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Multisource information systems and multigranulation intuitionistic fuzzy rough sets are important extended types of Pawlak’s
classical rough set model. Multigranulation intuitionistic fuzzy rough sets have been investigated in depth in recent years.
However, few studies have considered this combination of multisource information systems and intuitionistic fuzzy rough sets. In
this paper, we give the uncertainty measure for multisource intuitionistic fuzzy information system. Against the background of
multisource intuitionistic fuzzy information system, each information source is regarded as a granularity level. Considering the
different importance of information sources, we assign different weights to them. Firstly, the paper proposes an optimal source
selection method. Secondly, we study the weighted generalized, weighted optimistic, and weighted pessimistic multigranularity
intuitionistic fuzzy rough set models and uncertainty measurement methods in the multisource intuitionistic fuzzy information
system, and we further study the relationship between the three models and related properties. Finally, an example is given to
verify the validity of the models and methods.

1. Introduction

Rough set theory [1] was proposed by Polish mathematician
Pawlak in 1982. It is an effective mathematical tool to analyze
and process inaccurate data and uncertain information.
Rough set theory has received more and more attention in
recent years. It is widely used in many fields such as natural
science, social science, and engineering technology [2–11].
Uncertainty measurement [12, 13] is one of the important
research contents in rough set theory. It can measure the
dependency and similarity between attributes and provide
an effective measurement tool for attribute reduction and
cluster analysis [14]. Traditional uncertainty measurement
considers single-source information system. With the ad-
vent of the era of big data, it is necessary to study uncertainty
measurement methods in multisource intuitionistic fuzzy
information system [15].

In current study, by extending the equivalence rela-
tionship to a general binary relationship, Qian et al. extended
the single-granularity rough set model to multigranularity

structure [16, 17]. By combining fuzzy set theory and rough
set theory, a fuzzy rough set model [18] and rough fuzzy set
model [19, 20] are obtained. Literature [21] extends the fuzzy
set theory to the intuitionistic fuzzy set theory and extends
the relationship between elements and sets from member-
ship degree to nonmembership degree and hesitation degree.
.erefore, the intuitionistic fuzzy rough set theory is a very
effective mathematical tool when analyzing and processing
inaccurate, incomplete, and other rough information, and
the result accuracy is significantly improved. Literature
[22, 23] combined rough set theory with intuitionistic fuzzy
set theory and established an intuitionistic fuzzy rough set
model. Literature [24] investigated the upper approximation
reduction problem of intuitionistic fuzzy information sys-
tem based on dominant relationship. Literature [25, 26]
extended the single-granularity intuitionistic fuzzy rough set
model to the multigranularity intuitionistic fuzzy rough set
model and presented the optimistic multigranularity and
pessimistic multigranularity intuitionistic fuzzy rough set
models under the dominant relationship. Literature [27]
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proposes the intuitionistic fuzzy soft set, which is an effective
tool for solving multiple attribute decision-making with
intuitionistic fuzzy information. Literature [28] proposes the
hesitant fuzzy sets and studies their relationship with
intuitionistic fuzzy sets.

In the research of multigranularity intuitionistic fuzzy
rough set model, if all granularity levels are considered
equally important, optimistic multigranularity only requires
one granularity knowledge and target concept to meet in-
clusion relation, while pessimistic multigranularity requires
all granularity knowledge and target cocept to meet inclu-
sion relation, ultimately leading to inaccurate decision-
making results. .e importance of granulation is usually
different for decision-making in real life. Taking various
factors into account, some granularity is very important, so
we give it a larger weight, but some granularity is not im-
portant, so we give it a smaller weight. Considering the
importance of different granularity levels, literature [29]
proposed a weighted multigranularity intuitionistic fuzzy
rough set model.

Now, in our real life, we no longer face a single-source
information system, but a multisource information system.
Multisource information systems [30] are used to represent
information that comes from multiple sources. Literature
[31] proposed a fuzzy multigranulation decision-theoretic
rough set model in multisource fuzzy information systems.
Literature [32] investigated the attribute reduction in
multisource decision systems. Literature [33] combined
rough set model and multisource decision systems and
established a decision-theoretic rough set model of multi-
source decision systems. Literature [34] built the informa-
tion source selection criteria and proposed some principles
of information fusion. Literature [35–42] proposed infor-
mation fusion methods of multisource information system.
In this paper, we treat each single information system as a
granular structure. As the number of information sources
increases, a large amount of data is unreliable. .erefore, we
propose a corresponding algorithm to select reliable in-
formation sources and one that can greatly improve the
efficiency of information processing. Up to now, few
scholars have combined the rough set model with the
multisource intuitionistic fuzzy information system. Dif-
ferent weights are given to the granularity; the weighted
multigranularity intuitionistic fuzzy rough set models and
the uncertainty measurement methods for multisource
intuitionistic fuzzy information system are proposed. .is is
the purpose of this article.

.e rest of this paper is organized as follows. In Section
2, we mainly review the relevant concepts and properties of
intuitionistic fuzzy rough sets, multigranulation intuition-
istic fuzzy rough sets, and multisource intuitionistic fuzzy
information system. In Section 3, we first study the optimal
source selection of multisource intuitionistic fuzzy infor-
mation system. Further, the weighted multigranulation
intuitionistic fuzzy rough set model and its related prop-
erties of multisource intuitionistic fuzzy information system
are researched. In Section 4, we give the uncertainty mea-
surement methods for the weighted multigranulation
intuitionistic fuzzy rough set model of multisource

intuitionistic fuzzy information system. At the same time, we
verify the effectiveness of the proposed models and methods
through a specific example. Section 5 uses a numerical
experiment to verify the effectiveness of the proposed
methods. In Section 6, we present the conclusion and the
future work.

2. Preliminaries

.is section mainly reviews related concepts and properties
of intuitionistic fuzzy rough set models, multigranulation
intuitionistic fuzzy rough set models, and multisource
intuitionistic fuzzy information system.

2.1. Intuitionistic Fuzzy Rough Set Model

Definition 1 (see [21]): Given the universe of discourse U, an
intuitionistic fuzzy rough set A on U is defined by
A � 〈x, μA(x), ]A(x)〉|x ∈ U􏼈 􏼉, where the functions
μA(x): μ⟶ [0, 1] and vA(x): v⟶ [0, 1] satisfy
0≤ μA(x) + ]A(x)≤ 1 for all x ∈ U. μA(x) and vA(x) are
called the degrees of membership and nonmembership of
element x ∈ U to A, respectively. .e family of all intui-
tionistic fuzzy sets in U is denoted by IF(U). When
μA(x) + ]A(x) � 1, A degenerates into a fuzzy set.

Definition 2 (see [21]): Let A � 〈x, μA(x), ]A(x)〉􏼈

|x ∈ U} ∈ IF(U), B � 〈x, μB(x), ]B(x)〉|x ∈ U􏼈 􏼉 ∈ IF(U);
then:

(1) .e supplementary set of A ∼A � 〈x, vA(x),􏼈

μA(x)〉|x ∈ U}.
(2) A � B⇔μA(x) � μB(x), ]A(x) � ]B(x),∀x ∈ U.
(3) A⊆B⇔ μA(x) � μB(x), ]A(x) � ]B(x),∀x ∈ U.
(4) A∩B � 〈x, μA(x)∧μB(x), ]A(x)∨]B(x)〉|x ∈ U􏼈 􏼉.
(5) A∪B � 〈x, μA(x)∧μB(x), ]A(x)∨]B(x)〉|x ∈ U􏼈 􏼉.
(6) A − B � A∩ (∼B).
(7) A△B � (A∩Bc)∪ (B∩Ac).

Definition 3 (see [21]): Let IFIS � U, AT, V, f􏼈 􏼉 be an
intuitionistic fuzzy information system, where
U � x1, x2 . . . xn􏼈 􏼉 is a nonempty finite set of objects called
the universe of discourse; AT � a1, a2 . . . an􏼈 􏼉 is a nonempty
finite attribute set; V � ∪ a∈ATVa is the attribute value set;
f: U × AT⟶ V is the information function, A⊆AT; a
binary dominant relation RA is defined as follows:

RA � xi, xj􏼐 􏼑 ∈ U × U|f xi, a( 􏼁≤f xj, a􏼐 􏼑,∀a ∈ A􏽮 􏽯

� xi, xj􏼐 􏼑 ∈ U × U|μa xi( 􏼁≤ μa xj􏼐 􏼑∧]a xi( 􏼁≥ ]a xj􏼐 􏼑,∀a ∈ A􏽮 􏽯.

(1)

Obviously, this binary dominant relation satisfies re-
flexivity, antisymmetry, and transitivity, and RA � ∩Ra∈A.
Based on the above dominant relation, the dominant class
RA(xi) definition of object xi can be obtained as follows:
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RA xi( 􏼁 � xj ∈ U: f xi, a( 􏼁≤f xj, a􏼐 􏼑,∀a ∈ A􏽮 􏽯. (2)

Definition 4 (see [22]): Let IFIS � U, AT, V, f􏼈 􏼉 be an
intuitionistic fuzzy information system; for any
X⊆U, A⊆AT, the lower approximation and upper approx-
imation of X for RA are defined as follows:

RA(X) � x ∈ U | RA xi( 􏼁⊆X􏼈 􏼉;

RA(X) � x ∈ U | RA xi( 􏼁∩X≠∅􏼈 􏼉.
(3)

By definition, RA (X) consists of all objects that are
definitely contained in the set X. RA(X) consists of all
objects that are possibly contained in the set X. If
RA (X) � RA(X), then X is the exact set of RA; otherwise, it
is the rough set about RA..e positive, negative, and
boundary regions of X can be defined as follows:

POSRA
(X) � RA (X),

NEGRA
(X) � u − RA(X),

BNDRA
(X) � RA(X) − RA (X).

(4)

Definition 5 (see [22]): Let IFIS � U, AT, V, f􏼈 􏼉 be an
intuitionistic fuzzy information system; for any
X⊆U, A⊆AT, the approximate accuracy and the roughness
of the target set X are defined as follows:

α RA, X( 􏼁 �
RA (X)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

RA(X)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
;

ρ RA, X( 􏼁 � 1− �
RA (X)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

RA(X)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
,

(5)

when | RA (X)| � 0, α(RA, X) � 0, ρ(RA, X) � 1.

Definition 6 (see [23]): Let A � 〈x, μA(x)〉|x ∈ U􏼈 􏼉 be a
fuzzy sets on universe U; the nonmembership degree of A is
defined as follows:

]A(x) �
0, μA(x)> 0.5,

0.5, μA(x)≤ 0.5.
􏼨 (6)

.en, 〈x, μA(x), ]A(x)〉|x ∈ U􏼈 􏼉 is the correspondence
intuitionistic fuzzy sets of the fuzzy set A.

2.2. Multigranulation Intuitionistic Fuzzy Rough Set Model.
Multigranulation rough set model was first proposed by
Qian et al. It is an extension of the classical rough set theory.

In this subsection, the single-granulation intuitionistic fuzzy
rough set is extended to the multigranulation intuitionistic
fuzzy rough set model under multiple dominant relations.
Generalized multigranulation intuitionistic fuzzy rough set
is the generalization of optimistic multigranulation intui-
tionistic fuzzy rough set and pessimistic multigranulation
intuitionistic fuzzy rough set.

Given the definition of the support characteristic
function, we use this function to complete the object
selection.

Definition 7 (see [26]): Let IFIS � U, AT, V, f􏼈 􏼉 be an
intuitionistic fuzzy information system, Ai⊆AT,
i � 1, 2, . . . m(m≤ 2|AT|); for any X⊆U, the support char-
acteristic function of x for X is denoted as

S
Ai

X (x) �
1, RAi

(x)⊆X,

0, else.
􏼨 (7)

.e support characteristic function is used to describe
the inclusion relation between dominance class RAi

(x) and
concept X, Which indicates whether object x accurately
supports X by Ai, or whether object x has a positive de-
scription of X by Ai.

