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We propose a theoretical study to investigate the spread of the SARS-CoV-2 virus, reported in Wuhan, China. We develop a
mathematical model based on the characteristic of the disease and then use fractional calculus to fractionalize it. We use the
Caputo-Fabrizio operator for this purpose. We prove that the considered model has positive and bounded solutions. We
calculate the threshold quantity of the proposed model and discuss its sensitivity analysis to find the role of every epidemic
parameter and the relative impact on disease transmission.+e threshold quantity (reproductive number) is used to discuss the
steady states of the proposed model and to find that the proposed epidemic model is stable asymptotically under some
constraints. Both the global and local properties of the proposed model will be performed with the help of the mean value
theorem, Barbalat’s lemma, and linearization. To support our analytical findings, we draw some numerical simulations to verify
with graphical representations.

1. Introduction

+e coronavirus family causes infections in humans,
beginning with a common cold and progressing to SARS.
Two coronavirus epidemics have been recorded in the
preceding twenty years [1–3]. SARS was one of them, and
it created a large-scale outbreak in several nations.
Approximately, 8000 people were affected by this out-
break, with 800 of them dying. In December 2019, a
serious respiratory sickness outbreak began in Wuhan,
China [4]. In early January 2020, the causal agent, a new
coronavirus, was identified and isolated from a single
patient (COVID-19). According to scientific evidence,
animals were the earliest source of virus transmission,
although the majority of cases are caused by infected

humans contacting susceptible humans. +e spread of
this virus is a hot topic that has touched practically every
corner of the globe and has been reported in over 200
countries. According to current records, there have been
over 401,288,380 confirmed cases, with 5,783,182 deaths
occurring till February 9th 2022. According to the WHO,
this is a public health emergency. +e World Health
Organization (WHO) has designated it a public health
emergency of worldwide concern due to the severity of
the condition. +is virus appears to be highly contagious,
spreading rapidly to nearly every country on the planet,
prompting the declaration of a global pandemic. It
signifies that it is a highly major public health threat, with
symptoms such as cough, fever, lethargy, and breathing
problems after infection.
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Fractional computing is an emerging area of mathe-
matics and attracted the attention of researchers. Because of
the wide applications to express the axioms of heritage and
recall different physical situations that occur in various fields
of applied science. Many classical models have been shown
with less accuracy in prediction about the temporal dy-
namics of the disease, while on the other hand, models with
noninteger order provide better information in allocating
and preserving data for large-scale analysis [5–7]. Moreover,
the derivative of integer order does not find the dynamics
between two various points [8, 9]. Furthermore, the com-
parison of integer and noninteger order epidemic models
reveals that models with noninteger order are the general-
ization of integer order and provide more and accurate
dynamics rather than the classical order, (for detail see
[9–11]). A model with noninteger order demonstrating the
complex dynamics of a biological system has been proposed
by Asma et al. [12]. A fractional-order epidemic model has
been investigated to explore the dynamics of toxoplasmosis
in feline and human populations [13]. Another study has
been reported and studied the stability analysis of pests in tea
with fractional order [14]. Similarly, many authors studied
dynamics of infectious diseases with fractional-order de-
rivatives, for e.g., Hadamard and Caputo and Rieman and
Liouville [15–19]. For the solution of Caputofractional order,
epidemiological models of many iterative and numerical
methods have been developed; however, the complications
of singular kernel arise. So, Caputo and Fabrizio presented
an idea based on the nonsingular kernel to overcome the
limitation that arises in the above fractional-order deriva-
tives [20].

Coronavirus disease 2019 (COVID-19) is one of the top
infectious diseases among other ones and therefore has been
recognized as a global threat by World Health Organization
(WHO). Due to novel characteristics of the coronavirus
disease various researchers have taken a keen interest.
Several researchers formulated various epidemiological
models to study the dynamics of communicable diseases (see
for instance [21–25]). +e current pandemic of novel
coronavirus disease is also a burning issue and many bi-
ologists and mathematicians reported different studies. For
example, Wu et al. introduced a model to describe the
transmission of the disease based on reported data from
31.12.2019 to 28.01.2020 [26]. Imai et al. studied the
transmission of the disease with the help of computational
modeling to estimate the disease outbreak in Wuhan, whose
main focus was on the human-to-human transmission [27].
Another study has been investigated by Zhu et al. [28] to
analyze the infectivity of the novel coronavirus. +e dy-
namical analysis of the novel disease of COVID-19 under the
effect of the carrier with environmental contamination has
been performed by Hattaf et al. [29]. All the reported studies
indicate that bats and minks may be two animal hosts of the
novel coronavirus. Similarly, many more studies have been
reported on the dynamics of a novel coronavirus, for in-
stance, see [30, 31]. Nevertheless, the literature reveals that
the work proposed is an excellent contribution, however, it
could be possible to improve further by incorporating some

interesting and important factors related to the novel
coronavirus disease.

