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,e study of the chaotic dynamics in fractional-order discrete-time systems has received great attention over the last years. Some
efforts have been also devoted to analyze fractional maps with special features. ,is paper makes a contribution to the topic by
introducing a new fractional map that is characterized by both particular dynamic behaviors and specific properties related to the
system equilibria. In particular, the conceived one dimensional map is algebraically simpler than all the proposed fractional maps
in the literature. Using numerical simulation, we investigate the dynamic and complexity of the fractional map. ,e results
indicate that the new one-dimensional fractional map displays various types of coexisting attractors. ,e approximate entropy is
used to observe the changes in the sequence sequence complexity when the fractional order and system parameter. Finally, the
fractional map is applied to the problem of encrypting electrophysiological signals. For the encryption process, random numbers
were generated using the values of the fractional map. Some statistical tests are given to show the performance of the encryption.

1. Introduction

Fractional calculus is a topic which is developed more than
300 years. However, it is only the last decades that it has been
extensively and intensively investigated, due to its wide
application in signal mechanical controls and other fields [1].
Compared with integer order derivatives, fractional-order
derivatives are more accurate as they provide excellent tool
for the description of the memory effect in all kinds of
materials and processing. Based on this consideration, the
application of fractional-order systems have attracted more
and more researchers attention [2]. At the same time, during
the last decade, attention has been focused on discrete
fractional calculus and fractional difference operators [3, 4].
Several papers regarding the presence of chaotic phenomena

in fractional discrete-time systems (maps) have been pub-
lished to date [5–9]. For example, in [10] the hyperchaotic
dynamic of the fractional generalized Hénon map has been
investigated, whereas in [11] the presence of chaos in the
fractional discrete memristor system has been illustrated. In
[6] the presence of chaos in the fractional sine map and in
the fractional standard map has been analyzed in details. In
[7], control laws for stabilizing the chaotic dynamics of the
fractional Grassi-Miller map have been developed, whereas
in [8] the fractional Hénon map and its chaotic attractors
have been studied. In [12], the chaotic dynamics of three
maps (i.e., the fractional flow map, the fractional Lozi map
and the fractional Lorenz map) have been investigated,
whereas in [13] the chaotic behavior of the fractional Tin-
kerbell map has been illustrated. To our knowledge, all of the
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above reported systems have a finite number of equilibria. In
general, systems with more equilibria may bring unexpected
stabilities to some extent.,erefore, several efforts have been
devoted to the study of fractional chaotic maps with some
special features related to the system equilibria [14]. Among
these studies, Zambrano-Serrano et al. [15] analyzed the
dynamic properties and projective synchronization of the
fractional difference map with no equilibrium, whereas in
[16] Almatroud et al. found rich chaotic behaviours of a
novel two-dimensional (2D) hyperchaotic fractional map
with infinite line of equilibrium As a result, the analysis of
chaotic dynamical behaviours of the fractional-order dis-
crete-time systems without equilibrium points is an inter-
esting topic.

In recent years, there has been a growing interest in
discrete time systems with special complex dynamical be-
haviours, such as hidden attractors [17], coexisting multiple
attractors [18] and hyperchaotic behaviours. For instance, in
[19] the dynamic properties of a novel memristive hyper-
chaotic map and its application in secure communication
have been illustrated. A 2D sine map was presented in [20]
and several interesting behaviour like coexisting attractors
and initial offset boosting were explored. General speaking,
chaotic maps with coexisting attractors has drawn the at-
tention of many researcher. Coexistence of attractors is a
special phenomenon in nonlinear dynamical systems, which
denotes that with fixed values of system parameters, a tiny
disturbance in the initial condition can lead to the coexis-
tence of different attractors. ,is property makes the chaotic
maps very useful in the fields of secure communication and
encryption. Since such phenomenon has not received
enough attention with fractional discrete-time systems [21],
this paper aims to make a contribution by introducing a new
fractional map that is characterized by both particular dy-
namic behaviors and specific properties related to the system
equilibria. Namely, the proposed map possesses infinite
number of equilibria in a bounded domain, being this a new
feature for fractional map, not published in literature to date.
Dynamics and complexity of the conceived map are in-
vestigated in details. In particular, bifurcation diagrams,
maximum Lyapunov exponents and 0-1 test are reported to
highlight the coexistence of different periodic and chaotic
attractors. Moreover, the map is applied to the problem of
data encryption, which is a well established application of
chaotic systems. As recent examples of fractional systems
being applied to encryption, in the work [22] a technique to
improve chaotic behavior in fractional maps is proposed,
and applied to image encryption. An image encryption using
the fractional logistic map is proposed in [23], and a different
one in [24]. ,e 2D fractional Hénon map was also applied
to image encryption in [25]. In [26] a graphical user interface
is designed for random number generators based on integer
and fractional order chaotic systems. In [27] another pseudo
random number generator was designed based on the
coupling of multiple fractional chaotic systems. ,e above
works are just a small sample of the expanding use of
continuous and discrete fractional systems to encryption.
,e use of fractional systems is drawing increasing attention
by researchers, since they have more complex dynamics due

to their memory effect, and a higher key space than their
integer order analogues, since the fractional order and the
finite memory order constitute additional key values.

