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*is paper presents decomposition of the fourth-order Euler-type linear time-varying system (LTVS) as a commutative pair of two
second-order Euler-type systems. All necessary and sufficient conditions for the decomposition are deployed to investigate the
commutativity, sensitivity, and the effect of disturbance on the fourth-order LTVS. Some systems are commutative, and some are
not commutative, while some are commutative under certain conditions. Based on this fact, the commutativity of fourth-order
Euler-type LTVS is investigated by introducing the commutative requirements, theories, and conditions. *e fourth-order Euler-
type LTVSs are investigated into commutative pairs of twice Euler-type second-order linear time-varying systems (LTVSs). *e
decomposition theories and conditions are derived, proved, and solved to simplify the use of commutativity for practical and
industrial uses. Some fourth-order systems are sensitive toward change in initial conditions or parameters while others are not,
and the effect due to disturbance also varies within systems. Furthermore, the stability and robustness of systems have so many
issues. But we consider fourth-order Euler-type LTVS to observe, investigate, and tackle these issues. Lastly, the realization of
fourth-order LTVS from cascaded two second-order systems can be laboratory experimented which is an open problem for future
engineers to investigate. However, the theoretical results show a good agreement with the simulation results is considered in this
work. Perhaps it might have unlimited physical applications in science and engineering as well as theoretical contribution. But
beyond any reasonable doubt, the novelty is guaranteed because this study is the first of its kind that introduces the decomposition
of the fourth-order Euler-type linear time-varying system (LTVS) as a commutative pair of two second-order Euler-type systems.
Illustrative examples are presented to support the results.

1. Introduction

*e important feature of cascade-connected systems moti-
vates scientists and engineers to use the stability analysis of
the connected system for the modelling of many physical
problems and designing engineering systems. *e order of
connection plays a vital role in realizing more stable systems
in electronics and electrical engineering. Hence, the com-
mutativity concept has a significant role in the engineering
point of view. In 1977, Marshall in [1] investigated the
commutativity for 1st order continuous LTVSs. Later on,
Koksal investigated the 2nd order [2] and 3rd order [3]

continuous LTVSs. Recently, Ibrahim and Koksal in [4]
investigated the commutativity and sensitivity of Euler and
Onsager 6th order LTVSs.

Decomposition is an essential mechanism that is used in
many differential systems for developing the stability of a
system and resolving physical problems. It is the process of
splitting a high-order linear system into lower-order com-
mutative pairs.

Decomposition formulas for 2nd order continuous-time
LTVS were proved in [5] in 2016 by Koksal. *e theoretical
results and application for the realization of the 4th order
LTVS were studied in [6] by Ibrahim and Koksal.
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Transitivity property of commutativity for second-order
linear time-varying analogue systems was studied in [7].

When it comes to fractional-order dynamic system and
experimental aspects using analogue electronic devices that
are reprogrammable, the decomposition of Laplace ex-
pressions into cascaded connections of small blocks makes
possible a more reliable circuit design as shown in [8]. In this
work, it can be noted that the orders of the blocks matter
because the filter response may mitigate some frequencies
that may be required by the next block.

In this paper, the commutativity, decomposition, sen-
sitivity, and the effect of disturbance on the fourth-order
Euler-type LTVSs are considered. Furthermore, the cases of
nonzero initial conditions (ICs) are considered.

*is paper is organized as follows. *e mathematical
materials and methods that introduce the commutativity
conditions are considered in Section 2. *e commutative
requirements and conditions along with their general so-
lution are provided in Section 3. Results and discussions for
4th order Euler LTVS are observed in Section 4. Section 5
demonstrates and illustrates the effectiveness of the results
by considering fourth-order Euler-type LTVS. Finally, the
results are concluded in Section 6.

2. Mathematical Materials and Methods

Let C be the fourth-order Euler LTVS, described by

C: C4(t)t
4
y

(4)
(t) + C3(t)t

3
y

(3)
(t) + C2(t)t

2
y″(t) + C1(t)ty′(t) + C0(t)y(t) � x(t), (1)

where the input and output are x(t) and y(t) and Ci(t)

represent the coefficients of the time-varying system, which
are piecewise continuous functions on [t0,∞). Let the initial
conditions be y(t0), y′(t0), y″(t0), and y(3)(t0) at the initial
time t0 ∈ R. Due to its order of 4, C4(t) ≡ 0. *e decom-
position of C as the cascade connection of second-order
systems A and B is given as

A: a2(t)yA
″(t) + a1(t)yA

′(t) + a0(t)yA(t) � xA(t),

B: b2(t)yB
″ (t) + b1(t)yB

′ (t) + b0(t)yB(t) � xB(t),
(2)

with ICs

yA t0( , yA
′ t0( .

yB t0( , yB
′ t0( ,

(3)

where a2(t)≠ 0 and b2(t)≠ 0. Additionally, ai, bi, xA,
xB ∈ P[t0,∞).