+e spreading of coronavirus disease globally rises from
the human-to-human transmission, while the initial source
of the disease was an animal/reservoir. +e characteristic of
SARS-CoV-2 confirms that various infection phases are
significant and affect the transmission. +e role of asymp-
tomatic is notable because with no symptoms it becomes the
major source of transmission of the infection. So, a small
number of this population leads to a big disaster.We develop
a mathematical model according to the novel disease of
coronavirus and keeping in view the aesthetic of the virus. To
do this, first, we formulate themodel and then fractionalize it
to perform the fractional type analysis of the proposed
model. +e fractional derivative used in this study is a
particular case of the new generalized Hattaf fractional
(GHF) derivative [32, 33]. We show that the proposed
fractional-order epidemiological model is bounded and
possesses positive solutions. We also find the steady states of
the epidemic problem and discuss asymptotic stabilities. For
this, we use the dynamical systems theory. Particularly, we
utilize the linearization, mean value theorem, and Barbalat’s
Lemma. Moreover, the sensitivity analysis will be performed
for the threshold parameter to find the impact of each
epidemic parameter involved in the model mechanism. We
use the sensitivity index formula for this purpose. We
perform the numerical visualization of the analytical results
to verify the theocratical part and show the effectiveness of
the control strategy. We also show the difference between
integer and noninteger order epidemiological cases.

2. Formulation of the Model with
Fractional Analysis

+e proposed problem is formulated by taking into account
the characteristics of the novel coronavirus illness. We di-
vide the total human population Nh(t) into four various
compartments and assume that M(t) represents the res-
ervoir. In the proposed study, we also consider several
transmission routes, such as from human-to-human and
from a reservoir-to-human. Before we show the model, we
make the following assumption:

(i) +e parameters and variables involved in the model
are positive or non-negative values

(ii) +e inflow of newborn are susceptible
(iii) +e novel disease is transmitted by several routes,

such as from latent and symptomatic individuals as
well as from reservoirs and so accordingly
incorporated.

(iv) +ose who have a strong immune system got nat-
ural recovery

(v) Two types of recoveries i.e., from latent and
symptomatic populations are taken

(vi) +e death rate due to disease is taken in the
symptomatic infected compartment

2 Complexity



As a result of combining all the above assumptions, the
following system of nonlinear differential equations
emerges:

dSh(t)

dt
� Λ − β1Sh(t)Lh(t) − cβ2Sh(t)Ih(t) − ψβ3Sh(t)M(t) − dSh(t),

dLh(t)

dt
� β1Sh(t)Lh(t) + cβ2Sh(t)Ih(t) + ψβ3Sh(t)M(t) − c1 + c2 + d( 􏼁Lh(t),

dIh(t)

dt
� c1Lh(t) − c3 + d + d1( 􏼁Ih(t),

dRh(t)

dt
� c3Ih(t) + c2Lh(t) − dRh(t),

dM(t)

dt
� η2Ih(t) + η1Lh(t) − αM(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

and the initial population sizes are assumed to be as
follows:

Sh(0)> 0, Lh(0)≥ 0, Ih(0)≥ 0, Rh(0)≥ 0, M(0)≥ 0. (2)

In the proposed epidemiological model, the parameters
described as Λ is the new birth rate, and the disease
transmission rates are symbolized by, β1, β2, and β3, which
represent the transmission from latent, symptomatic, and
reservoir, respectively. We also denote the reduced trans-
mission coefficient by c and ψ, while c1 is the moving ratio of
latent to infected and c2 denotes the recovery rate. We also
denote the recovery rate under treatment by c3, while d is the
natural mortality. +e disease-induced rate is d1. Further-
more, η1 and η2 are the two ratios that contribute production
of the virus in the seafood market. We denote the removing
rate of the virus with α.

2.1. Fractional-Order Epidemiological Model. Let σ be the
fractional-order parameter 0< σ < 1. We will extend the
model to its associate fractional order. First, we give some
fundamental concepts that will be used in getting our
findings.

Definition 1. (see [9]). Let T> 0 and assume that
ϕ ∈ H1(0, T), if n − 1< σ < n and σ > 0 such that n ∈ N, then
the derivative in the sense of Caputo as well as the Caputo-
Fabrizio with σ order are given as follows:

CFD
σ
0,t φ(t)􏼈 􏼉 �

K(σ)

(1 − σ)
􏽚

t

0
φ′(u)exp

(u − t)σ
1 − σ

􏼠 􏼡du,

CD
σ
0,t φ(t)􏼈 􏼉 �

1
Γ(− σ + n)

􏽚
t

0
(t − u)

− 1+n− σφn
(u)du,

(3)

where CF and C are used for the representation of Caputo-
Fabrizio and Caputo, respectively, while t> 0 and K(σ) are
the normalization function, and K(0) � 0 � K(1).