In this work, the encryption of electrophysiological
signals [28–33] is considered. To do so, first, a pseudo-
random bit generator (PRBG) is designed using the values of
the chaotic map. ,is chaotic PRBG is the basis for the
encryption design, since it is used as the source of deter-
ministic randomness [34–38]. Here, to take advantage of the
fractional nature of the map that is used as the basis of the
PRBG, a technique is proposed that takes into account its
memory effect. So first, the map is implemented using finite
memory, in order to reduce its computational cost. ,en, in
each iteration, all previous values of the map are taken into
account in generating the bits, which leads in producing 459
bits per iteration. So the proposed technique reduces the
computational load of the PRBG, since fewer iterations of
the map are required to reach a desired bistream length, and
is specifically designed for fractional order systems.

After the PRBG is designed, to encrypt a given elec-
trophysiological signal, two rounds of masking are per-
formed. First, the signal is modulated to mask its structure
by combining it with the values of the fractional chaotic map.
,en, the modulated signal is transformed into its binary
representation, and combined with a bitstream generated
from the PRBG, to yield the encrypted signal. ,is binary
signal can then be safely transmitted through a communi-
cation channel. ,e original signal can be retrieved back at
the receiver end, by following the reverse encryption pro-
cedure. ,e performance of the encryption is finally eval-
uated by a series of statistical tests performed on the original,
modulated, and encrypted signals.

Finally, the encryption process is realised in a micro-
controller board. ,is implementation helps verify the
feasibility of simulating fractional maps in low cost hardware
devices, a task that is of high interest, due to the potential
implementability of chaotic systems in IoT related devices
[39, 40]. Such realizations have already been explored in the
literature, with positive results. For example, in [41] a
fractional macro-economic model was established, and a
microcontroller implementation was designed on an
Arduino Due. In [42] the problem of impulsive synchro-
nization for fractional order discrete chaotic maps is con-
sidered, and the design was again implemented in two
Arduino Mega boards that simulated the master and ob-
server systems. In [43] a hyperchaotic fractional order
system was proposed and discretized. ,e system was then
simulated in an Arduino Uno board and applied to the
problem of text encryption. In [44], a fractional order
modified Chua’s circuit was designed and implemented in
an Arduino Uno microcontroller. In [45] a generalized
fractional logistic map was constructed and applied to
random number generation and image encryption, imple-
mented on a Virtex-5 field-programmable gate array FPGA.
In the current work, the realization is done on an
STM32F103 nucleo development board, and the encrypted
signal from the microcontroller has the same statistical
properties to the signal generated from Matlab, as indicated
from all the statistical tests performed.
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1.1. Fractional Calculus and Preliminaries. In this section,
some preliminaries and basic concepts associated with
discrete fractional calculus are presented here for com-
pleteness. In the following we consider that our domain is
the time scale Nb � b, b + 1, b + 2, . . .{ } with b ∈ R. Let X

denote any function defined from Nb, thus the μ-th frac-
tional sum for μ> 0 is defined by [46]:

Δ− μ
b X(s) �

1
Γ(μ)



s− μ

l�b

(s − l − 1)
(μ− 1)

X(l), (1)

where s ∈ Nb+μ. Observe that the term sμ indicates to the so-
called a falling function which may be defined via Gamma
function, Γ, as follows:

s
(μ)

�
Γ(s + 1)

Γ(s + 1 − μ)
. (2)

Based on the above definition of the μ-th fractional sum,
it is possible to define the μ-Caputo like difference operator.
Let X denote any function defined from Nb. ,e Caputo
difference operator with order μ ∉ N is defined by:

Definition 1. For n � μ + 1, the μ-th order Caputo-like
operator can be defined as [47]:

CΔbμX(s) � Δ− (n− μ)

b ,

Δn
X(s) �

1
Γ(n − μ)



s− (n− μ)

l�b

(s − l − 1)
(n− μ− 1)Δn

l X(l).

(3)

For s ∈ Nb+n− μ.
Now a theorem is briefly summarized, in order to derive

in the following the discrete formula of the new fractional
map.

Theorem 1. [48] For the fractional difference equation

CΔμμbX(s) � f(s + μ − 1, X(s + μ − 1)),

Δr
X(b) � Xr, n � ⌈μ⌉ + 1, r � 0, 1, . . . , n − 1.

⎧⎨

⎩ (4)

,en, the discrete integral equation which is equivalent
to equations in (4) is:

Xs � Xb +
1
Γ(μ)



s− μ

l�b+n− μ
(s − σ(l))

(μ− 1)

· f(l + μ − 1, X(l + μ − 1)), t ∈ Nb+n.