Definition 8 (see [26]): Let IFIS � U, AT, V, f􏼈 􏼉 be an
intuitionistic fuzzy information system, Ai⊆AT,
i � 1, 2, . . . m (m≤ 2|AT|); S

Ai

X (x) is the characteristic func-
tion of x for X. Given information level β ∈ (0.5, 1], for any
X⊆U, the generalized lower and upper approximation of X

are defined as follows:

GM 􏽐
m

i�1Ai

(X)β � x ∈ U|
􏽐

m
i�1S

Ai

X (x)

m
≥ β􏼨 􏼩

GM 􏽐
m

i�1Ai

(X)β � x ∈ U|
􏽐

m
i�11 − S

Ai

Xc (x)

m
> 1 − β􏼨 􏼩.

(8)

IfGM 􏽐
m

I�1 Ai
(X)β � GM􏽐

m

I�1 Ai
(X)β, then the target setX

is generalized and definable; otherwise, it is generalized and
rough. (GM 􏽐

m

I�1 Ai
(X)β � GM􏽐

m

I�1 Ai
(X)β) is called the

generalized multigranulation intuitionistic fuzzy rough set
model (GMIFRS).

Definition 9 (see [26]): Let IFIS � U, AT, V, f􏼈 􏼉 be an
intuitionistic fuzzy information system, Ai⊆AT,
i � 1, 2, . . . m (m≤ 2|AT|); SAi

X (x) is the support characteristic
function of x for X; for any X⊆U, the pessimistic lower and
upper approximation of X are defined as follows:
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PM 􏽐
m
i�1 Ai

(X) � x ∈ U|∧mi�1 RAi
(x)⊆X􏼐 􏼑􏽮 􏽯 � x ∈ U|

􏽐
m
i�1 S

Ai

X (x)

m
≥ 1􏼨 􏼩,

PM 􏽐
m

i�1Ai

(X) �� x ∈ U|∨mi�1 RAi
(x)∩X≠∅􏼐 􏼑􏽮 􏽯 � x ∈ U|

􏽐
m
i�1 1 − S

Ai

Xc (x)􏼐 􏼑

m
> 0

⎧⎨

⎩

⎫⎬

⎭,

(9)

where “∨” denotes “or” and “∧” denotes “and.”
If PM

􏽐
M

I�1 Ai

(X) � PM
􏽐

M

I�1 Ai

(X), then the target set X is
pessimistic and definable; otherwise, X is pessimistic and
rough. (PM

􏽐
M

I�1 Ai

(X) � PM
􏽐

M

I�1 Ai

(X)) is called the pessi-

mistic multigranulation intuitionistic fuzzy rough set model
(PMIFRS).

Definition 10 (see [26]): Let IFIS � U, AT, V, f􏼈 􏼉 be an
intuitionistic fuzzy information system, Ai⊆AT,
i � 1, 2, . . . m (m≤ 2|AT|); SAi

X (x) is the support characteristic
function of x for X; for any X⊆U, the optimistic lower and
upper approximation of X are defined as follows:

OM 􏽐
m
i�1 Ai

(X) � x ∈ U|∧mi�1 RAi
(x)⊆X􏼐 􏼑􏽮 􏽯 � x ∈ U|

􏽐
m
i�1 S

Ai

X (x)

m
> 0􏼨 􏼩,

OM􏽐
m

i�1Ai

(X) �� x ∈ U|∨mi�1 RAi
(x)∩X≠∅􏼐 􏼑􏽮 􏽯 � x ∈ U|

􏽐
m
i�1 1 − S

Ai

Xc (x)􏼐 􏼑

m
> 1

⎧⎨

⎩

⎫⎬

⎭,

(10)

where “∨” denotes “or” and “∧” denotes “and.”
If OM

􏽐
M

I�1 Ai

(X) � OM
􏽐

M

I�1 Ai

(X), then the target set X

is optimistic and definable; otherwise, X is optimistic and
rough. (OM

􏽐
M

I�1 Ai

(X) � OM
􏽐

M

I�1 Ai

(X)) is called the opti-

mistic multigranulation intuitionistic fuzzy rough set model
(OMIFRS).

2.3. Attribute Reduction of Intuitionistic Fuzzy Information
System Based on Dominant Relation. In this subsection, we
define the attribute importance of intuitionistic fuzzy
information system based on the dominant relation. We
also give the attribute reduction algorithm of intuition-
istic fuzzy information system based on knowledge rough
entropy.

Definition 11 (see [9]): Let IFIS � U, AT, V, f􏼈 􏼉 be an
intuitionistic fuzzy information system, A⊆AT,
U/RA � RA(xi)|xi ∈ U􏼈 􏼉; RA is a binary dominant relation;
the rough entropy of A is defined as

Er(A) � 􏽘

|U|

i�1

RA xi( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

|U|
log2 RA xi( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (11)

It is obvious that there are minimum and maximum
values of the rough entropy. When RA is the finest classi-
fication, the rough entropy of A has a minimum value of 0; if
RA is the coarsest classification, the rough entropy of A has a
maximum value of |U|log2|U|.

Each information system has many attributes, but some
of these are redundant. To measure the significance of a
single attribute, [3, 4] give the concepts of relative impor-
tance and absolute importance of attribute.

Definition 12 Let IFIS � U, AT, V, f􏼈 􏼉 be an intuitionistic
fuzzy information system, A⊆AT; for any a ∈ A, for any
b ∈ (AT − A), the relative importance and absolute im-
portance of attribute a in attribute set A is defined as

sigin(a, A) � Er(A − a{ }) − Er(A);

sigin(b, A) � Er(A) − Er(A∪ b{ }).
(12)

According to this definition, the following properties are
established:

(1) 0≤ sigin(a, A)≤ log2|U|.
(2) Attribute a is necessary ⇔sigin(a, A)> 0.
(3) .e attribute core of A is core(A) � a ∈{

A|sigin(a, A)> 0}.

Definition 13 Let IFIS � U, AT, V, f􏼈 􏼉 be an intuitionistic
fuzzy information system, A⊆AT; if Er(A) � Er(AT), for
any a ∈ A and Er(A− a{ }) ≠ErAT, A is the attribute reduction
of intuitionistic fuzzy information system based on domi-
nance relation.

Since the attribute core is a subset of attribute reduction,
in the heuristic reduction process starting from the attribute
core, we often add attributes to attribute core through a
measurement method to obtain attribute reduction. Next, an
attribute reduction algorithm for intuitionistic fuzzy in-
formation system based on knowledge rough entropy is
given.

Example 1. Table 1 shows an intuitionistic fuzzy informa-
tion system IFIS � U, AT, V, f􏼈 􏼉, where the universe U �

x1, x2, x3, x4, x5, x6􏼈 􏼉 and attribute set AT � a1, a2, a3, a4􏼈 􏼉.
We use Algorithm 1 to calculate the minimum attribute
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reduction of the intuitionistic fuzzy information system
given in Table 1.

From this table, it is easy to calculate the granular
structure:

U/AT � x1, x5􏼈 􏼉, x1, x2, x3,􏼈􏼈 x5, x6}, x1, x3, x5, x6􏼈 􏼉, x1,􏼈

x2, x3, x4, x5, x6}, x5􏼈 􏼉, x5, x6􏼈 􏼉}.
According to Definition 11, the rough entropy of AT is

as follows:
Er(AT) � 2/6log22 + 5/6log25 + 4/6log24 + 6/ 6log26+

1/6log21 + 2/6log22 ≈ 6.520.
After calculating the core of attribute set AT,
U/(AT − a1􏼈 􏼉) � U/(AT − a2􏼈 􏼉) � U/(AT− a3􏼈 􏼉) � U/

AT, U/(AT − a4􏼈 􏼉) � x1, x5􏼈 􏼉, x1, x2, x3, x5,􏼈􏼈 x6}, x1, x3,􏼈

x5, x6}, x1, x2, x3, x4, x5, x6􏼈 􏼉, x5􏼈 􏼉, x5, x6􏼈 􏼉}.

Hence, Er(AT − a1􏼈 􏼉) � Er(AT − a2􏼈 􏼉) � Er(AT−

a3􏼈 􏼉) � Er(AT) ≈ 6.520, Er(AT − a4) � 2/6log22 + 5/
6log25 + 4/6log24 + 6/6log26 + 1/ 6log21 + 2/6log22 ≈ 7.122.

sigin(a1, AT) � sigin(a2, AT) � sigin(a3, AT) � 0,
sigin(a4, AT) � 0.602> 0.

Accordingly, core(AT) � a4􏼈 􏼉. Let A0 � a4􏼈 􏼉.
U/( a4􏼈 􏼉) � x1, x5􏼈 􏼉, x1, x2, x3,􏼈􏼈 x5, x6}, x1, x3, x5, x6􏼈 􏼉,

x1, x2, x3, x4, x5, x6􏼈 􏼉}, x5􏼈 􏼉, x1, x3, x5, x6􏼈 􏼉􏼈 􏼉.
.erefore, Er( a4􏼈 􏼉) ≈ 9.170, Er( a4􏼈 􏼉) ≈ Er(AT).

A/A0 � a1, a2, a3􏼈 􏼉; for any ai ∈ A/A0(i � 1, 2, 3), we
calculate Er(A0 ∪ ai􏼈 􏼉) as follows:

Er(A0 ∪ a1􏼈 􏼉) � Er( a1, a4􏼈 􏼉) ≈ 6.520,
Er(A0 ∪ a2􏼈 􏼉) � Er( a2, a4􏼈 􏼉) ≈ 7.629,
Er(A0 ∪ a3􏼈 􏼉) � Er( a3, a4􏼈 􏼉) ≈ 6.520.
.us, Er(A0 ∪ a1􏼈 􏼉) � Er(A0 ∪ a3􏼈 􏼉)<Er(A0 ∪ a2􏼈 􏼉).
.en, let A0 � a1, a4􏼈 􏼉 or A0 � a3, a4􏼈 􏼉.
Similarly, by calculation, we know that

Er( a1, a4􏼈 􏼉) � Er(AT), Er( a3, a4􏼈 􏼉) � Er(AT).
.erefore, the minimal attribute reduction of AT is

Red(AT) � a1, a4􏼈 􏼉 or a3, a4􏼈 􏼉.

2.4. Multisource Intuitionistic Fuzzy Information System
(MSIFIS). In this subsection, we introduce multisource
intuitionistic fuzzy information systems. When a person
obtains information about a group of objects from dif-
ferent sources, each source can be regarded as a classical
information system, which is an attribute with some
intuitionistic fuzzy attribute values. .e
information system is called multisource intuitionistic
fuzzy information system (MSIFIS). A MSIFIS is shown in
Figure 1.

Input: IFIS � U, AT, V, f􏼈 􏼉, AT � a1, a2, . . . , an􏼈 􏼉.
Output: .e minimum attribute reduction Red(AT).
(1) begin
(2) set core(AT)←∅; Red(AT)←∅; A0←∅;
(3) for a ∈ AT do
(4) sigin(a, A) � Er(AT − a{ }) − Er(AT);
(5) if sigin(a, A)> 0 then
(6) core(AT) � core(AT)∪ a{ };
(7) end
(8) end
(9) set A0←core(AT)

(10) while Er(A0)≠Er(AT) do
(11) for a∗ ∈ AT/A0
(12) sigout(a∗, A0) � Er(A0) − Er(A0 ∪ a∗);
(13) a∗∗ � max sigout(a∗, A0)􏼈 􏼉;
(14) set A1←a∗∗

(15) end
(16) set A0←A0 ∪A1
(17) end

return: Red(AT) � A0
(18) end

ALGORITHM 1: .e minimum attribute reduction of intuitionistic fuzzy information system.

Table 1: Intuitionistic fuzzy information system.

