ(m)
(τ)dτ, (1)

for n − 1< δ ≤m, m ∈ N, ψ > 0, ξ ∈ Cn
− 1.

2.2.Definition. (e Riemann–Liouville integral operator for
order δ is given as [36, 37].

I
δξ(ψ) �

1
Γ(δ)

􏽚
ψ

0
(ψ − τ)

δ− 1ξ(τ)dτ. (2)

(e following are the properties of the Caputo derivative
and Riemann–Liouville integral operators.

D
δ
I
δξ(ψ) � ξ(ψ),

I
δ
D

δξ(ψ) � ξ(ψ) − 􏽘
n− 1

k�0

ξ(k) 0+
( 􏼁

k!
ψk

, ψ ≥ 0 n − 1< δ < n.

(3)

3. Laguerre Wavelets

Wavelets [38–40] are a family of functions made up of
dilation and translation of a single function called the
mother wavelet, φ(ψ). (e family of continuous wavelets
[41] is formed when the dilation parameter a and the
translation parameter b vary continuously.

φa,b(ψ) � |a|
− 1/2φ

ψ − b

a
􏼠 􏼡, a, b ∈ R, a≠ 0. (4)

(e following family of discrete wavelets results from
restricting the parameters a and b to discrete values as
a � a

− p
0 , a � nb0a

− p
0 , a0 > 1, b0 > 0,

φp,n(ψ) � |a|
− p/2φ a

p
0(ψ) − nb0􏼐 􏼑, p, n ∈ Z, (5)
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where the wavelet basis for L2(R) is φp,n. When a0 � 2 and
b0 � 1, for instance, φp,n(ψ) forms an orthonormal basis.
(ere are four arguments in the Laguerre wavelets
Φn,m(ψ) � φ(k, n, m,ψ), n � 1, 2, . . . , 2k− 1, where k is non-
negative integer, m represents the Laguerre polynomials
degree, and represents normalized time. Over the interval
[0, 1), they are defined as

φn,m �

2p/2 􏽥Lm 2pψ − 2n + 1( 􏼁,
n − 1
2p− 1 ≤ψ <

n

2p− 1,

0, Otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(6)

where

Table 1: Comparison of the exact and MLWM solution for example 1 at m� 9.

ψ Exact ξ(ψ) Exact ζ(ψ) MLWM solution ξ(ψ) MLWM solution ζ(ψ)

0 1.000000000000000 0.000000000000000 1.000000000000000 0.000000000000000
0.1 0.900316999845194 0.998334166468281 0.900316999845194 0.998334166468281
0.2 0.802410647342520 0.198669330795061 0.802410647342527 0.198669330795061
0.3 0.707730678026351 0.295520206661339 0.707730678025662 0.295520206661339
0.4 0.617405647901646 0.389418342308650 0.617405647901653 0.389418342308637
0.5 0.532280730215671 0.479425538604203 0.532280730215273 0.479425538604203
0.6 0.452953789145250 .5646424733950353 0.452953789145497 .5646424733947035
0.7 0.379809389925154 0.644217687237691 0.37980938992536 0.644217687236876
0.8 0.313050504004480 0.717356090899522 0.313050504004346 0.717356090898501
0.9 0.252727753291169 0.783326909627483 0.252727753291868 0.783326909628249
1.0 0.198766110346413 0.841470984807896 0.198766110346480 0.841470984813237

Table 2: Error estimation of proposed method with FBPs for example 1 at m� 9.