(5)

Note that, for the purpose of numerical calculation, (5)
can be written as [48]:

Xn � X0 +
1
Γ(μ)



n− 1

i�0

Γ(n − i + μ)

Γ(n − i + 1)
f i, Xi( . (6)

2. The New Fractional Map

Let us consider the following one dimensional map, which
has been recently proposed in [49] as an example of an
elegant map that can display chaotic behavior:

xn+1 � A sin
C

xn

  + B, (7)

where A, B and C are three positive parameters. In this work,
we extend the original integer–order system to the frac-
tional-order case. Specifically, we consider the effect of the
fractional–order in the system dynamics by introducing the
following new fractional difference equation:

Δμbx(s) � A sin
C

x(s + 1 − μ)
  − x(s + 1 − μ) + B, (8)

where s ∈ N(b+1− μ) and μ is the fractional order with 0< μ≤ 1.
,is fractional map is invariant under transformation
x⟶ − x for all values of parameters A, B, C and order μ.
Hence this map could display coexisting attractors for ap-
propriate choice of initial conditions and fractional order
values as well. In order to investigate this property, the
numerical formula is designed as:

xn � x0 +
1
Γ(μ)



n− 1

i�0

Γ(n − 1 − i + μ)

Γ(n − i)
A sin

C

xi

  − xi + B .

(9)

According to the discrete (9), the proposed fractional
map (8) has memory effect, which means that the iterated
solution xn is determined by all the previous states. In order
to find the equilibrium points xf of the fractional map (8),
we solve the following equation

ApEn � ϕm
(r) − ϕm+1

(r), (10)

Obviously, (10) is a trigonometrical equation that is very
difficult to solve analytically, therefore, to analyze the
equilibrium points we adopt the graphic analytic method.
Taking the system parameters A � 0.5, C � 3, B � 0 as an
example and the integer order value μ � 1, Figure 1 shows
the phase portrait obtained by simulating (9) in the xn − xn+1
plane along with the y � x line. ,e black line in Figure 1,
bisects the first and third quadrants at the interval
[− 0.5, 0.5], and its crosses with the map are equilibrium
points. As one can see, Figure 1 visually demonstrates that
there are infinite equilibrium points in this case. On the
other hand, Figure 2 shows different phase portraits ob-
tained by simulating (9) for different values of order μ. In
comparison to the integer-order case, the shape of the
bounded attractors does not change much with the decrease
of the value of μ, while the interval where equilibrium points
exist is changed from [− 0.5, 0.5] into [− 0.6, 0.6].

3. Dynamics and Complexity of the New
Fractional Map

In this Section the dynamic behaviors of the fractional-order
map (8) are numerically investigated using bifurcation
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diagrams and computation of maximum Lyapunov expo-
nents, 0-1 test and entropy. Namely, the influence of both
fractional order and initial conditions on the dynamics of the
novel map are investigated in detail, with the aim to
highlight the coexistence of different chaotic attractors.
Namely, the influence of both fractional order and initial
conditions on the dynamical behaviour of the novel map are
investigated in detail, with the aim to highlight the coex-
istence of different chaotic attractors. To give a finer analysis
of our fractional map we model its dynamics for two pa-
rameter sets, i.e for the above values A � 0.5, B � 0, C � 3
and for A � 0.05, B � 0, C � 1.

3.1. BifurcationDiagrams andMLE. By changing the system
parameters, the fractional map (8) can undertake different
dynamic scenarios. Figure 3 gives the three-dimensional
view of the bifurcation diagrams of the fractional map (8) for
different values of μ (i.e., μ � 1, μ � 0.6, μ � 0.2). We con-
sider the parameter A as the bifurcation parameter and we
take the other parameters as B � 0 and C � 1. We consider
two values of symmetric initial conditions: x0 � 0.1 and the
negative one x0 � − 0.1. Clearly, these diagrams are different
(see Figure 4). In particular, in Figure 4 the diagram in
magenta color represents the dynamic behavior of the
fractional map (8) for order μ � 1 (i.e., for the integer-order
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Figure 1: Phase diagram of fractional map (8) for μ � 1, A � 0.5, B � 0, C � 1.
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Figure 2: Different chaotic attractors of the fractional map (8) for system parameters A � 0.5, B � 0, C � 3 and different values of μ:
(a)μ � 0.9 and (b)μ � 0.8. (c)μ � 0.8.
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case). As it can be seen, the fractional map is chaotic over
most of the range and is changed from chaotic to periodic
with the increase of A. It is worth noting that the phe-
nomenon of coexisting attractor is not observed in the in-
teger-order case, where the states of our system come in the
form of individual trajectories. By changing the order μ from
1 to 0.6, the bifurcation diagrams become the ones depicted
in brown and green colors. In this case, coexisting periodic

orbits appear within the interval [0.1323, 0.1723]∪
[0.489, 0.517], along with a symmetry breaking bifurcation.

Meanwhile, the region of chaotic motion increases with
the value of A. Finally, the bifurcation diagrams with μ � 0.2
are considered and plotted in red and blue colors for dif-
ferent initial conditions. Specifically, the states colored in
blue are those starting from the positive initial condition,
whereas the states colored in red are those starting from the
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Figure 3: Different bifurcation diagrams of the fractional map (8) in three-dimensional space with the variation of system parameter B: blue
diagram for μ � 1; red diagram for μ � 0.8; magneta diagram for μ � 0.6; green diagram for μ � 0.4.
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Complexity 5



negative initial condition. In this case, the fractional map (8)
displays symmetric separate coexisting diagrams. Figure 5
shows some coexisting chaotic and periodic attractors for
different values of the system parameter A. Specifically,
when we select the parameter A � 0.04, the fractional map
(8) highlights the coexistence of two symmetric chaotic
attractors corresponding to the positive and negative initial
conditions, respectively. Similarly, when we choose the
parameter A � 0.2, the phase plot in Figure 5 shows the
coexistence of two periodic symmetric attractors corre-
sponding to the positive and negative initial conditions,
respectively. ,e analysis conducted so far clearly highlights
that the dynamics of the fractional map (8) become very
complex when the value of the order μ is significantly
decreased.