*e systems A and B are called commutative, while
(A, B) represents the commutative pair provided that the
input-output relations of AB and BA are equivalent.

For the cascade connection AB in Figure 1(a), the au-
thors in [6] obtained a 4th order LTVS for the connection AB

as

a2b2y
(4)

+ a2b1 + a1b2 + 2a2b2′( y
(3)

+ a1b1 + a0b2 + a2b0 + 2a2b1′ + a1b2′ + a2b2″( y″

+ a0b1 + a1b0 + 2a2b0′ + a1b1′ + a2b1″( y′ + a0b0 + a1b0′ + a2b0″( y � x,

(4)

y t0(  � yB t0( , (5)

y′ t0(  � yB
′ t0( , (6)

y″ t0(  � yB
″ t0(  �

yA t0(  − b0 t0( yB t0(  − b1 t0( yB
′ t0( 

b2 t0( 
, (7)

y
(3)

t0(  � y
(3)
B t0(  � −

b1 t0( 

b
2
2 t0( 

−
b2′ t0( 

b
2
2 t0( 

 yA t0(  +
1

b2 t0( 
yA
′ t0( 

+
b0 t0( b1 t0( 

b
2
2 t0( 

+
b0 t0( b2′ t0( 

b
2
2 t0( 

−
b0′ t0( 

b2 t0( 
 yB t0(  +

b
2
1 t0( 

b
2
2 t0( 

+
b1 t0( b2′ t0( 

b
2
2 t0( 

−
b0 t0( 

b2 t0( 
−

b1′ t0( 

b2 t0( 
 yB

′ t0( .

(8)

Interchanging A↔B and a↔b from Figure 1(b), the
connection BA provides the following results:
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b2a2y
(4)

+ b2a1 + b1a2 + 2b2a2′( y
(3)

+ b1a1 + b0a2 + b2a0 + 2b2a1′ + b1a2′ + b2a2″( y″

+ b0a1 + b1a0 + 2b2a0′ + b1a1′b2a1″( y′ + a0b0 + b1a0′ + b2a0″( y � x,

(9)

y t0(  � yA t0( , (10)

y′ t0(  � yA
′ t0( , (11)

y″ t0(  � yA
″ t0(  �

yB t0(  − a0 t0( yA t0(  − a1 t0( yA
′ t0( 

a2 t0( 
, (12)

y
(3)

t0(  � y
(3)
A t0(  � + −

a1 t0( 

a
2
2 t0( 

−
a2′ t0( 

a
2
2 t0( 

 yB t0(  +
1

a2 t0( 
yB
′ t0( 

+
a
2
1 t0( 

a
2
2 t0( 

+
a1 t0( a2′ t0( 

a
2
2 t0( 

−
a0 t0( 

a2 t0( 
−

a1′ t0( 

a2 t0( 
 yA

′ t0( 

+
a0 t0( a1 t0( 

a
2
2 t0( 

+
a0 t0( a2′ t0( 

a
2
2 t0( 

−
a0′ t0( 

a2 t0( 
 yA t0( .

(13)

3. Commutativity Requirements

Two 2nd order LTVS subsystems A and B are called com-
mutative if the connections AB and BA are identical. Re-
garding this case, the equivalence is realized iff differential
equations in equations (4) and (9) are the same; in addition
to the initial conditions in equations (5)–(8) and equations
(10)–(13) must be the same. Solving equations (4) and (9) for
b2, b1, b0 yields the matrix system

b2

b1

b0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

a2 0 0

a1 a
0.5
2 0

a0 f32 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

k2

k1

k0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

f32 �
1
4

a
−0.5
2 2a1 − a2′(  ,

(14)

where k2, k1, k0 are some constants. Furthermore, coeffi-
cients of the differential form of A satisfy

−a
0.5
2

d
dt

a0 −
4a

2
1 + 3 _a

2
2 − 8a1 _a2 + 8 _a1a2 − 4a2 €a2

16a2
 k1 � 0, ∀t≥ t0.