ψ Error (ξMLWM) Error (ζMLWM) Error (ξFBPs) Error (ζFBPs)

0.2 7.1240361137E-15 2.1190342156276E-17 1.22E-11 3.55E-12
0.4 3.1090504913E-13 1.2920241091118E-14 9.91E-12 1.04E-11
0.6 4.0077803050E-12 3.3177676221433E-13 7.20E-12 1.59E-11
0.8 2.5602591191E-12 1.0209754593019E-12 6.56E-12 2.06E-11
1.0 4.9538867166E-11 5.3406078485367E-12 7.58E-10 1.47E-11
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Figure 1: Behaviour of the exact solution and proposed method
solution for ξ(ψ) of problem 1.
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Figure 2: Behaviour of the exact solution and proposed method
solution for ζ(ψ) of problem 1.
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􏽥Lm �
1

m!
Lm(ψ) m � 0, 1, 2, . . . A − 1. (7)

m � 0, 1, 2, . . . , M − 1. (e coefficients are utilised in (10) to
determine orthonormality. (e Laguerre polynomials hav-
ing degreemwith regard to w(ψ) � 1 weight function on the
interval [0,∞] are Lm(ψ) and satisfy the recursive formula:
L0(ψ) � 1, L1(ψ) � 1 − ψ,

Lm+2 �
(2m + 3 − x)Lm+1(ψ) − (m + 1)Lm( 􏼁

m + 2
m � 0, 1, 2, 3, 4, . . . .

(8)

where
Modified Laguerre wavelets method (MLWM): Here, we

consider the delay differential equation of the form:

y
α
(ψ) � f(ψ) + g(ψ)y

ψ
a

− c􏼒 􏼓, 0<ψ < b, 0< α≤ 1,

y(ψ) � p(ψ), − b≤ψ ≤ 0,

(9)

8.00E-010
7.00E-010

6.00E-010
5.00E-010
4.00E-010

3.00E-010
2.00E-010
1.00E-010

0.00E-000

B

C1

1.0
0.8

0.6
0.4

0.2
ξ (ψ)

MLWM

FBPs

Figure 3: FBPs and proposed method error analysis for ξ(ψ) of
example 1.
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example 1.
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where f(ψ) is a provided continuous linear or nonlinear
function and g(ψ) is a source term function. Using the
proposed method, transform the delay differential

equation (12) to an inhomogeneous ordinary differential
equation by using the initial source, p(ψ), as shown in
(12):

Table 3: Comparison at different fractional-order of δ on the basis of error for example 2.

δ ψ Exact MLWM solution MLWM error Spline functions

0.1

0.01 0.0001 0.00009999986375 1.3625E-10 8.2E-4
0.02 0.0004 0.0003999998553 1.447E-10 2.5E-3
0.03 0.0009 0.0008999998624 1.376E-10 4.7E-3
0.04 0.0016 0.001599999883 1.17E-10 7.3E-3
0.05 0.0025 0.002499999813 1.87E-10 1.0E-2

0.2

0.01 0.0001 0.0001000000111 1.11E-11 4.4E-4
0.02 0.0004 0.0004000001035 1.035E-10 1.4E-3
0.03 0.0009 0.0008999999845 1.55E-11 2.7E-3
0.04 0.0016 0.001600000057 5.7E-11 4.4E-3
0.05 0.0025 0.002500000022 2.2E-11 6.1E-3

0.3

0.01 0.0001 0.0001000001798 1.798E-10 2.1E-4
0.02 0.0004 0.0004000002303 2.303E-10 7.1E-4
0.03 0.0009 0.0009000001717 1.717E-10 1.4E-3
0.04 0.0016 0.001600000106 1.06E-10 2.4E-3
0.05 0.0025 0.002500000136 1.36E-10 3.5E-3

0.4

0.01 0.0001 0.0001000000189 1.89E-11 8.1E-5
0.02 0.0004 0.0003999999502 4.98E-11 2.9E-4
0.03 0.0009 0.0008999998916 1.084E-10 6.1E-4
0.04 0.0016 0.001599999941 5.9E-11 1.0E-3
0.05 0.0025 0.002499999997 3.000E-12 1.0E-3

0.5

0.01 0.0001 0.00009999988074 1.1926E-10 4.5E-6
0.02 0.0004 0.0003999997780 2.220E-10 2.6E-5
0.03 0.0009 0.0008999996906 3.094E-10 7.0E-5
0.04 0.0016 0.001599999717 3.83E-10 1.4E-4
0.05 0.0025 0.002499999657 3.43E-10 2.5E-4

Table 4: Comparison at different fractional-orders of δ on the basis of error for example 2.