(b) In order to deeply investigate the properties of
coexisting attractors in the fractional map (8), bifurcation
diagrams and computations of maximum Lyapunov expo-
nents (LE) with respect to the fractional order are carried
out. Various dynamic behaviors can be observed by
changing the value of μ at the interval [0, 1]. By considering
the values B � 0, A � 0.5 and C � 3, Figure 5(a) displays the
bifurcation diagram of the state variable xn corresponding to
the positive initial condition (blue diagram) and the negative
initial condition (red diagram). For C � 3, the trajectories of
the fractional map change from chaos to coexisting chaotic
attractors with some periodic orbits through period dou-
bling route to chaos. When μ≤ 0.31 the chaotic behavior
disappears and separate coexisting periodic orbits appear.
,is indicates that the dynamics of system (8) for C � 3
become simpler as the value of μ decreases. ,is result is also
confirmed by the maximum Lyapunov exponents reported
in Figure 5(b). Now the bifurcation diagram and the MLE of
the fractional map (8) are illustrated in Figure 7 for A �

0.05, B � 0 and C � 1. Similarly, the dynamic behavior of
the map (8) depends on the initial condition and the value of
μ. ,e computation of the MLE shows that the states of the
fractional map (8) go from chaotic to periodic with the
decrease of order μ. From both the Figures 6 and 7 it can be
deduced that the property of having coexisting attractors is
observed when the fractional order assumes small values. In
order to further investigate this property, we choose to plot
the phase portraits of the fractional map (8) for multiple
initial conditions and for the same parameters used in
Figure 6. ,e obtained results are plotted in Figure 8. When
μ � 0.9, a chaotic attractor is observed. When μ � 0.6, there
are two symmetric separate chaotic attractors and a chaotic
attractor in magenta color. On the other hand, four coex-
isting attractors are obtained when μ � 0.3, as depicted in
Figure 8(c). Suppose now that A � 0.05, B � 0, C � 1 and
μ � 0.3, then the corresponding phase diagram for the map
(8) is shown in Figure 9 using different initial conditions. In
particular, Figure 9 reveals the presence of four coexisting
chaotic attractors, i.e., the blue attractor for x0 � 0.1, the red
attractor for x0 � − 0.1, the green attractor for x0 � 2 and the
magenta attractor for x0 � − 2. Figure 9 confirms the rich
dynamics of the conceived fractional map, indicating that a
number of different coexisting chaotic attractors could be

found by taking other suitable values of the fractional order
as well as other proper initial conditions.

3.2. 0-1 Test. Another tool that can be used to study the
influence of the fractional order on the dynamic of a frac-
tional map is “0-1 test.” ,is test, proposed in [50] for
fractional-order systems, is able to check the presence of
chaos in a series of data that originates from a deterministic
system. For the fractional-order model, consider a set of data
x(n) where n � 1, . . . N. Using the approach in [50], we
transform the trajectories of the fractional-order map into
p − q plots. Generally, unbounded p − q trajectories imply
chaotic behavior, whereas bounded trajectories implies
regular behavior. Herein, we apply the 0 − 1 test method
directly to the solution xn that is obtained from the discrete
formula (9). Herein, we simulate the translation components
of the system (8) in the p − q plane. By taking A � 0.5, B �

0, C � 3 and by varying the value of μ, the results of the
application of the 0-1 test to the fractional map (8) are
reported in Figure 10. In particular, Figure 10(a) depicts the
Brownian–like trajectories for all initial conditions, indi-
cating that the suggested map is chaotic for μ � 0.9. On the
other hand, Figure 10(b) depicts the Brownian–like tra-
jectories for two different initial conditions, confirming the
coexistence of chaotic attractors for μ � 0.6. Finally, when
μ � 0.3 the coexistence of chaotic attractors and periodic
orbits is confirmed by the plot in Figure 10(c), which depicts
bounded–like trajectories for the initial state x0 � 0.1 and
Brownian–like trajectories for the initial state x0 � 2. It is
concluded that the 0-1 test proves to be a valuable tool for
checking the coexistence of different chaotic attractors as
well as the coexistence of periodic one in the proposed
fractional map (8).

3.3. Approximate Entropy. ,e approximate entropy (ApEn)
[51] is the measurement of the degree of complexity of a series
of data from multi-dimensional perspective. ,is method es-
timates the regularity by assigning a non-negative number,
where higher values indicate higher complexity. By applying
the technique in [52], we consider a set of points x(1), . . . ,

x(N) that are obtained from the discrete formula (9).,e value
of the approximate entropy depends on two important pa-
rameters, i.e.,m and r, where the input r is the similar tolerance
whereas m is the embedding dimension. Here, to calculate
ApEn values we set m � 2 and r � 0.2std(x) where std(x)

presents the standard deviation of the data x. ,ose values are
preferred values according to similar previous studies. We
reconstruct a subsequence of x such that X(i) � [x(i),