Definition 2 see [9]). (If 0< σ < 1 and φ(t) varies with time t,
then the integral is described as follows:

RLJ
σ
0,t φ(t)􏼈 􏼉 �

1
Γ(σ)

􏽚
t

0
(t − z)

σ− 1φ(u)du. (4)

+e above integral is known as the Riemann–Liouville
integral.

CFJ
σ
0,t φ(t)􏼈 􏼉 �

2
(2 − σ)K(σ)

(1 − σ)φ(t) + σ 􏽚
t

0
φ(u)du􏼨 􏼩. (5)

+e integral defined by Equation (5) is said to be the
Caputo-Fabrizio-Caputo (CF) integral.

Since σ is the fractional order, and using the notion 〉1 �

cσ
1 + cσ

2 + dσ and ϱ2 � cσ
3 + dσ + dσ

1 for the shake of sim-
plicity, therefore the fractional order model looks like the
following equation:

CFD
σ
0,tSh(t) � Λσ − βσ1Lh(t)Sh(t) − c

σβσ2Ih(t)Sh(t) − ψσβσ3M(t)Sh(t) − d
σ
Sh(t),

CFD
σ
0,tLh(t) � βσ1Lh(t)Sh(t) + c

σβσ2Ih(t)Sh(t) + ψσβσ3M(t)Sh(t) − ϱ1Lh(t),

CFD
σ
0,tIh(t) � c

σ
1Lh(t) − ϱ2Ih(t),

CFD
σ
0,tRh(t) � c

σ
3Ih(t) + c

σ
2Lh(t) − d

σ
Rh(t),

CFD
σ
0,tM(t) � ησ2Ih(t) + ησ1Lh(t) − ασM(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)
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We show that the proposed fractional-order epidemic
model as reported by the above system is both biologically
and mathematically feasible. For this, we discuss the posi-
tivity and boundedness of the model (6), which proves that
the underconsidered problem is well-possed. We also in-
vestigate that the dynamics of the proposed model are
confined to a certain region invariant positively. +e fol-
lowing Lemmas is established for this purpose.

Lemma 1. Since (Sh(t), Lh(t), Ih(t), Rh(t), M(t) are the
proposed model (6) solutions and let us consider that it
possessing non-negative initial sizes of population, then
(Sh(t), Lh(t), Ih(t), Rh(t), M(t) are non-negative for all
t≥ 0.

Proof. Since, σ is the fractional order and assuming that G

represents the fractional operator with order σ, then system
(1) leads to

GD
σ
0,t Sh(t)( 􏼁 � Λσ − βω1 Lh(t) + c

σβσ2Ih(t) + ψσβσ3M(t) + d
σ

( 􏼁Sh(t),

GD
σ
0,t Lh(t)( 􏼁 � βσ1Lh(t) + c

σβσ2Ih(t) + ψσβσ3M(t)( 􏼁Sh(t) − ϱ1Lh(t),

GD
σ
0,t Ih(t)( 􏼁 � c

σ
1Lh(t) − ϱ2Ih(t),

GD
σ
0,t Rh(t)( 􏼁 � c

σ
2Lh(t) + c

σ
3Ih(t) − d

σ
Rh(t), GD

σ
0,t(M(t)) � ησ1Lh(t) + ησ2Ih(t) − ασM(t).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(7)

+is implies that

GD
σ
0,tSh(t)|κ Sh( ) � Λσ > 0,

GD
σ
0,tLh(t)|κ Lh( ) � βσ1Lh(t) + c

σβσ2Ih(t) + ψσβσ3M(t)( 􏼁Sh(t)≥ 0,

GD
σ
0,tIh(t)|κ Ih( ) � c

σ
1Lh(t)≥ 0, GD

σ
0,tRh(t)|κ Rh( ) � c

σ
2Lh(t) + c

σ
3Ih(t)≥ 0,

GD
σ
0,tM(t)|κ(M) � ησ1Lh(t) + ησ2Ih(t)≥ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(8)

where κ(ξ) � ξ � 0 and Sh, Lh, Ih, Rh, M􏼈 are in C(R+ × R+)

and ξ ∈ Sh, Lh, Ih, Rh, M􏼈 􏼉, respectively. Following the
methodology proposed in [34] and consequently used by
Qureshi et al. [35], we reach to the conclusion that the
solutions are non-negative for all non-negative t. □