δ ψ Exact MLWM solution MLWM error Spline functions
0.01 0.0001 0.00009999986375 1.3625E-10 8.2E-4
0.02 0.0004 0.0003999998553 1.447E-10 2.5E-3

0.1

0.03 0.0009 0.0008999998624 1.376E-10 4.7E-3
0.04 0.0016 0.001599999883 1.17E-10 7.3E-3
0.05 0.0025 0.002499999813 1.87E-10 1.0E-2
0.01 0.0001 0.0001000000111 1.11E-11 4.4E-4
0.02 0.0004 0.0004000001035 1.035E-10 1.4E-3

0.2

0.03 0.0009 0.0008999999845 1.55E-11 2.7E-3
0.04 0.0016 0.001600000057 5.7E-11 4.4E-3
0.05 0.0025 0.002500000022 2.2E-11 6.1E-3
0.01 0.0001 0.0001000001798 1.798E-10 2.1E-4
0.02 0.0004 0.0004000002303 2.303E-10 7.1E-4

0.3

0.03 0.0009 0.0009000001717 1.717E-10 1.4E-3
0.04 0.0016 0.001600000106 1.06E-10 2.4E-3
0.05 0.0025 0.002500000136 1.36E-10 3.5E-3
0.01 0.0001 0.0001000000189 1.89E-11 8.1E-5
0.02 0.0004 0.0003999999502 4.98E-11 2.9E-4

0.4

0.03 0.0009 0.0008999998916 1.084E-10 6.1E-4
0.04 0.0016 0.001599999941 5.9E-11 1.0E-3
0.05 0.0025 0.002499999997 3.000E-12 1.0E-3
0.01 0.0001 0.00009999988074 1.1926E-10 4.5E-6
0.02 0.0004 0.0003999997780 2.220E-10 2.6E-5

0.5
0.03 0.0009 0.0008999996906 3.094E-10 7.0E-5
0.04 0.0016 0.001599999717 2.83E-10 1.4E-4
0.05 0.0025 0.002499999657 3.43E-10 2.5E-4

Complexity 5



y
α
(ψ) � f(ψ) + g(ψ)p

ψ
a

− c􏼒 􏼓, 0<ψ < b, 1< α≤ 2.

(10)

Equation (14) can be expanded as a Laguerre wavelets
series as follows:

y(ψ) � 􏽘
∞

n�0
􏽐
∞

m�0
dn,mφn,m(ψ), (11)

where φn,m(ψ) is determined by (9). (e truncated series is
used to approximate y(ψ).

yp, A � 􏽘
∞

n�0
􏽐
∞

m�0
dn,mφn,m(ψ), (12)

(en, there should be a total of 2p− 1A conditions for
determining the 2p− 1A coefficient:

c10, c11 . . . cA− 1 . . . c20, c2A− 1 . . . c2p− 11 . . . c2p− 1A− 1. (13)

Since the initial and boundary conditions, respectively,
provide the conditions.

yp, A(0) � 􏽘
2p− 1

n�1
􏽘

A− 1

m�0
dn,mφn,m(0) � q(0). (14)

d

dψ
yp, A(1) �

d

dψ
􏽘

2p− 1

n�1
􏽘

A− 1

m�0
dn,mφn,m(1) � q

�
(1). (15)

We see that there should be 2p− 1A − 2 extra condition to
recover the unknown coefficient dn,m. (ese conditions can
be obtained by substituting (14) in (12):

d
α

dψα 􏽘

2p− 1

n�1
􏽘

A− 3

m�0
dn,mφn,m(ψ) � f 􏽘

2p− 1

n�1
􏽘

A− 3

m�0
dn,mφn,m(ψ)⎛⎝ ⎞⎠

+ g(ψ)p
ψ
a

− c􏼒 􏼓.