. . . , x(i + m − 1)], where m presents the points from x(i) to
x(i + m − 1). Let K be the number of x(i) such that the
maximum absolute difference of two vectors x(i) and X(j) is
lower or equal to the tolerance r. ,e relative frequency of x(i)

being similar to X(j) is given by

ϕm
(r) �

1
n − m − 1



n− m+1

i�1
logC

m
i (r). (11)
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,e ApEn is calculated as following

b8n: 8n+7 � de2bi mod ⌊1015 xn


⌋, 256  , (12)

where ϕm(r) is denoted to be

xn � x0 +
1
Γ(μ)



m

i�1

Γ(m − i + μ)

Γ(m − i + 1)

· A sin
C

xn− m+i− 1
  − xn− m+i− 1 + B ,

(13)

We apply the ApEn method to simulated complexity of
the fractional map (8) by varying the fractional order and
control parameter from 0 to 10. For each value of order μ, we
analyze a series of points of length 3500 with different values
of C. Figure 11 presents the 3D plots of the approximate
entropy for fractional map (8). It is observed that, the
fractional map (8) can have a higher complexity with rel-
atively larger parameters values C and fractional order μ;
which consist with the previous results. ,e analysis results
in Figure 11 indicate that the change of system parameter C

has little effect on the complexity. ,us, in real applications,

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15

−0.1

−0.05

0

0.05

0.1

0.15
A = 0.04

xn

x n
 +

 1

(a)

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
A = 0.2

xn
x n

 +
 1

(b)

Figure 5: Two coexisting chaotic attractors for A � 0.04 and μ � 0.2 (a); two coexisting periodic attractors for A � 0.2 and μ � 0.2 (b).
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Figure 6: Bifurcation and maximum LE of system (8) versus μ depicted in (a) and (b), respectively, for parameters A � 0.5, B � 0, C � 3,
and two symmetric initial conditions (x0 � 0.1 for the blue diagram and x0 � − 0.1 for the red diagram).
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Figure 8: Continued.

8 Complexity



−1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

xn

x n
 +

 1

(c)

Figure 8: ,e coexisting attractors of the fractional-order map (8) with parameters A � 0.5, B � 0, C � 3 and with the initial condition
x0 � − 0.1 for the red attractor and x0 � 0.1 for the blue attractor; (a) chaotic attractor for μ � 0.9, (b) three coexisting chaotic attractors for
μ � 0.6 with initial condition x0 � 10 for the magenta attractor; (c) four coexisting chaotic attractors for μ � 0.3 with initial condition
x0 � 10 for the magenta attractor and x0 � − 10 for the black attractor.
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Figure 10: 0-1 test of the fractional map (8) for system parameters A � 0.5, B � 0 and C � 3: (a) Brownian-like trajectories for μ � 0.9; (b)
Brownian-like trajectories for μ � 0.6 and for two different initial condition (red color for x0 � 10 and blue color for x0 � 0.1); (c) Brownian-
like trajectories for μ � 0.3 and initial condition x0 � 10 (in red), along with bounded like trajectories for x0 � 0.1 (in blue).
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we should be careful for the range of parameters and
fractional order μ.

4. Encryption of Electrophysiological Signals

In this section, an electrophysiological signal will be
encrypted using the proposed chaotic map. Here, the signal
that will be considered as a sample is a 10 second EEG
(electroencephalogram) recording (fp1) of a subject during
arithmetic tasks. More details on the other types of EEG
signals can be found in the PhysioBank database [53, 54].

4.1. Design a PRBG. ,e first step in the encryption scheme
is to design a chaotic pseudo-random bit generator. Since the
main computational drawback of fractional order systems is
their memory effect, the system will be implemented using a
finite memory. ,us, its finite form is given as

Mi � εi +
⌊105xi⌋
103

, i � 1, . . . , ℓ, (14)

wherem denotes thememory used. As one can see from (14),
when i � 1, . . . , m the fractional map states depends on the
past m variable, i.e, x1(1), . . . , x1(m). After some trial and
error, the memory is chosen as m � 50, which satisfyingly
models the dynamical behavior of the system, as can be seen
in Figure 12. Although the diagram is not identical to the one
of the fractional map shown in Figure 4, it accurately
showcases chaotic behavior in the range of around 0.2 to 0.8.
Implementing fractional systems using finite memory is a
standard approach in reducing computational cost and
avoiding overflow, and it is used in most microcontroller
implementations of fractional chaotic systems [41, 42, 55].

In order to take advantage of the fractional nature of the
proposed map, each individual term inside the finite sum
(14) is used in the bit generation. So in each iteration of the
map, the PRBG generates bits using the following rules:

εenc− bin � Mbin⊕B, (15)

where ⌊ · ⌋ denotes the floor operation. So in each iteration,
each individual term of the sum in (14), as well as the value
xn of the map are multiplied by 1015 and the integer part of
this product is takenmodulo 512.,e result of this operation
is then transformed to binary representation. Since the
outcome of the modulo is an integer from 0 to 511,
transforming it to binary generates nine bits per iteration.
,us, each of the terms bn,1, . . . , bn,51 corresponds to nine
bits. ,e resulting bitstream is taken by concatenating the
bits as

B � bn− 1,1, . . . ., bn− 1,51, bn,1, . . . ., bn,51, . . . . (16)

With the algorithm, there are 459 bits generated in each
iteration. So this approach brings an advantage over classic
techniques that generate only one bit per iteration, takes
advantage of the fractional nature of the map, and also
reduces bit generation speed, since fewer iterations of the
map are required to reach the required bitstream length.