U a1 a2 a3 a4

x1 (0.3, 0.5) (0.6, 0.4) (0.5, 0.2) (0.7, 0.1)
x2 (0.2, 0.7) (0.1, 0.8) (0.4, 0.5) (0.1, 0.8)
x3 (0.2, 0.7) (0.1, 0.8) (0.4, 0.5) (0.7, 0.1)
x4 (0.1, 0.8) (0.1, 0.8) (0.2, 0.7) (0.1, 0.8)
x5 (0.9, 0.1) (0.8, 0.1) (0.8, 0.1) (0.9, 0.0)
x6 (0.4, 0.6) (0.7, 0.3) (0.6, 0.3) (0.7, 0.1)
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.is paper mainly discusses the case which shares the
same structure. .at is, the same object, attributes, and the
value of the object’s attributes have the same digital char-
acteristics under different information sources.

Definition 14 (see [30]): Let MSIFIS � IFISi|IFISi �􏼈

(U, Ai, Vi, fi)} (i � 1, 2, . . . , n) be a multisource intuition-
istic fuzzy information system, where:

(1) U is a set of nonempty finite objects called the
universe.

(2) Ai is a finite nonempty set of the attributes of each
subsystem.

(3) Vi � (Va)a∈Ai
􏽮 􏽯, Va is the value range of attribute a.

(4) fi represents the corresponding relation between the
object and the feature under the information source
i.

Let MSIFDIS � IFDIS1, IFDIS2, . . . , IFDISn􏼈 􏼉 be a
multisource intuitionistic fuzzy decision information sys-
tem, where IFDISi � U, Ai ∪D, Vi, fi􏼈 􏼉 (i≤ n) and D is
the decision attribute.

3. Weighted Multigranulation Intuitionistic
Fuzzy Rough Set Model for MSIFIS

In the theory of multigranulation intuitionistic fuzzy rough
set, optimistic multigranulation only requires the existence
of the granular knowledge and the target concept to satisfy
the inclusion relation; the requirements are too loose for
approximate characterization. However, the pessimistic
multigranularity requires that the knowledge granule and
the target concept satisfy the inclusion relation at all
granularity spaces; the requirements are too strict for ap-
proximate characterization. .ese multigranularity models
treat each granularity space equally.

However, in practical applications, considering the ap-
plication background and user preferences, the granularity

spaces are not equally important. .erefore, in this section,
we study multigranularity intuitionistic fuzzy rough set with
weights in multisource intuitionistic fuzzy information
system.

3.1.OptimalSourceSelection forMSIFIS. MSIFISs are used to
express information from multiple sources. As the number
of information sources increases, the selection of reliable
information sources is a key issue in the field of information
technology research. To characterize the effectiveness of an
information source, we define the two source quality metrics
of the internal-confidence degree and external-confidence
degree.

Definition 15. Let MSIFIS � IFISi|IFISi � (U, Ai, Vi, fi)􏼈 􏼉

(i � 1, 2, . . . , n) be a multisource intuitionistic fuzzy infor-
mation system. For each single information source
IFISi ∈ MSIFIS, let Red(ATi) be the reduction of IFISi. .e
internal-confidence degree of IFISi can be defined as
follows:

IC IFISi( 􏼁 �
Red Ai( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

Ai

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

. (13)

From the above definition, the following is obvious:

(1) IC(IFISi) is the ratio of the cardinalities of
|Red(ATi)| and |ATi|, and 0≤ IC(IFISi)≤ 1.

(2) If IC(IFISi)> 0.5, the majority of the attributes are
useful and the source is reliable. In practical appli-
cations, different thresholds IC(IFISi)> α can be
defined in different fields according to the specific
requirements.

Definition 16. Let MSIFIS � IFISi|IFISi � (U, Ai, Vi, fi)􏼈 􏼉

(i � 1, 2, . . . , n) be a multisource intuitionistic fuzzy infor-
mation system; ∀IFISi, IFISj ∈ MSIFIS, the difference be-
tween them can be defined as follows:

D IFISi, IFISj􏼐 􏼑 � 􏽘

|U|

k�1
RAi

xk( 􏼁∪RAj
xk( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − RAi
xk( 􏼁∩RAj

xk( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓,

(14)

where RATi
(xk) is the dominant class of xk with respect to

RAi
.
According to this definition, the following is obvious:

(1) ∀IFISi, IFISj ∈ MSIFIS, D(IFISi, IFISj)≥ 0.
(2) ∀IFISi, IFISj ∈ MSIFIS,

D(IFISi, IFISj) � D(IFISj, IFISi).
(3) When the single information sources IFISi and

IFISj have the same granular structure, the differ-
ence between IFISi and IFISj has a minimum of 0. If
the single information source IFISi has the finest
granular structure and IFISj has the coarsest
structure, then the difference between IFISi and
IFISj reaches a maximum of
|U|(|U| − 1) � |U|2 − |U|.

Xn

Xi

X2

X1
a1 a2 aj am

IFIS1

IFIS2

IFISi

IFISs

Figure 1: A multisource intuitionistic fuzzy information system.
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Definition 17. Let MSIFIS � IFISi|IFISi � (U, Ai, Vi, fi)􏼈 􏼉

(i � 1, 2, . . . , n) be a multisource intuitionistic fuzzy infor-
mation system; ∀IFISi, IFISj ∈ MSIFIS, the external cor-
relation between IFISi and IFISj can be defined as

ec IFISi, IFISj􏼐 􏼑 � 1 −
D IFISi, IFISj􏼐 􏼑

|U|
2

− |U|
, (15)

where D(IFISi, IFISj) is the difference between IFISi and
IFISj.

From this definition, the following is obvious:
To clarify the relationship between the external-confi-

dence degrees of IFISi and IFISj, we can construct an
external-confidence degree matrix MEC as follows:

MEC �

e11 e12 · · · e1n

e21 e22 · · · e2n

· · · · · · · · · · · ·

en1 en2 · · · enn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (16)

where eij � ec(IFISi, IFISj).

Definition 18. Let MSIFIS � IFISi|IFISi � (U, Ai, Vi, fi)􏼈 􏼉

(i � 1, 2, . . . , n) be a multisource intuitionistic fuzzy infor-
mation system; ∀IFISi, IFISj ∈ MSIFIS, the external-con-
fidence degree between IFISi and IFISj can be defined as

EC IFISi( 􏼁 �
1
n

􏽘
n

j�1
1 −

D IFISi, IFISj􏼐 􏼑

|U|
2

− |U|
⎛⎝ ⎞⎠ �

1
n

􏽘
n

j�1
ec IFISi, IFISj􏼐 􏼑.

(17)

From this definition, the following is obvious:

(1) For any IFISi ∈MS, 0≤EC(IFISi)≤ 1.
(2) Similar to the internal-confidence degree, different

thresholds EC(IFISi)> β may be applicable in dif-
ferent fields according to specific requirements.

Definition 19. Let MSIFIS � IFISi|IFISi � (U, Ai, Vi, fi)􏼈 􏼉

(i � 1, 2, . . . , n) be a multisource intuitionistic fuzzy infor-
mation system; ∀IFISi ∈ MSIFIS, we define a total score for
information source IFISi as follows:

TC IFISi( 􏼁 � IC IFISi( 􏼁 + EC IFISi( 􏼁. (18)

where IC(IFISi) is the internal-confidence degree of a
source IFISi, and EC(IFISi) is the external-confidence
degree of a source IFISi.

Example 2. Table 2 shows a multisource intuitionistic fuzzy
information system, which consists of three intuitionistic
fuzzy information tables; xi ∈ U(i � 1, 2, 3, 4, 5, 6) repre-
sents six evaluated objects, and ai ∈ A(i � 1, 2, 3, 4|) repre-
sents conditional attribute set.

From this table, it is easy to calculate the granular
structure for each information source:

U/AT1 � x1, x5􏼈 􏼉, x1,􏼈􏼈 x2, x3, x5, x6}, x1, x3, x5, x6􏼈 􏼉,

x1, x2,􏼈 x3, x4, x5, x6}, x5􏼈 􏼉, x5, x6􏼈 􏼉}, U/AT2 � x1, x2􏼈 􏼉,􏼈

x2􏼈 􏼉, x3􏼈 􏼉, x4􏼈 􏼉, x2,􏼈 x3, x4, x5}, x2, x3, x4, x6􏼈 􏼉}, U/AT3 �

x1, x3􏼈 􏼉, x2􏼈 􏼉, x3􏼈 􏼉, x2, x3, x4􏼈 􏼉, x3, x5􏼈 􏼉,􏼈 x2,􏼈 x3, x6}}.
From the result of example 1, Red(AT1) �

a1, a4􏼈 􏼉 or a3, a4􏼈 􏼉.
Similarly, Red(AT2) � a2, a3, a4􏼈 􏼉, and Red(AT3) � a1,􏼈

a2, a4} or a1, a3, a4􏼈 􏼉..e calculation results of all sources
IFISi(i � 1, 2, 3) are presented in Table 3.

.en, the internal-confidence degree of source IFISi(i �

1, 2, 3) is as follows:
IC(IFIS1) � (|Red(AT1)|/|AT1|) � (2/4) � 0.5,
IC(IFIS2) � (|Red(AT2)|/|AT2|) � (3/4) � 0.75,
IC(IFIS3) � (|Red(AT3)|/|AT3|) � (3/4) � 0.75.
Next, the external-confidence degree between IFISi and

IFISj can be calculated as follows:
D(IFIS1, IFIS1) � D(IFIS2, IFIS2) � D(IFIS3, IFI

S3) � 0,
D(IFIS1, IFIS2) � 21, D(IFIS1, IFIS3) � 16, D(IFIS2,

IFIS3) � 7.
By Definition 18, the external correlation between IFISi

and IFISj can be computed. .e result is as follows:
ec(IFIS1, IFIS1) � ec(IFIS2, IFIS2) � ec(IFIS3, IFI

S3) � 1,
ec(IFIS1, IFIS2) � 1 − (21/36 − 1) � 0.3,

ec(IFIS1, IFIS3) � 1 − (16/36 − 1) ≈ 0.467,
ec(IFIS2, IFIS3) � 1 − (7/36 − 1) � 0.767..us, we can get
the external-confidence degree matrix MEC as follows:

MEC �

1 0.3 0.467

0.3 1 0.767

0.467 0.767 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (19)

.erefore, the external-confidence degrees for each in-
formation source IFISi(i � 1, 2, 3) is EC(IFISi) �

0.589, 0.689, 0.745{ }.
Furthermore, the total score for each information source

IFISi(i � 1, 2, 3) can be calculated using Definition 19:

TC(IFIS1) � 0.5 + 0.589 � 1.089,
TC(IFIS2) � 0.5 + 0.589 � 1.439,
TC(IFIS3) � 0.5 + 0.589 � 1.495.

.erefore, the quality ranking of information sources is
IFIS3 > IFIS2 > IFIS1, and IFIS3 is the optimal source of the
multisource intuitionistic fuzzy information system.

3.2. Weighted Generalized Multigranularity Intuitionistic
Fuzzy Rough Set Model for MSIFIS

Definition 20. Let MSIFIS � IFISi|IFISi � (U, Ai, Vi, fi)􏼈 􏼉

(i � 1, 2, . . . , n) be a multisource intuitionistic fuzzy infor-
mation system; S

Ai

X (x) is the support characteristic function
of x for X. If the weight corresponding to each granularity
space is derived from each dominance relation as
ω � ω1,ω2, . . . ,ωn􏼈 􏼉, 􏽐

n
i�1 ωi � 1(0≤ωi ≤ 1), parameter

minωi ≤ β≤ 1(i � 1, 2, . . . , n) denotes the information level
with respect to 􏽐

n
i�1 Ai; for any X⊆U, the lower approximation

and upper approximation of X weighted generalized multi-
granularity intuitionistic fuzzy rough set are defined as follows:
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MSIF
ω
􏽐

n
i�1 Ai

(X)β � x ∈ U| 􏽘
n

i�1
ωiS

Ai

X (x)≥ β
⎧⎨

⎩

⎫⎬

⎭;

MSIF
ω
􏽐

n

i�1Ai
(X)β � ∼ MSIF

ω
􏽐

n

i�1Ai

(∼X)β

� x ∈ U| 􏽘
n

i�1
ωi 1 − S

Ai

Xc (x)􏼐 􏼑> 1 − β
⎧⎨

⎩

⎫⎬

⎭.