(16)

We, now assume equation (18) is exact at 2p− 1A − 3
points ψi as follows:

d
α

dψα 􏽘

2p− 1

n�1
􏽘

A− 3

m�0
dn,mφn,m ψi( 􏼁 � f 􏽘

2p− 1

n�1
􏽘

A− 3

m�0
dn,mφn,m ψi( 􏼁⎛⎝ ⎞⎠

+ g ψi( 􏼁p
ψi

a
− c􏼒 􏼓.

(17)

(e best choice of the ψi points are the zeros of
the shifted Laguerre polynomials of degree 2p− 1A − 2 in
the interval [0, 1] that is ψi � si − 1/2, where si �

cos((2i − 1)π/2p− 1A − 1), i � 1, 2, 3, . . . 2p− 1A − 2. Since the
initial and boundary conditions, respectively, provide the
conditions. Combining equations (9) and (12) yields 2p− 1A

linear equations from which the unknown coefficients, dn,m,
can be computed. (e same technique is followed for first-
and second-order delay differential equations.

4. Numerical Representation

4.1. Example. Consider the system of fractional ordinary
delay differential equations [42],
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Figure 7: Analysis of the exact and proposed method solution for
ξ(ψ) of problem 2.
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D
δξ(ψ) � − ζ(ψ) − 2e

−
3
4
ψ
cos

1
2
ψ􏼒 􏼓sin

1
4
ψ􏼒 􏼓ξ(0.25ψ)

− e
− ψ cos

1
2
ψ􏼒 􏼓ζ(0.5ψ),

D
δζ(ψ) � e

ψξ2(0.5ψ) − ζ2(0.5ψ),

(18)

with the initial sources ξ(0) � 1, ζ(0) � 0, and having exact
solution at δ � 1 as ξ(ψ) � e− ψ cos(ψ), ζ(ψ) � sin(ψ).

Table 1 shows the exact solution and numerical results
achieved using the proposed method. Table 2 shows the
comparison on the basis of absolute error between our
technique and those derived from FBPs. When δ � 1, the
behaviour of the exact solution and proposed method so-
lution of this problem is shown in Figures 1 and 2, re-
spectively, whereas the error comparison of CPM and FBPs
is shown in Figures 3 and 4. Figures 5 and 6 show graphical
representations for different fractional orders of δ, con-
firming that the proposed method solution converges to the
exact solution as the value of δ approaches from fractional-
order towards integer-order.

4.2. Example. Consider the system of fractional ordinary
delay differential equations [43].

D
δξ(ψ) � − ξ(ψ) + ζ

ψ
2

􏼒 􏼓 +
3
4
ψ2

+
2
Γ(3 − δ)

ψ2− δ
,

D
δζ(ψ) � ζ(ψ) − ξ

ψ
2

􏼒 􏼓 −
3
4
ψ2

+
2
Γ(3 − δ)

ψ2− δ
.

(19)

(e exact solution is given byξ(ψ) � ψ2 and ζ(ψ) � ψ2.

(e comparison among the exact solution and the Spline
function polynomial technique solution are shown in Ta-
ble 3. In Table 4, the errors acquired by the current technique
are compared to those obtained by the Spline function
polynomial method. In Figures 7 and 8, we compare the
exact and approximated solutions, which shows that they are
very close to each other. In addition, Figures 9 and 10 show
the MLWM and Spline function error comparisons,
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Figure 9: Spline functions and proposed method error analysis for
ξ(ψ) of example 2.
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for ζ(ψ) of example 2.
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demonstrating that suggested approach is in best agreement
with the exact solution.

5. Conclusion

We used the MLWM to solve fractional delay differential
equations systems in this research. (e proposed method’s
convergence is given special consideration. As demonstrated
in Figures 1–12, the fractional-order delay differential
equation solution approaches towards the solution of the
integer-order delay differential equation. (e results ob-
tained by implementing the proposed method are in great
agreement with the exact solution and are more accurate
than those obtained by implementing other techniques. (e
proposed method (MLWM) is extremely user-friendly but
extremely accurate, according to computational effort and
numerical results. (e computations work in this article are
done using Maple.
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