(15)

Commutativity with arbitrary and nonzero initial con-
ditions can be assured by considering equations (16)–(22)
(for more details, see [6]):

y � yB � yA, (16)

y′ � yB
′ � yA
′, (17)

y″ �
1
b2

−
b0
b2

 yA −
b1yA
′

b2
�

1
a2

−
a0

a2
 yA −

a1yA
′

a2
, (18)

A B
x = xA yB = yyA = xB

(a)

AB
x = xB yB = xA yA = y

(b)

Figure 1: Cascade connection of the LTVSs.

Complexity 3



y
(3)

� −
b1

b
2
2

−
b2′

b
2
2

 yA +
b0b1

b
2
2

−
b0′

b2
+

b0b2′

b
2
2

 yB +
1
b2

yA
′ +

b
2
1

b
2
2

−
b0
b2

−
b1′

b2
+

b1b2′

b
2
2

 ,

�
a0a1

a
2
2

−
a0′

a2
+

a0a2′

a
2
2

 yA +
a
2
1

a
2
2

−
a0

a2
−

a1′

a2
+

a1a2′

a
2
2

 yA
′ + −

a1

a
2
2

−
a2′

a
2
2

 yB +
1
a2

yB
′ ,

(19)

−
1
a2

+
1

a2k2
−

k0

a2k2
−

a1k1

2a
3/2
2 k2

+
k1a2′

4a
3/2
2 k2

 yA −
k1yA
′

��
a2

√
k2

� 0, (20)

a1

a
2
2

−
k1

a
3/2
2 k

2
2

−
a1

a
2
2k2

+
k0k1

a
3/2
2 k

2
2

+
a1k

2
1

2a
2
2k

2
2

+
a1k0

a
2
2k2

+
a
2
1k1

2a
5/2
2 k2

+
a0k1

a
3/2
2 k2

−

k1a1′

2a
3/2
2 k2

+
a2′

a
2
2

−
a2′

a
2
2k2

+
a1k1a2′

2a
5/2
2 k2

−
k
2
1a2′

4a
2
2k

2
2

+
k0a2′

a
2
2k2

−
3k1 a2′( 

2

8a
5/2
2 k2

+
k1a1″

4a
3/2
2 k2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

yA

+ −
1
a2

+
k
2
1

a2k
2
2

+
1

a2k2
+

3a1k1

2a
3/2
2 k2

−
k0

a2k2
+

3k1a2′

4a
3/2
2 k2

 yA
′ � 0,

(21)

k0 + k2 − 1(  � 0. (22)

4. Results and Discussion

In this section, the explicit commutative formulas obtained
from the previous section are considered, and the coeffi-
cients of the decompositions A and B are expressed in terms
of the decomposed fourth-order Euler system C. Observe
that (1) and (4) are both 4th order LTVSs, and the equivalent
relation between them leads to

a2b2 � C4t
4

� a
2
2k2 � C4t

4⟶ a2 � t
2 C4

k2
 

1/2

. (23)

Comparing the coefficients of the 3rd derivatives and
making use of (14) leads to

a1 �
1
2

−
C4′���

C4
 ��

k2
 t

2
+ −

C
1/4
4 k1

k
5/4
2

+
C3���

C4
 ��

k2
 −

4
���
C4



��
k2

 t⎡⎣ ⎤⎦.

(24)

Relating the coefficients of the 2nd derivatives and
making use of (14) gives

a0 �
1
16

2 C4′( 
2

C
3/2
4 k

3/4
2

−
4 C4′( 

2

C
3/2
4

��

k2

 −
4C4″���
C4


k
3/4
2

+
8C4″���

C4
 ��

k2
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠t

2

+ −
8C3′���

C4
 ��

k2
 +

3k1C4′

C
3/4
4 k

5/4
2

−
16C4′
���
C4


k
3/4
2

+
6C3C4′

C
3/2
4

��

k2

 +
32C4′���
C4

 ��
k2

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠t

+
4k

2
1

k
2
2

−
2C3k1

C
3/4
4 k

5/4
2

+
12C

1/4
4 k1

k
5/4
2

−
16

���
C4



k
3/4
2

−
2C

2
3

C
3/2
4

��

k2

 +
8C2���

C4
 ��

k2
 +

32
���
C4



��
k2

 −
8k0

k2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (25)