As noted above, since the sum in (14) is limited from
i � 1 to i � n when n< 50, for n � 0 there are 9 bits gen-
erated, for n � 1 there are 18 bits, and so on, until n � 49
where 450 bits are generated. ,us, to reach a bitstream of
length N, there are N/459 + 9

49
i�0i/459 iterations

required.
To test the PRBG, a set of 100 · 106 bitstreams is gen-

erated and tested through the National Institute of Standards
and Technology (NIST) statistical test package SP 800-22
[56]. ,e test suite consists of 15 statistical tests that are used
to verify if a bit sequence is indistinguishable from a random
sequence. Each test returns a P value and if the value is
higher than a significance level, chosen as the default value
0.01 here, the test is successful. For a PRBG to be classified as
random, it should pass all 15 tests. ,is is verified from
Table 1.

4.2. Encryption of Electrophysiological Signal. After the ap-
propriate design of the PRBG, the encryption process is
presented. ,e process consists of two rounds, and a dif-
ferent chaotic map of the form (14) is used in each round,
each with parameters x0, A1, B1, C1 and y0, A2, B2, C2. In the
first round, the source signal is modulated by adding to it the
values of the first chaotic map, in order to mask its structure.
,en, the modulated signal is transformed into its binary
representation, and encrypted using the PRBG of the pre-
vious section, generated using the second chaotic map. ,e
encryption is performed using the bitwise XOR operator
between the information bitstream and the chaotic bit-
stream. ,e complete process is outlined in Algorithm 1.

,e transformation of the modulated signal into its
binary representation in Step 2 of Algorithm 1 is performed
as follows. ,e modulated signal takes values in the range
[− 127.999, 127.999]. In order to sustain a low run time
execution we chose to convert the sampled values by mixing
a fixed-point-format with a two’s complement representa-
tion. So each sample is split into its sign, integer and a
decimal parts. ,e first bit of the binary representation is
used to denote the sign. ,en, seven bits are used to rep-
resent the integer part and ten bits to represent the decimal
part. Hence, there are 18 bits overall for each sample,
resulting in a bitstream of length 18 × ℓ. ,is transformation
is outlined in Figure 13.

For the decryption process, the original EEG signal can
be reconstructed at the receiver end by following the reverse
procedure, that is, performing an XOR between the
encrypted binary signal and the same bitstream from the
PRBG, generated using the same parameter values, trans-
forming the result back to its decimal format, and then
performing the demodulation process, as described in Al-
gorithm 2.

Note that the only information that the receiver needs to
know in order to decrypt the signal is the parameter values
for the two chaotic maps used to modulate the signal and
generate the PRBG. ,ese parameters constitute the key
values of the encryption design. Since each chaotic map has
four parameters and one initial condition, there are overall
ten key values, x0, A1, B1, C1, μ1, y0, A2, B2, C2, μ2. Assuming
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Table 1: NIST test results (x0 � 0.1, A � 0.7, B � 0, C � 1, μ � 0.2, m � 50).

No. Test Chi-square P-value Rate
1 Frequency 0.971 699 100/100
2 BlockFrequency 0.437 274 100/100
3 CumulativeSums 0.213 309 100/100
4 Runs 0.494 392 96/100
5 LongestRun 0.319 084 99/100
6 Rank 0.275 709 99/100
7 FFT 0.366 918 99/100
8 NonOverlappingTemplate 0.554 420 100/100
9 OverlappingTemplate 0.897 763 99/100
10 Universal 0.897 763 100/100
11 ApproximateEntropy 0.455 937 98/100
12 RandomExcursions 0.031 497 63/64
13 RandomExcursionsVariant 0.834 308 61/64
14 Serial 0.051 942 99/100
15 LinearComplexity 0.657 933 99/100

Input: An EEC signal E of length ℓ. ,e key values of two chaotic maps of the form (14), x0, A1, B1, C1, μ1 and y0, A2, B2, C2, μ2.
Output: An encrypted signal Eenc of the same length.
Step 1. Generate ℓ values of the first chaotic map xi, i � 1, . . . , ℓ. Modulate the EEG signal to mask its structure, as
Mi � Ei + 105xi/103, i � 1, . . . , ℓ.

Step 2. Transform the modulated signal M into its binary representation Mbin of length 18 × ℓ.
Step 3. Generate a bitstreamB of length 16 × ℓ using the map yi as a basis for the PRBG of the previous section (15). Since 8 bits are
generated per iteration, the map yi needs to be iterated ⌈2.25 × ℓ⌉ times.
Step 4. Encrypt the information bitstream Mbin by combining it with the chaotic bistream as
Eenc− bin � Mbin⊕B.

Step 5. Transform the binary encrypted signal Eenc− bin to decimal form, to obtain the encrypted signal Eenc.

ALGORITHM 1: Chaotic Encryption of EEG signal.

20 26 25 24 23 22 21 20 29 28 27 26 25 24 23 22 21 20

Sign Integer part Decimal part

± XXX YYY.