(20)

If MSIF ω
􏽐

n

i�1 Ai

(X)β � MSIF
ω
􏽐

n

i�1 Ai
(X)β, then the target

set X is definable for 􏽐
n
i�1 Ai; otherwise, X is rough for

􏽐
n
i�1 Ai. (MSIF ω

􏽐
n

i�1 Ai

(X)β, MSIF
ω
􏽐

n

i�1 Ai
(X)β) is called the

weighted generalized multigranularity intuitionistic fuzzy
rough set model for MSIFIS.

In the weighted generalized multigranularity intuition-
istic fuzzy rough set model, the positive, negative, and
boundary regions of X can be defined as follows:

POS
ω
􏽐

n
i�1 Ai

(X)β � MSIF
ω
􏽐

n
i�1 Ai

(X)β;

NEG
ω
􏽐

n

i�1Ai

(X)β � U − MSIF
ω
􏽐

n

i�1Ai
(X)β;

BND
ω
􏽐

n

i�1Ai

(X)β � MSIF
ω
􏽐

n

i�1Ai
(X)β − MSIF

ω
􏽐

n

i�1Ai

(X)β.

(21)

.e basic properties of the weighted generalized mul-
tigranularity intuitionistic fuzzy rough set for MSIFIS are
given by the following theorem.

Theorem 1. Let MSIFIS � IFIS1, IFIS2, . . . , IFISn􏼈 􏼉 be a
multisource intuitionistic fuzzy information system. If the
weight corresponding to each granularity space is derived
from each dominance relation as ω � ω1,ω2,􏼈

. . . ,ωn}, 􏽐
n
i�1 ωi � 1(0≤ωi ≤ 1), parameter minωi ≤ β≤

1(i � 1, 2, . . . , n) denotes the information level with respect to
􏽐

n
i�1 Ai; ∀X, Y⊆U, the following conclusions hold:

(1) MSIF ω
􏽐

n

i�1 Ai

( ∼ X)β � ∼ MSIF
ω
􏽐

n

i�1 Ai
(X)β,

MSIF
ω
􏽐

n

i�1 Ai
( ∼ X)β � ∼ MSIF ω

􏽐
n

i�1 Ai

(X)β.

(2) MSIF ω
􏽐

n

i�1 Ai

(X)β⊆X⊆MSIF
ω
􏽐

n

i�1 Ai
(X)β.

(3) MSIF ω
􏽐

n

i�1 Ai

(∅)β � MSIF
ω
􏽐

n

i�1 Ai
(∅)β � ∅.

(4) MSIF ω
􏽐

n

i�1 Ai

(U)β � MSIF
ω
􏽐

n

i�1 Ai
(U)β � U.

(5) MSIF ω
􏽐

n

i�1 Ai

(X∪Y)β⊇MSIF ω
􏽐

n

i�1 Ai

(X)β ∪

MISF ω
􏽐

n

i�1 Ai

(Y)β,

MSIF
ω
􏽐

n

i�1 Ai
(X∪Y)β⊇MSIF

ω
􏽐

n

i�1 Ai
(X)β ∪

MSIF
ω
􏽐

n

i�1 Ai
(Y)β.

(6) MSIF ω
􏽐

n

i�1 Ai

(X∩Y)β⊆MSIF ω
􏽐

n

i�1 Ai

(X)β ∩

MSIF ω
􏽐

n

i�1 Ai

(Y)β,

MSIF
ω
􏽐

n

i�1 Ai
(X∩Y)β⊆MSIF

ω
􏽐

n

i�1 Ai
(X)β ∩

MSIF
ω
􏽐

n

i�1 Ai
(Y)β.

(7) X⊆Y⇒MSIF ω
􏽐

n

i�1 Ai

(X)β⊆MSIF ω
􏽐

n

i�1 Ai

(Y)β,

X⊆Y⇒MSIF
ω
􏽐

n

i�1 Ai
(X)β⊆MSIF

ω
􏽐

n

i�1 Ai
(Y)β.

(8) β1 ≤ β2⇒MSIF ω
􏽐

n

i�1 Ai

(X)β2⊆MSIF ω
􏽐

n

i�1 Ai

(X)β1,

β1 ≤ β2⇒MSIF
ω
􏽐

n

i�1 Ai
(X)β2⊇MSIF

ω
􏽐

n

i�1 Ai
(X)β1.

(9) MSIFω
􏽐

n

i�1 Ai

(MSIFω
􏽐

n

i�1 Ai

(X)β)β � MSIFω
􏽐

n

i�1 Ai

(X)β,

MSIF
ω
􏽐

n

i�1 Ai
(MSIF􏽐i�

1nAi
ω(X)β)β � MSIF

ω
􏽐

n

i�1 Ai

(X)β.

Table 2: Multisource intuitionistic fuzzy information system.

IFIS1 IFIS2 IFIS3

a1 a2 a3 a4 a1 a2 a3 a4 a1 a2 a3 a4

x1 (0.3, 0.5) (0.6, 0.4) (0.5, 0.2) (0.7, 0.1) (0.3, 0.5) (0.7, 0.3) (0.5, 0.1) (0.7, 0.1) (0.2, 0.5) (0.6, 0.2) (0.4, 0.6) (0.3, 0.5)
x2 (0.2, 0.7) (0.1, 0.8) (0.4, 0.5) (0.1, 0.8) (0.8, 0.2) (0.8, 0.1) (0.7, 0.1) (1.0, 0.0) (0.4, 0.5) (0.5, 0.4) (0.3, 0.5) (0.6, 0.4)
x3 (0.2, 0.7) (0.1, 0.8) (0.4, 0.5) (0.7, 0.1) (0.8, 0.2) (0.9, 0.0) (0.7, 0.1) (0.8, 0.2) (0.6, 0.2) (0.7, 0.1) (0.4, 0.3) (0.5, 0.2)
x4 (0.1, 0.8) (0.1, 0.8) (0.2, 0.7) (0.1, 0.8) (0.9, 0.1) (0.9, 0.0) (0.8, 0.1) (0.6, 0.3) (0.3, 0.7) (0.2, 0.8) (0.2, 0.7) (0.4, 0.6)
x5 (0.9, 0.1) (0.8, 0.1) (0.8, 0.1) (0.9, 0.0) (0.7, 0.2) (0.6, 0.4) (0.6, 0.2) (0.5, 0.3) (0.6, 0.2) (0.2, 0.7) (0.1, 0.7) (0.1, 0.8)
x6 (0.4, 0.6) (0.7, 0.3) (0.6, 0.3) (0.7, 0.1) (0.6, 0.3) (0.2, 0.5) (0.7, 0.2) (0.4, 0.5) (0.2, 0.7) (0.1, 0.8) (0.1, 0.6) (0.5, 0.4)

Table 3: .e calculation results for each IFISi.

Er(Ai) sigin(a1, Ai) sigin(a2, Ai) sigin(a3, Ai) sigin(a4, Ai) Red(Ai)

IFIS1 6.52 0 0 0 0.602 a1, a4􏼈 􏼉 or a3, a4􏼈 􏼉

IFIS2 3 0 0.333 0.602 2.126 a2, a3, a4􏼈 􏼉

IFIS3 2.252 1 0 0 0.874 a1, a2, a4􏼈 􏼉 or a1, a3, a4􏼈 􏼉
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Proof. (1) Because

∼ MSIF
ω
􏽐

n

i�1Ai
(X)β � x ∈ U| 􏽘

n

i�1
ωi 1 − S

Ai

Xc (x)􏼐 􏼑≤ 1 − β
⎧⎨

⎩

⎫⎬

⎭

� x ∈ U| 􏽘

n

i�1
ωi − 􏽘

n

i�1
ωiS

Ai

Xc (x)≤ 1 − β
⎧⎨

⎩

⎫⎬

⎭

� x ∈ U|1 − 􏽘

n

i�1
ωiS

Ai

Xc (x)≤ 1 − β
⎧⎨

⎩

⎫⎬

⎭

� x ∈ U| 􏽘
n

i�1
ωiS

Ai

Xc (x)≥ β
⎧⎨

⎩

⎫⎬

⎭

� MSIF
ω
􏽐

n

i�1Ai

( ∼ X)β,

(22)

MSIF ω
􏽐

n

i�1 Ai

( ∼ X)β � ∼ MSIF
ω
􏽐

n

i�1 Ai
(X)β.

Similarly,
MSIF

ω
􏽐

n

i�1 Ai
( ∼ X)β � ∼ MSIF ω

􏽐
n

i�1 Ai

(X)β.

.erefore, the property is clearly established.

(2) For any x ∈MSIF ω
􏽐

n

i�1 Ai

(X)β, we can know

􏽐
n
i�1 ωiS

Ai

X (x)≥ β. In addition, minωi ≤ β≤ 1, so ∃Ai,
s.t. S

Ai

X (x) � 1. Namely, [x]Ai
⊆X. We have x ∈ X;

thus, MSIF ω
􏽐

n

i�1 Ai

(X)β⊆X.

MSIF ω
􏽐

n

i�1 Ai

( ∼ X)β � ∼ MSIF
ω
􏽐

n

i�1 Ai
(X)β � ∼ ⊆X.

Hence, X⊆MSIF
ω
􏽐

n

i�1 Ai
(X)β.

.erefore, property (2) has been proved.

(3) For any x ∈ U, we can easily get
S

Ai

∅ (x) � 0, S
Ai

U (x) � 1. .erefore, 􏽐
n
i�1 ωiS

Ai

∅ (x) �

0, 􏽐
n
i�1 ωiS

Ai

U (x) � 1.

.us, MSIF ω
􏽐

n

i�1 Ai

(∅)β � x ∈ U| 􏽐
n
i�1 ωi􏼈 S

Ai

∅ (x)≥

β} � x ∈ U|0≥ β􏼈 􏼉 � ∅,

MSIF
ω
􏽐

n

i�1 Ai
(∅)β � x ∈ U| 􏽐

n
i�1 ωi􏼈 (1 − S

Ai

U (x))>

1 − β} � x ∈ U|0> 1 − β􏼈 􏼉 � ∅.

.erefore, property (3) has been proved.

(4) According to (3), MSIF ω
􏽐

n

i�1 Ai

(U)β � x ∈ U| 􏽐i�􏼈

1nωiS
Ai

U (x)≥ β} � x ∈ U|1≥ β􏼈 􏼉 � U,

MSIF
ω
􏽐

n

i�1 Ai
(U)β � x ∈ U| 􏽐􏼈 n

i�1ωi(1 − S
Ai

∅ (x))>

1 − β} � x ∈ U|1> 1 − β􏼈 􏼉 � U.

.erefore, property (4) has been proved.

(5) For any x ∈MSIF ω
􏽐

n

i�1 Ai

(X∪Y)β

⇔x ∈MSIF ω
􏽐

n

i�1 Ai

(X)β orx ∈MSIF ω
􏽐

n

i�1 Ai

(Y)β

⇔􏽐
n
i�1 ωiS

Ai

X (x)≥ β or 􏽐
n
i�1 ωiS

Ai

Y (x)≥ β

⇒􏽐
n
i�1 ωiS

Ai

X∪Y(x)≥ 􏽐
n
i�1 ωi(S

Ai

X (x)∨SAi

Y

(x))≥ 􏽐
n
i�1 ωiS

Ai

X (x)∧􏽐
n
i�1 ωiS

Ai

Y (x)≥ β.

.erefore, x ∈MSIF ω
􏽐

n

i�1 Ai

(X∪Y)β.

.en, we can get that MSIF ω
􏽐

n

i�1 Ai

(X∪Y)β⊇MSIF 􏽐i�

1nAi
ω(X)β ∪MSIF ω

􏽐
n

i�1 Ai

(Y)β.