Considering the obtained results a2, a1, and a0 of
equations (23)–(25), respectively, we figure out b2, b1, b0
using (14) and present them in the following explicit forms:
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b2 � k
1/2
2 c

1/2
4 t

2
, (26)

b1 �
1
2

−

��
k2


C4′���

C4
 t

2
+

C
1/4
4 k1

k
1/4
2

+
C3

��

k2



���
C4

 − 4
���
C4

 ��

k2


⎛⎜⎜⎝ ⎞⎟⎟⎠t

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦, (27)

b0 �
1
16

2k
1/4
2 C4′( 

2

C
3/2
4

−
4

��
k2


C4′( 

2

C
3/2
4

−
4k

1/4
2 C4″���
C4

 +
8

��
k2


C4″���

C4
⎛⎝ ⎞⎠t

2

+ −
8

��
k2


C3′���

C4
 −

3k1C4′

C
3/4
4 k

1/4
2

−
16k

1/4
2 C4′���
C4

 +
6C3

��

k2



C4′

C
3/2
4

+
32

��
k2


C4′���

C4
⎛⎜⎜⎝ ⎞⎟⎟⎠t + 8k0

+
2C3k1

C
3/4
4 k

1/4
2

−
12C

1/4
4 k1

k
1/4
2

− 16
���
C4


k
1/4
2 −

2C
2
3

��

k2



C
3/2
4

+
8C2

��

k2



���
C4

 + 32
���
C4

 ��

k2



⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (28)

From (1) and (4), one needs to observe the following
equations:

tC1 � a0b1 + a1b0 + 2a2b0′ + a1b1′ + a2b1″, (29)

C0 � a0b0 + a1b0′ + a2b0″( . (30)

Substituting the coefficients a2, a1, a0, b2, b1, and b0 from
(23)–(28) into (29) and (30), after numerous mathematical
computations and comparative analysis, the following re-
quirements are acquired:

C1 �
1
8

−16C2 −
C
3
3

C
2
4

+
4C2C3

C4
+
6C

2
3

C4
− 32C4 +

C
1/4
4 k

3
1

k
9/4
2

−
8C3

k
1/4
2

+
32C4

k
1/4
2

−
4C

1/4
4 k0k1

k
5/4
2

 , (31)

C0 �
1
256

5512C2 +
4C

4
3

C
3
4

−
32C2C

2
3

C
2
4

+
64C

2
2

C4
−
128C

2
3

C4
+ 1024C4 +

8C3k
3
1

C
3/2
4 k

9/4
2

−
48C

1/4
4 k

3
1

k
9/4
2

+
32k0k

2
1

k
2
2

−
64

���
C4


k
2
1

k
7/4
2

−
12C

2
3k

2
1

C
3/2
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. (32)

Theorem 1. 'e necessary and sufficient conditions for Euler
4th-order LTVS of equation (1) to be decomposed into cas-
cade-connected LTV commutative pairs of Euler 2nd-order
are that

(i) 'ere exist some constants k2, k1, k0 such that the
coefficients C1 and C0 can be formulated in con-
nection with C4, C3, and C2 as in (31) and (32),
respectively,

(ii) 'e reduced Euler 2nd order A and B must be for-
mulated with regard to C4, C3, and C2 as in equations
(23)–(28).

Proof. *e detailed proof of (i) of *eorem 1 can be seen in
equations (29) and (30), while in (ii) of*eorem 1, equations

(23)–(28) are obtained from the coefficients of equations (1)
and (4).

Note. *eorem 1 is applicable to the zero IC case. Regarding
the case of nonzero ICs, it is covered in *eorem 2. □

Theorem 2. 'e necessary and sufficient conditions for the
decomposition of Euler 4th order LTVS C with nonzero ICs
into its twin Euler 2nd order LTV commutative pairs A and B

are that

(i) 'e requirements of 'eorem 1 are fulfilled.
(ii) 'e ICs of A, B, C must obey equations (16) and (17).
(iii) Furthermore, the ICs of A must obey equations (20)

and (21).
(iv) In addition, the ICs of C must be satisfied.
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yA
′ t0( .

(34)

(v) For k1 � 0, the ICs must satisfy (22).

Proof. *eorem 2 (i) is obvious; for *eorem 2 (ii), the ICs
in equations (16) and (17) are obtained from equations (5),
(10) and equation (6), (11), respectively. Patterning *e-
orem 2(iii), the ICs in equations (20) and (21) are obtained
from equations (7), (12) and equations (8), (13),
respectively.