Figure 13: Binary representation of the modulated samples using 18 bits.
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a 16-digit accuracy, an upper bound for the key space is
108·16 � 10128 ≈ (103)42.6 ≈ 2426. ,is is higher than the
bound of 2100 required to resist brute force attacks [57]. Note
though, that since the system is not chaotic for all parameter
values, the real key space is lower than 2426.

4.3. Microcontroller Implementation. ,e encryption and
decryption process was simulated in a microcontroller. For
this, an STM32F103 nucleo development board is used,
which incorporates a high-performance ARM M3 32-bit
RISC core operating at 72MHz, depicted at Figure 14.

Since an embedded system usually has low ram storage,
the modulated signal was saved at the flash memory of the
STM32F103RBwhich embeds an 128K Byte of flashmemory.

,e simulation results are shown in Figure 15, where the
original (plaintext), modulated, and encrypted signals are
shown. Clearly, there is visually no relation between these
signals, something that is verified in the next section,
through a series of measures. ,e signals are plotted in
Matlab, where the data are loaded from the txt files resulting
from the microcontroller simulation. ,e numerical simu-
lations for the encryption performed in Matlab yield similar
results and are thus omitted.

Note that the computation time for the complete pro-
cedure of modulating the signal, transforming it to binary
format and encrypting it, takes around 8.5 seconds. To
reduce computational load and increase speed, the terms
Γ(m − i + μ)/Γ(m − i + 1) where precomputed and saved in
the memory before execution begins. Additionally, further
experimentation could lead to reduction in the execution
time. For example, in the modulation step the fractional map
could be implemented using a shorter memory.

4.4. Encryption Performance. To test the performance of the
encryption algorithm, a series of tests are performed on the
original, modulated and encrypted signals. ,e results are
gathered on Table 2, for the simulation performed in Matlab
R2018b, as well as the microcontroller implementation. ,e
key values of the maps are x0 � 0.111, A1 � 0.7, B1 � 0,
C1 � 1, μ1 � 0.2 and y0 � 0.1, A2 � 0.7, B2 � 0, C2 � 1,
μ2 � 0.2.

Note that apart from the Approximate Entropy measure
that is computed for each individual signal, the rest of the
measures are computed in each case between the original

and modulated signal, and between the original and
encrypted signal, and shown in their respective columns.

In all cases, it can be seen that the measures for the
Matlab and microcontroller implementations are very close
to each other. ,is means that the microcontroller en-
cryption performs equally well compared to Matlab.

4.4.1. Histogram. Initially, the histogram of the original,
modulated and encrypted signals are plotted in Figure 16 for
the microcontroller simulation. An encrypted signal should
have a uniform histogram, so that no information on the
distribution of the signal’s values are revealed. Indeed it can
be seen that the histogram of the encrypted signal is much
more uniform compared to the original signal and modu-
lated ones, that have a shape closer to a normal distribution.
,e simulation performed in Matlab yields similar histo-
grams, so both simulations perform the same.

4.4.2. Structural Similarity Index (SSIM). ,e SSIM is a
measure of the structural similarity between two signals [29],
initially considered for images [58]. It is given by

SSIM �
2μxμy + S1  2δxy + S2 

μ2x + μ2y + S1  δ2x + δ2y + S2 
, (17)

where μx, μy the mean values of the original and encrypted
(or modulated) signals respectively, δ2x, δ2y their variances,
and δxy their cross-covariance. ,e parameters S1, S2 take
small values, to avoid unstable results when the denominator
is close to zero.

,e SSIM value is between [− 1, 1], with 1 for identical
signals, and 0 for signals with no similarity. So, the closest
the measure is to zero, the better the encryption. Indeed,
the SSIM between the original and modulated signal
performed in Matlab is equal to − 0.1160, and between the
original and encrypted signal is 0.001 6, which is indeed
very close to zero.

4.4.3. Log-Likelihood Ratio (LLR). ,e LLR gives an esti-
mation on the quality of encryption [29, 59–61]. It is based
on the assumption that the segment can be represented by a
p-th order all-pole linear predictive coding model

Input: An encrypted signal Eenc of length ℓ. ,e key values of two chaotic maps of the form (14), x0, A1, B1, C1 and y0, A2, B2, C2.
Output: A decrypted signal E of the same length.
Step 1. Transform the encrypted signal Eenc to its binary form, to obtain the encrypted bitstream Eenc− bin of length 18 × ℓ.
Step 2. Generate a bitstreamB of length 18 × ℓ using the map yi as a basis for the PRBG of the previous section (15). Since 8 bits are
generated per iteration, the map yi needs to be iterated ⌈2.25 × ℓ⌉ times.
Step 3. Decrypt the bitstream Eenc− bin by combining it with the chaotic bistream as.
Mbin � B⊕Eenc− bin

Step 4. Transform the modulated binary signal Mbin into its decimal representation M of length ℓ.
Step 5. Generate ℓ values of the chaotic map xi, i � 1, . . . , ℓ. Demodulate the signal M as to obtain the original signal E.

Ei � Mi − 105xi/103, i � 1, . . . , ℓ

ALGORITHM 2: Chaotic Decryption of EEG signal.
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Figure 14: STM32F103 nucleo board with a 32bit RISC processor.
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Figure 15: Original EEG signal, modulated signal, and encrypted signal.