Meanwhile, for any x ∈MSIF
ω
􏽐

n

i�1 Ai
(X)β ∪

MSIF
ω
􏽐

n

i�1 Ai
(Y)β,

⇔x ∈MSIF
ω
􏽐

n

i�1 Ai
(X)β orx ∈MSIF

ω
􏽐

n

i�1 Ai
(Y)β,

⇔􏽐
n
i�1 ωi(1 − S

Ai

Xc (x))> 1 − β or 􏽐
n
i�1

ωi(1 − S
Ai

Yc (x))> 1 − β

⇔􏽐
n
i�1 ωiS

Ai

Xc (x)< β or 􏽐
n
i�1 ωiS

Ai

Yc (x)< β

⇒􏽐
n
i�1 ωiS

Ai

(X∪Y)c (x) � 􏽐
n
i�1 ωi

S
Ai

Xc ∩Yc (x) � 􏽐
n
i�1 ωi(S

Ai

Xc (x)∧SAi

Yc

(x))≤ 􏽐
n
i�1 ωiS

Ai

Xc (x)∧􏽐
n
i�1 ωiS

Ai

Yc (x)< β

⇒􏽐
n
i�1 ωi(1 − S

Ai

(X∪Y)c (x))> 1 − β

⇒x ∈MSIF
ω
􏽐

n

i�1 Ai
(X∪Y)β.

.en, we obtain that MSIF
ω
􏽐

n

i�1 Ai

(X∪Y)β⊇MSIF
ω
􏽐

n

i�1 Ai
(X)β ∪ MSIF

ω
􏽐

n

i�1 Ai
(Y)β.

.erefore, the property is clearly established.

(6) ∀x ∈MSIF ω
􏽐

n

i�1 Ai

(X∩Y)β

⇒􏽐
n
i�1 ωiS

Ai

(X∩Y)(x) � 􏽐
n
i�1 ωi (S

Ai

X (x)∧SAi

Y (x))≥ β

⇒􏽐
n
i�1 ωiS

Ai

X (x)∧􏽐
n
i�1 ωiS

Ai

Y (x)≥ 􏽐
n
i�1

ωi(S
Ai

X (x)∧SAi

Y (x))≥ β

⇒􏽐
n
i�1 ωiS

Ai

X (x)≥ β and 􏽐
n
i�1 ωiS

Ai

Y (x)≥ β

⇒x ∈MSIF ω
􏽐

n

i�1 Ai

(X)β and x ∈MSIF ω
􏽐

n

i�1 Ai

(Y)β

⇒x ∈MSIF ω
􏽐

n

i�1 Ai

(X)β ∩MSIFω
􏽐

n

i�1 Ai

(Y)β.

.us, MSIF ω
􏽐

n

i�1 Ai

(X∩Y)β⊆MSIF ω
􏽐

n

i�1 Ai

(X)β

∩MSIF ω
􏽐

n

i�1 Ai

(Y)β.

Meanwhile, for any x ∈MSIF
ω
􏽐

n

i�1 Ai
(X∩Y)β

⇒􏽐
n
i�1 ωi(1 − S

Ai

(X∩Y)c (x))> 1 − β

⇒􏽐
n
i�1 ωiS

Ai

(X∩Y)c (x)< β

⇒􏽐
n
i�1 ωi S

Ai

Xc ∪Yc (x)< β

Complexity 9



⇒􏽐
n
i�1 ωiS

Ai

Xc (x)∨􏽐
n
i�1 ωiS

Ai

Yc (x)≤ 􏽐
n
i�1 ωi(S

Ai

Xc (x)∨
S

Ai

Yc (x))≤ 􏽐
n
i�1 ωiS

Ai

Xc ∪Yc (x)< β

⇒􏽐
n
i�1 ωiS

Ai

Xc (x)< β and 􏽐
n
i�1 ωiS

Ai

Yc (x)< β
⇒1 − 􏽐

n
i�1 ωiS

Ai

Xc (x)> 1 − β and 1 − 􏽐
n
i�1

ωiS
Ai

Yc (x)> 1 − β

⇒x ∈MSIF
ω
􏽐

n

i�1 Ai
(X)β andx ∈MSIF

ω
􏽐

n

i�1 Ai
(Y)β

⇒x ∈MSIF
ω
􏽐

n

i�1 Ai
(X)β ∩MSIF

ω
􏽐

n

i�1 Ai
(Y)β.

.erefore, the property is clearly established.

(7) Because X⊆Y, we can know X∪Y � Y.

According to property (5), MSIF ω
􏽐

n

i�1 Ai

(X)β ∪

MSIF ω
􏽐

n

i�1 Ai

(Y)β⊆MSIF ω
􏽐

n

i�1 Ai

(X∪Y)β.

.erefore, MSIF ω
􏽐

n

i�1 Ai

(X)β ∪MSIF ω
􏽐

n

i�1 Ai

(Y)β⊆

MSIF ω
􏽐

n

i�1 Ai

(Y)β.

.us, MSIF ω
􏽐

n

i�1 Ai

(X)β⊆MSIF ω
􏽐

n

i�1 Ai

(Y)β.

Meanwhile, according to property (5),

MSIF
ω
􏽐

n

i�1 Ai
(X)β ∪MSIF

ω
􏽐

n

i�1 Ai
(Y)β⊆

MSIF
ω
􏽐

n

i�1 Ai
(X∪Y)β.

.erefore, MSIF
ω
􏽐

n

i�1 Ai
(X)β ∪MSIF

ω
􏽐

n

i�1 Ai
(Y)β⊆

MSIF
ω
􏽐

n

i�1 Ai
(Y)β.

.us, MSIF
ω
􏽐

n

i�1 Ai
(X)β⊆MSIF

ω
􏽐

n

i�1 Ai
(Y)β.

.erefore, the property is clearly established.

(8) For any x ∈MSIF ω
􏽐

n

i�1 Ai

(X)β2, we have

􏽐
n
i�1 ωiS

Ai

X (x)≥ β2 ≥ β1.

.erefore, x ∈MSIF ω
􏽐

n

i�1 Ai

(X)β1.

.en, β1 ≤ β2 implies that MSIF ω
􏽐

n

i�1 Ai

(X)β2⊆MSIF ω
􏽐

n

i�1 Ai

(X)β1.

Similarly, we can prove that β1 ≤ β2⇒

MSIF
ω
􏽐

n

i�1 Ai
(X)β2⊇MSIF

ω
􏽐

n

i�1 Ai
(X)β1.

.erefore, property (8) has been proved.

(9) According to properties (2) and (7),

MSIF ω
􏽐

n

i�1 Ai

(X)β⊆X⇒MSIF ω
􏽐

n

i�1 Ai

(MSIF ω
􏽐

n

i�1 Ai

(X)β)β⊆MSIF ω
􏽐

n

i�1 Ai

(X)β.

.e following is the proof: MSIF ω
􏽐

n

i�1 Ai

(X)β⊆
MSIF ω

􏽐
n

i�1 Ai

(MSIF ω
􏽐

n

i�1 Ai

(X)β)β.

For any x ∈MSIF ω
􏽐

n

i�1 Ai

(X)β, we can know
􏽐

n
i�1 ωiS

Ai

X (x)≥ β.
minωi ≤ β≤ 1; thus, ∃Ai, s.t. S

Ai

X (x) � 1; namely,
[x]Ai
⊆X.

.en, according to property (7), we have
MSIF ω

􏽐
n

i�1 Ai

([x]Ai
)β⊆MSIF ω

􏽐
n

i�1 Ai

(X)β.

.erefore, [x]Ai
⊆MSFI ω

􏽐
n

i�1 Ai

(X)β; we can get
􏽐

n
i�1 ωiS

Ai

MSIF ω

􏽐
n

i�1
Ai

(X)β
(x)≥ β, and x ∈MSIF ω

􏽐
n

i�1 Ai

(MSIF ω
􏽐

n

i�1 Ai

(X)β)β.

.erefore, MSIF ω
􏽐

n

i�1 Ai

(X)β⊆MSIF ω
􏽐

n

i�1 Ai

(MSIF ω
􏽐

n

i�1 Ai

(X)β)β, from which one can get that

MSIF ω
􏽐

n

i�1 Ai

(MSIF ω
􏽐

n

i�1 Ai

(X)β)β � MSIF ω
􏽐

n

i�1 Ai

(X)β.

Meanwhile, we can prove that MSIF
ω
􏽐

n

i�1 Ai

(MSIF
ω
􏽐

n

i�1 Ai
(X)β)β � MSIF

ω
􏽐

n

i�1 Ai
(X)β.

Property (1) shows that in multisource intuitionistic
fuzzy information system, the lower approximation oper-
ator, and the upper approximation operator of weighted
generalized multigranularity intuitionistic fuzzy rough sets
satisfy duality. Property (2) illustrates the inclusion rela-
tionship between the lower approximation, the upper ap-
proximation, and the target concept. Properties (3) and (4)
show the approximation of two special sets. .e lower and
upper approximation of the empty set∅ and the universe U

are themselves. Properties (5) − (8) state the monotonicity
of MSIF ω

􏽐
n

i�1 Ai

and MSIF
ω
􏽐

n

i�1 Ai
. Moreover, property (9)

expresses the idempotency between the lower approxima-
tion operator and the upper approximation operator. □

3.3. Weighted Optimistic Multigranularity Intuitionistic
Fuzzy Rough Set Model for MSIFIS

Definition 21. Let MSIFIS � IFISi|IFISi � (U, Ai, Vi, fi)􏼈 􏼉

(i � 1, 2, . . . , n) be a multisource intuitionistic fuzzy infor-
mation system; S

Ai

X (x) is the support characteristic function
of x for X. If the weight corresponding to each granularity
space is derived from each dominance relation as
ω � ω1,ω2, . . . ,ωn􏼈 􏼉, 􏽐

n
i�1 ωi � 1(0≤ωi ≤ 1), ∀X⊆U, the

lower approximation and upper approximation of X

weighted optimistic multigranularity intuitionistic fuzzy
rough set are defined as follows:

OMSIF
ω

􏽐
n

i�1
Ai

(X) � x ∈ U|􏽐
n
i�1ωiS

Ai

X (x)> 0􏽮 􏽯;

OMSIF
ω
􏽐

n

i�1Ai
(X) � ∼ OMSIF

ω
􏽐

n

i�1Ai

( ∼ X)

� x ∈ U|􏽐
n
i�1ωi 1 − S

Ai

Xc (x)􏼐 􏼑≥ 1􏽮 􏽯.

(23)

If OMSIF ω
􏽐

n

i�1 Ai

(X) � OMSIF
ω
􏽐

n

i�1 Ai
(X), then the target

set X is optimistic and definable for 􏽐
n
i�1 Ai; otherwise, X is

optimistic and rough for 􏽐
n
i�1 Ai. (OMSIF ω

􏽐
n

i�1 Ai

(X),

OMSIF
ω
􏽐

n

i�1 Ai
(X)) is called the weighted optimistic multi-

granularity intuitionistic fuzzy rough set model for MSIFIS.
In the weighted optimistic multigranularity intuitionistic

fuzzy rough set model, the positive, negative, and boundary
regions of X can be defined as follows:
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POS
ω

􏽐
n

i�1
Ai

(X)O � OMSIF
ω

􏽐
n

i�1
Ai

(X);

NEG
ω
􏽐

n

i�1Ai

(X)O � U − OMSIF
ω
􏽐

n

i�1Ai
(X);

BND
ω
􏽐

n

i�1Ai

(X)O � OMSIF
ω
􏽐

n

i�1Ai
(X) − OMSIF

ω
􏽐

n

i�1Ai

(X).

(24)

.e basic properties of the weighted optimistic multi-
granularity intuitionistic fuzzy rough set for MSIFIS are
given by the following theorem.

Theorem 2. Let MSIFIS � IFIS1, IFIS2, . . . , IFISn􏼈 􏼉 be a
multisource intuitionistic fuzzy information system. If the
weight corresponding to each granularity space is derived
from each dominance relation as
ω � ω1,ω2, . . . ,ωn􏼈 􏼉, 􏽐

n
i�1 ωi � 1(0≤ωi ≤ 1), ∀X, Y⊆U, the

following conclusions hold:

(1) OMSIF ω
􏽐

n

i�1 Ai

( ∼ X) � ∼ OMSIF
ω
􏽐

n

i�1 Ai
(X),

OMSIF
ω
􏽐

n

i�1 Ai
( ∼ X) � ∼ OMSIF ω

􏽐
n

i�1 Ai

(X).