Regarding equation (33), we consider equation (18);
inserting in values of a2, a1, and a0 of equations (23)–(25)
leads to equation (33). Equation (34) is obtained by using
equation (19); substituting the values of a2, a1, and a0 of
equations (23)–(25), respectively, in equation (19) provides
equation (34). Item (v) results from equation (22) as the
solution of equations (20) and (21). □

5. Applications to Fourth-Order
Euler-Type LTVS

We apply the results obtained from the previous sections to
investigate the decomposition of fourth-order Euler LTVS as
a commutative pair of two second-order Euler-type systems.

5.1. Example 1. Considering the constants C4 � C3 � C2 �

1, with ki
′s in equation (36), C1 � −15/8 and C0 � 299/192

are obtained by making use of equations (31) and (32),
respectively. *e general Euler-type fourth-order LTVS C of
equation (1) becomes

t
4
y

(4)
(t) + t

3
y

(3)
(t) + t

2
y″(t) −

15
8

ty
’
(t) +

299
192

y(t) � x(t).

(35)

Note that equation (22) is satisfied with the constants

k2 � 3, k1 � 0, k0 � −2. (36)

Furthermore, equations (16)–(19) lead to

yB t0(  � yA t0(  � y t0( , (37)

yB
′ t0(  � yA

′ t0(  � y′ t0( , (38)

y″ t0(  � −
11
8

+
2
�
3

√ y t0(  +
3
2
y′ t0( for t0 � 1, (39)
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y
(3)

t0(  �
11
16

−
1
�
3

√ y t0(  + −
5
8

+
2
�
3

√ y′ t0( for t0 � 1.

(40)

*e Euler subsystems A and B generate the equations

A:
t
2
�
3

√ yA
″(t) −

�
3

√

2
tyA
′(t) +

33 + 8
�
3

√

24
�
3

√ yA(t) � xA(t),

(41)

B:
�
3

√
t
2
yB
′ (t) −

3
�
3

√

2
tyB
′ (t) +

11
�
3

√
− 8

8
 yB(t) � xB(t).

(42)

Note that both subsystems A and B in the decomposition
are of Euler type. Simulation was carried out with a sinusoid
of frequency 3 rad/sec, amplitude 2, and bias −21/10,
considering ode (Bogacki–Shampine) as the solver, while
maintaining a fixed step length of 0.01. Simulink outcomes

are illustrated in Figure 2. *e initial time and initial states
chosen are t0 � 1 and y(1) � yA(1) � yB(1) � yB

′ (1) � yA
′

(1) � y′(1) � 0.5. Equations (39) and (40) lead to
y″(1) � 1/16 + 1/

�
3

√
, y(3)(1) � 1/32 + 1/2

�
3

√
. After satisfy-

ing all decomposition conditions, the systems AB, BA, and
C produce a similar response (B � BA � C, see Figure 2).
However, with a small modification in the decomposition
requirement by changing yB(1) � yA(1) � y(1) � 0.5 to
yA(1) � y(1) � 0.6, then equation (37) is not satisfied, and
the decomposition is messed up, and it is not valid any more
(see AB1, BA1, C1 in Figure 2). Observe that AB1 is slightly
disturbed by the changes, while BA1 is so sensitive to ICs.
*erefore, A and B should be connected in the cascade
synthesis of C.

5.2. Example 2. In this example, the 4th order LTVS C is
reconstructed by considering the 2nd order subsystem A. In
line with this, consider the 2nd order LTVS A defined by

A: yA
″(t) + sin(t) yA

′(t) +
sin2(t)

4
+
sin(t)

�
5

√ +
cos(t)

2
+
3
4

 yA(t) � xA(t). (43)

For the constant k1:

1
k
2
2

k2 − k2k0 − k
2
2 − 0.5k2k1t −k1k2

k0k1 − k1 − 0.5k2k1 + V k
2
1 + k2 − k2k0 − k

2
2 + 1.5k2k1t

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

yA

yA
′

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ � 0, (44)

where V � (1 − k2 + 0.5k2
1 + k2k0)t + 0.25k2k1t

2.