Table 2: Performance measures of the encryption design.

Signals EEC
Matlab Microcontroller

Modulated Encrypted Modulated Encrypted
SSIM — − 0.1160 0.001 6 − 0.0894 0.006 8
LLR — 1.995 5 1.993 7 1.973 3 2.045 6
SNR — − 9.7873 − 14.6874 − 9.8402 − 14.6757
rxy — 0.307 6 − 0.0126 0.303 7 0.021 0
SD — 39.494 9 44.053 6 39.6521 43.864 9
ApEn 0.497 0 1.577 4 2.270 2 1.579 8 2.228 2
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xi � 

p

m�1
am xi− m + Gxui, (18)

where xi is the ith signal sample, am, m � 1, . . . , p the co-
efficients of the all-pole filter, Gx the gain of the filter and ui

an appropriate excitation input to the signal.,e LLR is then
defined as:

LLR � log
axRya

T
x

ayRza
T
y

⎛⎝ ⎞⎠




, (19)

where ax the vector of Linear Prediction Coefficients
(LPCs) [1, a1, a2, . . . , am] of the original signal, az the LPCs
of the encrypted (or modulated) signal, and Ry the au-
tocorrelation matrix of the encrypted (or modulated)
signal. A higher LLR value indicates a good encryption.
,e LLR between the original and modulated signal is
1.995 5 and between the original and encrypted signals is
1.993 7. ,e values are both high, which indicates a good
encryption.

4.4.4. Signal to Noise Ratio (SNR). ,e SNR is defined as
[29, 60]:

SNR � 10 log10


N
i�1 x

2
i


N
i�1 xi − yi( 

2, (20)

where x, y the encrypted and decrypted (or modulated)
signals respectively, and N the number of samples. A low
SNR indicates a good encryption. ,e SNR between the
original and modulated signal is − 9.7873, while the SNR
between the original and encrypted signal is − 14.6874. Both
values are very low and indicate a good encryption.

4.4.5. Correlation Coefficient. ,e correlation coefficient
[29] between the original and encrypted (or modulated)
signals is computed as:

rxy �
cv(x, y)

��

δ2x
 ��

δ2y
 , (21)

where cv(x, y) the covariance of the two signals and δ2 their
variances. For uncorrelated signals, the correlation coeffi-
cient should be close to zero. ,e correlation coefficient
between original and modulated signal is 0.307 6, while the
coefficient between original and encrypted is − 0.0126.

4.4.6. Spectral Distortion (SD). ,e SD measures the dif-
ference between the spectrum of the original and encrypted
(or modulated) signals [29, 60–62]. It is computed as:

SD �
1

M


M− 1

i�0
Vx,i − Vy,i



, (22)

where Vx,i, Vy,i the spectrum of the original and encrypted
(or modulated) signal in decibel at instance i. A higher value
of SD indicates a better encryption. ,e SD between the
original and moculated signals is 39.494 9, and the SD be-
tween the original and encrypted signals is 44.053 6, so both
values are high.

4.4.7. Approximate Entropy (ApEn). ,e ApEn is applied to
measure the complexity of the serie of data [51]. A series with
a higher ApEn is considered as being more complex, so for
the proposed scheme, the encrypted signal should have a
higher value of ApEn compared to the original signal. In-
deed the ApEn of the original signal is 0.497 0, for the
modulated signal is 1.577 4, and for the encrypted signal is
2.270 2, so the encrypted signal has the highest ApEn.
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Figure 16: Histograms of the encrypted, modulated, and encrypted signals.
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Overall, each of the measures computed indicates a good
encryption performance. Moreover, the design can be ac-
curately replicated on a microcontroller board.

5. Conclusions

Referring to fractional-order discrete-time systems with
special features, this paper has introduced the first ex-
ample of a fractional map with infinite number of equi-
libria in a bounded domain. ,e conceived map has also
shown coexistence of different types of periodic and
chaotic attractors. Dynamics and complexity of the
conceived map have been analyzed in details via bifur-
cation diagrams, maximum Lyapunov exponents, 0-1 test
and approximate entropy. Compared with the integer
order map, the fractional map has more complexity when
the fractional order values is smaller. ,at is the integer-
order map do not have the property of coexisting
attractors, while fractional map have it. Afterwards, the
proposed map was applied to the problem of encrypting
an electrophysiological signal. A PRBG was designed
based on the values of the chaotic map, and two rounds of
modulation and encryption were performed on the signal.
A set of measures were then computed for the original and
encrypted signals to verify the performance of the en-
cryption. ,e design was realised in a microcontroller
board, so to increase speed, the fractional map was
implemented with finite memory. Future extensions of
this work can consider modifications of the encryption
design, for example different methods to modulate the
signal.

Also, in order to improve execution time, the use of a
higher frequency CPU combined with hardware accelera-
tors, such as CORDIC (COordinate Rotation DIgital
Computer), will allow faster sinusoidal calculations and
floating point arithmetic operations.

Finally, FPGA based realizations of the encryption de-
sign are among the future goals set by the authors, since they
have been proven an efficient low cost option for imple-
menting fractional [45] and integer order maps [63].
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