(2) OMSIF ω
􏽐

n

i�1 Ai

(X)⊆X⊆OMSIF
ω
􏽐

n

i�1 Ai
(X).

(3) OMSIF ω
􏽐

n

i�1 Ai

(∅) � OMSIF
ω
􏽐

n

i�1 Ai
(∅) � ∅.

(4) OMSIF ω
􏽐

n

i�1 Ai

(U) � OMSIF
ω
􏽐

n

i�1 Ai
(U) � U.

(5) OMSF ω
􏽐

n

i�1 Ai

(X∪Y)⊇OMSIF ω
􏽐

n

i�1 Ai

(X)∪

OMSIF ω
􏽐

n

i�1 Ai

(Y),

OMSIF
ω
􏽐

n

i�1 Ai
(X∪Y)⊇OMSIF

ω
􏽐

n

i�1 Ai
(X)∪

OMSIF
ω
􏽐

n

i�1 Ai
(Y).

(6) OMSIF ω
􏽐

n

i�1 Ai

(X∩Y)⊆OMSIF ω
􏽐

n

i�1 Ai

(X)∩

OMSIF ω
􏽐

n

i�1 Ai

(Y),

OMSIF
ω
􏽐

n

i�1 Ai
(X∩Y)⊆OMSIF

ω
􏽐

n

i�1 Ai
(X)∪

OMSIF
ω
􏽐

n

i�1 Ai
(Y).

(7) X⊆Y⇒OMSIF ω
􏽐

n

i�1 Ai

(X)⊆OMSIF ω
􏽐

n

i�1 Ai

(Y),

X⊆Y⇒OMSIF
ω
􏽐

n

i�1 Ai
(X)⊆OMSIF

ω
􏽐

n

i�1 Ai
(Y).

(8) OMSIF ω
􏽐

n

i�1 Ai

(OMSIF ω
􏽐

n

i�1 Ai

(X)) �

OMSIF ω
􏽐

n

i�1 Ai

(X),

OMSIF
ω
􏽐

n

i�1 Ai
(OMSIF

ω
􏽐

n

i�1 Ai
(X)) � OMSIF

ω
􏽐

n

i�1 Ai
(X).

Proof. It is similar to that of .eorem 1. □

3.4. Weighted Pessimistic Multigranularity Intuitionistic
Fuzzy Rough Set Model for MSIFIS

Definition 22. Let MSIFIS � IFISi|IFISi � (U, Ai, Vi, fi)􏼈 􏼉

(i � 1, 2, . . . , n) be a multisource intuitionistic fuzzy infor-
mation system; S

Ai

X (x) is the support characteristic function
of x for X. If the weight corresponding to each granularity
space is derived from each dominance relation as

ω � ω1,ω2, . . . ,ωn􏼈 􏼉, 􏽐
n
i�1 ωi � 1, (0≤ωi ≤ 1), ∀X⊆U, the

lower approximation and upper approximation of X

weighted pessimistic multigranularity intuitionistic fuzzy
rough set are defined as follows:

PMSIF
ω

􏽐
n

i�1
Ai

(X) � x ∈ U ∣ 􏽐n
i�1ωiS

Ai

X (x)≥ 1􏽮 􏽯;

PMSIF
ω
􏽐

n

i�1Ai
(X) � ∼ PMSIF

ω
􏽐

n

i�1Ai

( ∼ X)

� x ∈ U ∣ 􏽐n
i�1ωi 1 − S

Ai

Xc (x)􏼐 􏼑> 0􏽮 􏽯.

(25)

If PMSIF ω
􏽐

n

i�1 Ai

(X) � PMSIF
ω
􏽐

n

i�1 Ai
(X), then the target

set X is pessimistic and definable for 􏽐
n
i�1 Ai; otherwise, X is

pessimistic and rough for 􏽐
n
i�1 Ai. (PMSIF ω

􏽐
n

i�1 Ai

(X),

PMSIF
ω
􏽐

n

i�1 Ai
(X)) is called the weighted pessimistic mul-

tigranularity intuitionistic fuzzy rough set model for
MSIFIS.

In the weighted pessimistic multigranularity intuition-
istic fuzzy rough set model, the positive, negative, and
boundary regions of X can be defined as follows:

POS
ω

􏽐
n

i�1
Ai

(X)P � PMSIF
ω
􏽐

n

i�1Ai

(X);

NEG
ω
􏽐

n

i�1Ai

(X)P � U − PMSIF
ω
􏽐

n

i�1Ai
(X);

BND
ω
􏽐

n

i�1Ai

(X)P � PMSIF
ω
􏽐

n

i�1Ai
(X) − PMSIF

ω
􏽐

n

i�1Ai

(X).

(26)

.e basic properties of the weighted pessimistic multi-
granularity intuitionistic fuzzy rough set for MSIFIS are
given by the following theorem.

Theorem 3. Let MSIFIS � IFIS1, IFIS2, . . . , IFISn􏼈 􏼉 be a
multisource intuitionistic fuzzy information system. If the
weight corresponding to each granularity space is derived
from each dominance relation as
ω � ω1,ω2, . . . ,ωn􏼈 􏼉, 􏽐

n
i�1 ωi � 1, (0≤ωi ≤ 1), ∀X, Y⊆U, the

following conclusions hold:

(1) PMSIF ω
􏽐

n

i�1 Ai

( ∼ X) � ∼ PMSIF
ω
􏽐

n

i�1 Ai
(X),

PMSIF
ω
􏽐

n

i�1 Ai
( ∼ X) � ∼ PMSIF ω

􏽐
n

i�1 Ai

(X).

(2) PMSIF ω
􏽐

n

i�1 Ai

(X)⊆X⊆PMSIF
ω
􏽐

n

i�1 Ai
(X).

(3) PMSIF ω
􏽐

n

i�1 Ai

(∅) � PMSIF
ω
􏽐

n

i�1 Ai
(∅) � ∅.

(4) PMSIF ω
􏽐

n

i�1 Ai

(U) � PMSIF
ω
􏽐

n

i�1 Ai
(U) � U.

(5) PMSIF ω
􏽐

n

i�1 Ai

(X∪Y)⊇PMSIF ω
􏽐

n

i�1 Ai

(X)∪

PMSIF ω
􏽐

n

i�1 Ai

(Y),

PMSIF
ω
􏽐

n

i�1 Ai
(X∪Y) � PMSIF

ω
􏽐

n

i�1 Ai
(X)∪

PMSIF
ω
􏽐

n

i�1 Ai
(Y).

(6) PMSIF ω
􏽐

n

i�1 Ai

(X∩Y) � PMSIF ω
􏽐

n

i�1 Ai

(X)∩

PMSIF ω
􏽐

n

i�1 Ai

(Y),
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PMSIF
ω
􏽐

n

i�1 Ai
(X∩Y)⊆PMSIF

ω
􏽐

n

i�1 Ai

(X)∪PMSIF
ω
􏽐

n

i�1 Ai
(Y).

(7) X⊆Y⇒PMSIF ω
􏽐

n

i�1 Ai

(X)⊆PMSIF ω
􏽐

n

i�1 Ai

(Y),

X⊆Y⇒PMSIF
ω
􏽐

n

i�1 Ai
(X)⊆PMSIF

ω
􏽐

n

i�1 Ai
(Y).

(8) PMSIF ω
􏽐

n

i�1 Ai

(PMSIF ω
􏽐

n

i�1 Ai

(X)) �

PMSIF ω
􏽐

n

i�1 Ai

(X),

PMSIF
ω
􏽐

n

i�1 Ai
(PMSIF

ω
􏽐

n

i�1 Ai
(X)) �

PMSIF
ω
􏽐

n

i�1 Ai
(X).

Proof. It is similar to that of .eorem 1. □

3.5. ?e Relationship between the ?ree Models of MSIFIS.
In this subsection, we investigate the relationship between
the three models of MSIFIS.

Theorem 4. Let MSIFIS � IFIS1, IFIS2, . . . , IFISn􏼈 􏼉 be a
multisource intuitionistic fuzzy information system. If the
weight corresponding to each granularity space is derived
from each dominance relation as
ω � ω1,ω2, . . . ,ωn􏼈 􏼉, 􏽐

n
i�1 ωi � 1, (0≤ωi ≤ 1), ∀X⊆U, the

following equations can be obtained:

(1) If β � 1, then

MSIF
ω
􏽐

n
i�1 Ai

(X)β � PMSIF
ω
􏽐

n
i�1 Ai

(X),

MISF
ω
􏽐

n

i�1Ai
(X)β � PMSIF

ω
􏽐

n

i�1Ai
(X).

(27)

(2) If β � minωi(i � 1, 2, . . . , n), then

MSIF
ω
􏽐

n
i�1 Ai

(X)β � OMSIF
ω
􏽐

n
i�1 Ai

(X),

MSIF
ω
􏽐

n

i�1Ai
(X)β � OMSIF

ω
􏽐

n

i�1Ai
(X).

(28)

Proof. It is easily obtained fromDefinition 15, Definition 20,
and Definition 21.

From the above theorems, if β � 1, weighted generalized
multigranularity intuitionistic fuzzy rough set degenerates
into weighted pessimistic multigranularity intuitionistic
fuzzy rough set. If β � minωAi

, weighted generalized mul-
tigranularity intuitionistic fuzzy rough set degenerates into
weighted optimistic multigranularity intuitionistic fuzzy
rough set. Hence, weighted generalized multigranularity
intuitionistic fuzzy rough set is a generalization of weighted
pessimistic multigranularity intuitionistic fuzzy rough set
and weighted optimistic multigranularity intuitionistic fuzzy
rough set. On the other hand, weighted pessimistic multi-
granularity intuitionistic fuzzy rough set and weighted
optimistic multigranularity intuitionistic fuzzy rough set are
the special cases of weighted generalized multigranularity
intuitionistic fuzzy rough set. □

Theorem 5. Let MSIFIS � IFIS1, IFIS2, . . . , IFISn􏼈 􏼉 be a
multisource intuitionistic fuzzy information system. If the

weight corresponding to each granularity space is derived
from each dominance relation as ω � ω1,ω2, . . . ,􏼈

ωn}, 􏽐
n
i�1 ωi � 1, (0≤ωi ≤ 1), ∀X⊆U, the following prop-

erties are established:

(1) PMSIF ω
􏽐

n

i�1 Ai

(X)⊆MSIF ω
􏽐

n

i�1 Ai

(X)β⊆

OMSIF ω
􏽐

n

i�1 Ai

(X).

(2) OMSIF
ω
􏽐

n

i�1 Ai
(X)⊆MSIF

ω
􏽐

n

i�1 Ai
(X)β⊆

PMSIF
ω
􏽐

n

i�1 Ai
(X).

Proof. From Definition 20–Definition 22, the theorem
clearly holds.

.e theorem shows that the lower and upper approxi-
mation of the weighted generalized multigranularity intui-
tionistic fuzzy rough set are between weighted pessimistic
multigranularity intuitionistic fuzzy rough set and weighted
optimistic multigranularity intuitionistic fuzzy rough
set. □

4. Uncertainty Measurement of MSIFIS

Like Pawlak rough sets, the uncertainty of knowledge is
caused by the boundary region. .e larger the boundary
area, the lower the accuracy and the higher roughness. For
the weighted multigranularity intuitionistic fuzzy rough set
model in the MSIFIS, this section gives definition of rough
accuracy, roughness, and attribute dependence.