For the commutativity with nonzero ICs, the coefficient
matrix in equation (44) must be singular at t0 � 0, that is, its
determinant is zero if

k1 � ∓
2
�
5

√ k0 + k2 − 1( . (45)

Furthermore, equation (44) at t0 � 0 requires

k2 − k2k0 − k
2
2 yA − k1k2yA

′ � 0. (46)

Inserting equation (45) into equation (46) guaranties
commutativity of A and B:

yA
′ � ±

�
5

√

2
yA,withyAarbitrary. (47)

Consider the case k1 ≠ 0 and choose

k2 � 1, k1 � ∓
2
�
5

√ , k0 � 1. (48)

By making use of equation (14), the pair B is obtained in
terms of A:

B: yB
″ (t) + sin(t) +

2
�
5

√ yB
′ (t) +

sin2(t)

4
+
sin(t)

�
5

√ +
cos(t)

2
+
3
4

 yB (t) � xB(t). (49)

Considering the coefficients b2, b1, b0 of equation (49)
and the system A, that is, a2, a1, a0 from equation (43), we
realize fourth-order LTVS C as
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C: y
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(t) + 2 sin(t) +
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√ y
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4
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4
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4
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8
+
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2
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5

√ −
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4
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y(t) � x(t).

(50)
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Regarding the decomposition with nonzero initial
condition, y(t0)≠ 0, equations (16)–(19) yield

yB t0(  � yA t0(  � y t0( , (51)

yB
′ t0(  � yA

′ t0(  � y′ t0(  � ±
�
5

√

2
yA t0( , (52)

yB
″ t0(  � y″ t0(  �

3
4

y t0(  for t0 � 0, (53)

y
(3)

t0(  � −
1
4
y′ t0(  for t0 � 0. (54)

Simulations are carried out with a sinusoid of frequency
3 rad/sec, amplitude 3, and bias −0.5. *e rationale behind
using Runge–Kutta as a solver was based on its numerical
stability as well as accuracy.*e Runge–Kutta schemes satisfy
the possibility condition for any time-step interval “change in
time” (see [9] and [10]). Simulink outcomes are illustrated in
Figure 3. *e initial time and initial conditions chosen are
t0 � 0 and y(0) � yA(0) � yB (0) � −1, respectively. Com-
puting equations (52)–(54) leads to
yB
′ (0) � yA

′(0) � y′(0) � ±
�
5

√
/2, y″(0) � −3/4 and

y(3) � −5/8
�
5

√
. *e responses of system C and its decom-

positions as AB and BA give the same output as shown in
Figure 3 (C). A noise signal in the form of saw-tooth wave
(signal generator) with amplitude 0.05 and frequency
0.01 rad/sec is injected between the subsystems A and B. *e
simulation results are shown in Figure 3 (AB and BA).

6. Conclusion

*e commutativity and decomposition of fourth-order Euler
LTVS are considered as a commutative pair of two second-
order Euler-type systems. *e results are analyzed explicitly
and depicted by simulations. Our results highlight the
sensitivity of fourth-order Euler-type LTVSs as a result of
changes in ICs and present the effect of disturbance due to
external noise. Based on these findings, we investigated and
discovered that the fourth-order Euler LTVS C possess its
commutative pairs A and B which are obtained as a result of
the decomposition process in *eorems 1 and 2 as well as in
example 1.*e commutative pairs A and B are commutative
under certain conditions and can be used for the realization
of fourth-order LTVS as seen in example 2.*e fourth-order
Euler LTVS C in equation (35) and the systems AB and BA

of example 1 are sensible toward changes in ICs. Moreover,
the system in equation (50) and the systems AB and BA of
example 2 show great level of commutativity imbalance
toward noise disturbance. Example 1 investigated the de-
composition of fourth-order Euler-type LTVS, and our
findings verify that fourth-order Euler-type LTVSs always
have general decomposed commutative pairs which are also
Euler-type systems. *e Euler systems possess both constant
forward feedback conjugates and non-constant feedback
conjugates as commutative pairs. Also, they have less effect
toward disturbance due to noise and are sensible toward
change in ICs (see [4]). Example 2 presented second-order
LTVS as a subsystem that is used for the realization of

fourth-order LTVS. *e system has a great effect toward
disturbance due to noise. *ese special properties of Euler
systems make them a case of interest and differentiate them
from other systems.

At last, one can easily observe that the theoretical results
are in good agreement with the simulation results. Gener-
alizing and applying these theorems in nonlinear systems,
fractional systems, and partial differential systems is an open
problem for future investigations. Hence, they remind
system designers which connection order should be used in
the cascade structure of system synthesis.
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