Definition 23. Let MSIFIS � IFIS1, IFIS2, . . . , IFISn􏼈 􏼉 be a
multisource intuitionistic fuzzy information system. If the
weight corresponding to each granularity space is derived
from each dominance relation as
ω � ω1,ω2, . . . ,ωn􏼈 􏼉, 􏽐

n
i�1 ωi � 1(0≤ωi ≤ 1), parameter

minωi ≤ β≤ 1(i � 1, 2, . . . , n) denotes the information level
with respect to 􏽐

n
i�1 Ai; ∀X⊆U, the approximation accuracy

and roughness of the weighted generalized multigranularity
intuitionistic fuzzy rough set model of the set X with respect
to 􏽐

n
i�1 Ai are defined as follows:

αωMSIF(X)β �

|MSIF
ω
􏽐

n
i�1 Ai

(X)β|

MSIF
ω
􏽐

n
i�1 Ai

(X)β

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

;

ρωMSIF(X)β � 1 − αωMSIF(X)β.

(29)

Similarly, the approximation accuracy and roughness of
the weighted optimistic multigranularity intuitionistic fuzzy
rough set model of the set X with respect to 􏽐

n
i�1 Ai are

defined as follows:

αωOMSIF(X) �

OMSIF
ω
􏽐

n
i�1 Ai

(X)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

OMSIF
ω
􏽐

n
i�1 Ai

(X)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

;

ρωOMSIF(X) � 1 − αωOMSIF(X).

(30)

.e approximation accuracy and roughness of the
weighted pessimistic multigranularity intuitionistic fuzzy
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rough set model of the set X with respect to 􏽐
n
i�1 Ai are

defined as follows:

αωPMSIF(X) �

PMSIF
ω
􏽐

n
i�1 Ai

(X)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

PMSIF
ω
􏽐

n
i�1 Ai

(X)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

;

ρωPMSIF(X) � 1 − αωPMSIF(X).

(31)

Definition 24. Let MSIFIS � IFIS1, IFIS2, . . . , IFISn􏼈 􏼉 be a
multisource intuitionistic fuzzy information system. If the
weight corresponding to each granularity space is derived
from each dominance relation as
ω � ω1,ω2, . . . ,ωn􏼈 􏼉, 􏽐

n
i�1 ωi � 1 (0≤ωi ≤ 1), parameter

minωi ≤ β≤ 1(i � 1, 2, . . . , n) denotes the information level
with respect to 􏽐

n
i�1 Ai; ∀X⊆U, the approximation accuracy

and roughness of the weighted generalized multigranularity
intuitionistic fuzzy rough set model of the set X with respect
to 􏽐

n
i�1 Ai are defined as follows:

c
ω
MSF(X)β �

MSIF
ω
􏽐

n
i�1 Ai

(X)β

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

|U|
�

POS
ω
􏽐

n
i�1 Ai

(X)β

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

|U|
.

(32)

Similarly, the dependence of the weighted optimistic
multigranularity intuitionistic fuzzy rough set model of the
set X with respect to 􏽐

n
i�1 Ai is defined as follows:

c
ω
OMSF(X) �

OMSIF
ω
􏽐

n
i�1 Ai

(X)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

|U|
�

POS
ω
􏽐

n
i�1 Ai

(X)O

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

|U|
.

(33)

.e dependence of the weighted pessimistic multi-
granularity intuitionistic fuzzy rough set model of the set X

with respect to 􏽐
n
i�1 Ai is defined as follows:

c
ω
PMSF(X) �

PMSIF
ω
􏽐

n
i�1 Ai

(X)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

|U|
�

POS
ω
􏽐

n
i�1 Ai

(X)P

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

|U|
.

(34)

Theorem 6. Let MSIFIS � IFIS1, IFIS2, . . . , IFISn􏼈 􏼉 be a
multisource intuitionistic fuzzy information system, where
IFISi � U, Ai, Vi, IFi􏼈 􏼉(i≤ n); S

Ai

X (x) is the support charac-
teristic function of x for X. If the weight corresponding to each
granularity space is derived from each dominance relation as
ω � ω1,ω2, . . . ,ωn􏼈 􏼉, 􏽐

n
i�1 ωi � 1, for any X⊆U, under the

three rough set models, the relationships between the ap-
proximate accuracy, roughness, and dependence of the set X

with respect to 􏽐
n
i�1 Ai are as follows:

(1) αωPMSIF(X)≤ αωMSIF(X)β ≤ αωOMSIF(X)β.
(2) ρωOMSIF(X)≤ ρωMSIF(X)β ≤ ρωPMSIF(X)β.
(3) cω

PMSIF(X)≤ cω
MSIF(X)β ≤ cω

OMSIF(X).

Proof. It is easy to obtain by Definition 23 and Definition 24.

.e theorem shows that the accuracy, roughness, and
dependence of the weighted generalized multigranularity
intuitionistic fuzzy rough set model are between weighted
pessimistic multigranularity intuitionistic fuzzy rough set
and weighted optimistic multigranularity intuitionistic fuzzy
rough set model. □

Example 3. In example 1, the quality ranking of the three
information sources in the multisource intuitionistic fuzzy
information system is calculated. Let us suppose that the
granularity weights corresponding to the three information
systems are assigned as ω 0.2, 0.3, 0.5{ }; the distribution of
granularity weights in specific applications can be given
subjectively based on the experience of domain experts, with
threshold β � 0.6.

According to Definition 2, we calculate the dominant
classes of object under each source.

Dominant classes under source 1 are as follows:
RA1

(x1) � x1, x5􏼈 􏼉, RA1
(x2) � x1, x2, x3, x5, x6􏼈 􏼉,

RA1
(x3) � x1, x3, x5, x6􏼈 􏼉,

RA1
(x4) � x1, x2, x3, x4, x5, x6􏼈 􏼉,
RA1

(x5) � x5􏼈 􏼉, RA1
(x6) � x5, x6􏼈 􏼉.

Dominant classes under source 2 are as follows:
RA2

(x1) � x1, x2􏼈 􏼉, RA2
(x2) � x2􏼈 􏼉,

RA2
(x3) � x3􏼈 􏼉, RA2

(x4) � x4􏼈 􏼉,
RA2

(x5) � x2, x3, x4, x5􏼈 􏼉, RA2
(x6) � x2, x3, x4, x6􏼈 􏼉.

Dominant classes under source 3 are as follows:
RA3

(x1) � x1, x3􏼈 􏼉, RA3
(x2) � x2􏼈 􏼉,

RA3
(x3) � x3􏼈 􏼉, RA3

(x4) � x2, x3, x4􏼈 􏼉,
RA3

(x5) � x3, x5􏼈 􏼉, RA3
(x6) � x2, x3, x6􏼈 􏼉.

Given a concept set X � x1, x2, x3, x5􏼈 􏼉, the support
characteristic function of X and support characteristic
function of Xc under each source are computed.

S
A1
X (x1) � 1, S

A2
X (x1) � 1, S

A3
X (x1) � 1,

S
A1
X (x2) � 0, S

A2
X (x2) � 1, S

A3
X (x2) � 1,

S
A1
X (x3) � 0, S

A2
X (x3) � 1, S

A3
X (x3) � 1,

S
A1
X (x4) � 0, S

A2
X (x4) � 0, S

A3
X (x4) � 0,

S
A1
X (x5) � 1, S

A2
X (x5) � 0, S

A3
X (x5) � 1,

S
A1
X (x6) � 0, S

A2
X (x6) � 0, S

A3
X (x6) � 0.

Xc � x4, x6􏼈 􏼉,
S

A1
Xc (x1) � 0, S

A2
Xc (x1) � 0, S

A3
Xc (x1) � 0,

S
A1
Xc (x2) � 0, S

A2
Xc (x2) � 0, S

A3
Xc (x2) � 0,

S
A1
Xc (x3) � 0, S

A2
Xc (x3) � 0, S

A3
Xc (x3) � 0,

S
A1
Xc (x4) � 0, S

A2
Xc s(x4) � 1, S

A3
Xc (x4) � 0,

S
A1
Xc (x5) � 0, S

A2
Xc (x5) � 0, S

A3
Xc s(x5) � 0,

S
A1
Xc s(x6) � 0, S

A2
Xc (x6) � 0, S

A3
Xc (x6) � 0.

According to Definition 20, the lower approximation
and upper approximation of the weighted generalized
multigranularity intuitionistic fuzzy rough set X are ob-
tained as follows:

MSIF ω
􏽐

3
i�1 Ai

(X)β � x1, x2, x3, x5􏼈 􏼉,

MSIF
ω
􏽐

3
i�1 Ai

(X)β � x1, x2, x3, x4, x5, x6􏼈 􏼉.
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.e positive region, boundary region, and negative re-
gion of the weighted generalized multigranularity intui-
tionistic fuzzy rough set X are as follows:

POSω
􏽐

3
i�1 Ai

(X)β � x1, x2, x3, x5􏼈 􏼉,

BNDω
􏽐

3
i�1 Ai

(X)β � x4, x6􏼈 􏼉,

NEGω
􏽐

3
i�1 Ai

(X)β � ∅.

.e approximation accuracy, roughness, and depen-
dence of the weighted generalized multigranularity intui-
tionistic fuzzy rough set X are as follows:

αωMSIF(X)β � (4/6) � (2/3),

ρωMSIF(X)β � 1 − (2/3) � (1/3),

c
ω
MSIF(X)β � (4/6) � (2/3).

According to Definition 21, the lower approximation
and upper approximation of the weighted optimistic mul-
tigranularity intuitionistic fuzzy rough set X are obtained as
follows:

OMSIF
ω
􏽐

n

i�1 Ai
(X) � x1, x2, x3, x5􏼈 􏼉,

OMSIF
ω
􏽐

n

i�1 Ai
(X) � x1, x2, x3, x5, x6􏼈 􏼉.

.e positive region, boundary region, and negative re-
gion of the weighted optimistic multigranularity intuition-
istic fuzzy rough set X are as follows:

POS
ω
􏽐

n

i�1 Ai
(X)O � x1, x2, x3, x5􏼈 􏼉,

BND
ω
􏽐

n

i�1 Ai
(X)O � x6􏼈 􏼉,

NEG
ω
􏽐

n

i�1 Ai
(X)O � x4, x6􏼈 􏼉.

.e approximation accuracy, roughness, and depen-
dence of the weighted optimistic multigranularity intui-
tionistic fuzzy rough set X are as follows:

αωOMSIF(X) � (4/5),

ρωOMSIF(X) � 1 − (4/5) � (1/5),

c
ω
OMSIF(X) � (4/6) � (2/3),

According to Definition 22, the lower approximation
and upper approximation of the weighted pessimistic
multigranularity intuitionistic fuzzy rough set X are ob-
tained as follows:

PMSIF
ω
􏽐

3
i�1 Ai

(X) � x1􏼈 􏼉,

PMSIF
ω
􏽐

3
i�1 Ai

(X) � x1, x2, x3, x4, x5, x6􏼈 􏼉.

.e positive region, boundary region, and negative re-
gion of the weighted pessimistic multigranularity intui-
tionistic fuzzy rough set X are as follows:

POSω
􏽐

3
i�1 Ai

(X)P � x1􏼈 􏼉,

BNDω
􏽐

3
i�1 Ai

(X)P � x1, x2, x3, x4, x5, x6􏼈 􏼉,

NEGω
􏽐

3
i�1 Ai

(X)P � ∅.

.e approximation accuracy, roughness, and depen-
dence of the weighted pessimistic multigranularity intui-
tionistic fuzzy rough set X are as follows:

αωPMSIF(X) � (1/6),
ρωPMSIF(X) � 1 − (1/6) � (5/6),
cωPMSIF(X) � (1/6).
Hence,
PMSIFω

􏽐
3
i�1Ai

(X)⊆MSIFω
􏽐

3
i�1Ai

(X)β⊆ OMSIFω
􏽐

3
i�1Ai

(X),

OMSIF
ω
􏽐

3
i�1 Ai

(X)⊆MSIF
ω
􏽐

3
i�1 Ai

(X)β⊆PMSIF
ω
􏽐

3
i�1 Ai

(X).

αωPMSIF(X)≤ αωMSIF(X)β ≤ αωOMSIF(X)β,
ρωOMSIF(X)≤ ρωMSIF(X)β ≤ ρωPMSIF(X)β,
cω

PMSIFs(X)≤ cω
MSIF(X)β ≤ cω

OMSIF(X).

5. Experimental Evaluation and Analysis

In this paper, three weighted multigranulation intuitionistic
fuzzy rough set models for MSIFIS are studied, and the
uncertainty measurement methods of different models are
discussed. In this section, we use an experiment to show the
effectiveness of the models and methods proposed in this
paper. We propose Algorithm 2 to calculate the uncertainty
measure of the weighted generalized multigranulation
intuitionistic fuzzy rough set in MSIFIS. Similarly, by
changing the threshold β, a calculated weighted optimistic
and pessimistic uncertainty measurement algorithm can be
obtained.

.e time complexity analysis of Algorithm 2 is as fol-
loxws. From Steps 2 − 20, we calculate the dominant class of
each object under each information source, and its time
complexity is O(|U|2 ∗A∗ q) (q is the number of sources).
From Steps 21 − 35, we calculate the support feature
function of X and XC under each information source, and
the time complexity is O(|U|∗ q). From Steps 36 − 45, we
compute the upper and lower approximations of X in
MSIFIS, and the time complexity is O(|U|).

As we all know, we cannot get MSIFIS directly from UCI
(http://archive.ics.uci.edu/ml/datasets.html), so we need to
process the data. First, we need to download the “wine-
quality-red” and “winequality-white” data sets from UCI
and divide them by themaximum number of each column in
the data table to make them fuzzy data tables. .en, we use
the MATLAB software to randomly generate two fuzzy data
sets. Finally, the method given in literature [23] is used to
make them intuitionistic fuzzy data sets.

.e details of the four data tables are shown in Table 4.
We use the above four data sets as the original intuitionistic
fuzzy information system. Finally, we randomly select 40%
of the original data to add white noise and then randomly
select 20% of the remaining data to add random noise, and
the rest of the data remains unchanged to generate four
MSIFISs with ten sources. .e entire experiment was run on
a private computer. .e specific operating environment,
including hardware and software, is shown in Table 5.

We add white noise as follows: the q real numbers with a
normal distribution (n1, n2, . . . , nq) were first generated by
MATLAB.
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Table 4: Specific information about the operating environment.

Name Model Parameter
CPU Intel® core™ i3-2370M 2.40GHz
Platform MATLAB R2016b
System Windows 7 64 bits
Memory DDR3 4GB; 1600 MHz
Hard disk MQ01ABD050 500GB

Table 5: Uncertainty measurement on “own-data 1.”

α β c

G O P G O P G O P

1 0.8421 1 0.082 4 0.157 9 0 0.917 6 0.752 9 0.8 0.082 4
2 0.722 6 1 0.0471 0.277 4 0 0.952 9 0.658 8 0.8 0.0471
3 0.727 8 1 0.070 6 0.272 2 0 0.929 4 0.676 5 0.8 0.070 6
4 0.784 0 1 0.111 8 0.216 0 0.888 2 0.7471 0.8 0.111 8
5 0.7261 1 0.052 9 0.273 9 0 0.9471 0.670 6 0.8 0.052 9
6 0.5161 0.992 7 0.052 9 0.483 9 0.007 3 0.9471 0.470 6 0.8 0.052 9
7 0.783 8 0.797 3 0.052 9 0.216 2 0.202 7 0.9471 0.682 4 0.6941 0.052 9
8 0.682 4 0.802 7 0.052 9 0.317 6 0.197 3 0.9471 0.5941 0.6941 0.052 9
9 0.478 0 0.992 7 0.023 5 0.522 0.007 3 0.976 5 0.4471 0.8 0.023 5
10 0.337 6 0.992 7 ≤ 0.001 0.662 4 0.007 3 1 0.311 8 0.8 0

Table 6: Uncertainty measurement on “winequality-red.”

α β c

G O P G O P G O P

1 0.7461 0.985 3 0.531 6 0.253 9 0.014 7 0.468 4 0.657 9 0.794 9 0.500 3
2 0.742 2 0.936 9 0.636 7 0.257 8 0.0631 0.363 3 0.653 5 0.770 5 0.585 4
3 0.745 2 0.970 0 0.638 3 0.254 8 0.03 0.361 7 0.656 7 0.789 9 0.586 0
4 0.730 7 0.969 4 0.638 3 0.269 3 0.030 6 0.361 7 0.649 8 0.793 0 0.586 0
5 0.735 6 0.953 5 0.637 2 0.264 4 0.046 5 0.362 8 0.656 0 0.781 7 0.585 4
6 0.731 1 0.962 5 0.502 3 0.268 9 0.037 5 0.497 7 0.652 9 0.785 5 0.471 5
7 0.730 9 0.940 9 0.637 2 0.2691 0.0591 0.362 8 0.652 3 0.776 7 0.585 4
8 0.743 5 0.9961 0.629 8 0.256 5 0.003 9 0.370 2 0.657 9 0.803 0 0.579 7
9 0.728 4 0.939 3 0.585 4 0.271 6 0.060 7 0.414 6 0.647 3 0.774 2 0.585 4
10 0.739 8 0.931 1 0.586 6 0.260 2 0.068 9 0.413 4 0.656 0 0.769 2 0.586 6

Table 7: Uncertainty measurement on “own-data 2.”

α β c

G O P G O P G O P

1 0.251 9 0.804 7 0.000 3 0.7481 0.195 3 0.999 7 0.247 0.804 7 0.000 3
2 0.277 0 0.994 2 0.000 7 0.723 0.005 8 0.999 3 0.273 7 0.804 0.000 7
3 0.344 2 0.996 7 0.000 7 0.655 8 0.003 3 0.999 3 0.337 7 0.805 3 0.000 7
4 0.297 7 0.992 2 0.001 3 0.702 3 0.007 8 0.998 7 0.293 0.804 7 0.001 3
5 0.322 5 0.995 9 0.002 7 0.677 5 0.0041 0.997 3 0.316 7 0.805 0.002 7
6 0.311 9 0.990 2 0.002 7 0.6881 0.009 8 0.997 3 0.307 7 0.804 3 0.002 7
7 0.306 5 0.993 4 0.001 0.693 5 0.006 6 0.999 0.302 3 0.804 3 0.001
8 0.277 5 0.994 2 ≤ 0.001 0.722 5 0.005 8 1 0.272 3 0.805 ≤ 0.001
9 0.334 0 0.995 5 0.002 0.666 0.004 5 0.998 0.328 0.805 3 0.002
10 0.291 3 0.993 8 0.000 7 0.708 7 0.006 2 0.999 3 0.287 0.804 3 0.000 7
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Table 8: Uncertainty measurement on “winequality-white.”

α β c

G O P G O P G O P

1 0.638 3 0.997 9 0.0351 0.361 7 0.0021 0.964 9 0.6031 0.793 8 0.0351
2 0.647 6 0.999 5 0.031 2 0.352 4 0.000 5 0.968 8 0.611 5 0.793 8 0.031 2
3 0.6621 0.999 7 0.040 8 0.337 9 0.000 3 0.959 2 0.626 2 0.793 8 0.040 8
4 0.652 2 0.999 5 0.035 7 0.347 8 0.000 5 0.964 3 0.614 9 0.793 8 0.035 7
5 0.657 8 1 0.034 7 0.342 2 0 0.965 3 0.618 2 0.793 8 0.034 7
6 0.657 2 0.998 7 0.039 2 0.342 8 0.001 3 0.960 8 0.617 6 0.793 6 0.039 2
7 0.6241 0.999 2 0.034 7 0.375 9 0.000 8 0.965 3 0.590 9 0.793 8 0.034 7
8 0.627 2 0.999 2 0.033 5 0.372 8 0.000 8 0.966 5 0.592 9 0.793 8 0.033 5
9 0.629 5 0.999 2 0.032 3 0.370 5 0.000 8 0.967 7 0.596 0 0.793 8 0.032 3
10 0.635 9 0.999 5 0.029 4 0.3641 0.000 5 0.970 6 0.600 9 0.793 8 0.029 4
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Figure 2: Uncertainty measurement of weighted multigranulation model for “own-data 1.”
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IFISi μx, ]x, a( 􏼁 �
IFISi μx + ni, ]x + ni, a( 􏼁, 0≤ μx + ni( 􏼁 + ]x + ni( 􏼁≤ 1,

IFISi μx, ]x, a( 􏼁, else.
􏼨 (35)

We add random noise as follows:

IFISi μx, ]x, a( 􏼁 �
IFISi μx + ri, ]x + ri, a( 􏼁, 0≤ μx + ri( 􏼁 + ]x + ri( 􏼁≤ 1,

IFISi μx, ]x, a( 􏼁, else.
􏼨 (36)

We conducted ten experiments on each data set, as-
suming that the granularity weights corresponding to the

three information systems are assigned as
ω � 0.08, 0.04, 0.1, 0.03, 0.07, 0.02, 0.06, 0.2, 0.3, 0.1{ }, with
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Figure 3: Uncertainty measurement of weighted multigranulation model for “winequality-red.”
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threshold β � 0.6, and the concept set X is randomly gen-
erated from the target set. .e uncertainty measurement of
the three rough set models corresponding to each data set is
shown in Tables 6–8, and the results are illustrated
inFigure 2–5.

From Figures 2–5, we can find that the weighted pes-
simistic approximation accuracy is less than or equal to the
weighted generalized approximation accuracy, which is also
less than or equal to the weighted optimistic approximation
accuracy; the weighted optimistic approximation roughness
is less than or equal to the weighted generalized approxi-
mation roughness, which is also less than or equal to the
weighted pessimistic approximation roughness. Similarly,
the weighted pessimistic approximation dependence is less
than or equal to the weighted generalized approximation

dependence, which is also less than or equal to the weighted
optimistic approximation dependence.

MSIFIS′s optimistic multigranularity intuitionistic
fuzzy rough set model requirements are too loose in
selecting objects, but the pessimistic multigranularity
intuitionistic fuzzy rough set model requirements are too
strict in selecting objects. .erefore, in practical appli-
cations, the object selection can be completed by the
weighted generalized multigranular intuitionistic fuzzy
rough set model.

From Figures 2–5, in the same data set, MSIFIS has
different calculation results in different multigranularity
intuitionistic fuzzy rough set models. .erefore, in practical
applications, we can complete the object selection by
changing the threshold β.
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Figure 4: Uncertainty measurement of weighted multigranulation model for “own-data 2.”
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Figure 5: Uncertainty measurement of weighted multigranulation model for “winequality-white.”

Input: ω, β, MSIFIS � IFIS1, IFIS2, . . . , IFISq􏽮 􏽯, IFIS � U, Ai, Vi, IFi􏼈 􏼉, X⊆U
Output: αωMSIF(X)β, ρωMSIF(X)β and cωMSIF(X)β
(1) begin
(2) for l� 1:q do
(3) for i� 1:n do
(4) [xi]Al � ∅;
(5) for j� 1:n do
(6) flag1 � 1;
(7) for k� 1:m do
(8) if μAl

(xi, k)≤ μAl
(xj, k)∧]Al

(xi, k)≥∧]Al
(xj, k) then

(9) flag1 � 1;
(10) else
(11) flag1 � 0;
(12) break;
(13) end
(14) end
(15) f flag1 �� 1;
(16) [xi]Al

� [xi]Al
∪ xj􏽮 􏽯;

(17) end
(18) end
(19) end
(20) end

ALGORITHM 2: Continued.
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6. Conclusions

In this paper, in order to solve the problem of knowledge
discovery in the MSIFIS, the weighted multigranulation
intuitionistic fuzzy rough setmodels, combinedwith the idea of
multigranulation, are studied. We also studied the relationship
between them. In order to further study the multigranulation
intuitionistic fuzzy rough set model in the MSIFIS, the un-
certainty measurement methods of different models are dis-
cussed. Finally, the effectiveness of the proposed models and
methods is verified through an example. In the future, we need
to continue to study the granularity weight distribution of
multisource intuitionistic fuzzy information system and its
application to decision-making.
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