Lemma 2. Let us assume that the Ω is the feasible region of
the model (6), then within it, the model that is under con-
sideration is invariant and the feasible region is given by

Ω �

Sh(t), Lh(t), Ih(t), Rh(t), M(t)( 􏼁 ∈ R
5
+: Sh + Lh

′

+Ih + Rh ≤
Λ
d

􏼒 􏼓
σ
,

M(t)≤
Λσ ησ1 + ησ2( 􏼁

d
σασ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(9)

Proof. Let Nh(t) represent the total human population, then
the use of the proposed fractional model leads to the as-
sertion is given by the following equation:

GD
σ
0,tNh(t) + d

σ
Nh(t)≤ΛσNh(t). (10)

Solving equation (10), we get the following equation:

Nh(t)≤Nh(0)Eω − d
σ
t
σ

( 􏼁 +
Λ
d

􏼒 􏼓
σ
1 − Eσ − d

σ
t
σ

( 􏼁( 􏼁. (11)

It could be also noted that Lh, Ih ≤Nh, so the last
equation of the fractional model (6) looks like the following
equation:

GD
σ
0,tM(t) + ασM(t)≤

ησ1 + ησ2( 􏼁Λσ

ασd
σ . (12)

+e solution of (12) leads to the following equation:

M(t)≤M(0)Eσ − ασt
σ

( 􏼁 +
Λσ ησ1 + ησ2( 􏼁

d
σασ

􏼠 􏼡 1 − Eσ − ασt
σ

( 􏼁( 􏼁.

(13)

In (11) and (13), E(.) denotes theMittag-Leffler function
and Eσ(Z) � 􏽐

∞
n�0 Γ(σi + 1)/Zn. Furthermore, it is obvious

that when times grows without bound then (11) and (13)
gives that Nh(t)⟶ (Λ/d)σ and M(t)⟶ (Λ(ησ1
+ ησ2)/dσασ). +us, if Nh(0)≤ (Λ/d)σ and M(0)

≤ (Λσ(ησ1 + ησ2)/dσασ), then Nh(t)≤ (Λ/d)σ and
M(t)≤ (Λσ(ησ1 + ησ2)/dσασ) for every t> 0, while if
Nh(0)> (Λ/d)σ and M(0)> (Λσ(ησ1 + ησ2)/dσασ), then Nh

and M contained inΩ and will never leave. So, the dynamics
of the fractional epidemic model can be investigated in
feasible region Ω. □ □

3. Stability Analysis

In this section, we will examine the stability of fractional
epidemiological model (6).We find the steady states first and
threshold parameter (basic reproductive number) of the
fractional model to investigate the stability conditions. We
use the notion X1 for disease-free equilibrium calculating at
steady state with Lh � Ih � Rh � M � 0. It is easily stated
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that the component of X1 looks like Sh0 � Λω/dω and
Lh0 � Ih0 � Rh0 � M � 0. We now use the disease-free state
and find the threshold parameter. +is quantity represents
the maximum epidemic potential of a pathogen, which
describes what would happen if an infectious agent were to
enter a susceptible community, and therefore is an estimate
based on an idealized scenario. +e effective threshold
quantity depends on the nature of the population’s current
susceptibility. +is measure the potential transmission,
which is likely lower than the basic reproduction number,
depends on various factors e.g., whether some individuals
have immunity due to prior exposure to the pathogen or
whether some individuals are vaccinated against the disease.
+erefore, this quantity is effective and changes over time
and is an estimate based on a more realistic situation within
the population. We calculate this quantity i.e., the threshold
quantity (R0) of the proposed model by following [36],
therefore following the next generation matrix approach, we
calculate the associated matrices i.e., F and V as given by the
following equation:

F �

βσ1Sh0 c
σβσ2Sh0 ψσβσ3Sh0

0 0 0

0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, V �

ϱ1 0 0

0 ϱ2 0

− ησ1 − ησ2 ασ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (14)

+e associated threshold quantity of model (6) is the
spectral radius of the matrix (K � FV− 1) is as R0 � R1
+ R2 + R3, where

R1 �
Λσβσ1
d
σϱ1

, R2 �
Λσβσ2c

σ
c
σ
1

d
σϱ1ϱ2

, R3 �
Λσβσ3ψ

σησ1
ασd

σϱ1
+
Λσβσ3ψ

σησ2c
σ
1

ασd
σϱ1ϱ2

.

(15)

It could be noted that the threshold quantity consists of
three parts that describe various transmission routes. One
may observe, that there is a transmission from an infected
human, while the other from reservoirs.

Similarly, we use the above quantity (R0) and assume
that X2 is the endemic equilibrium of the fractional order
model, then the components are calculated by solving
system (6) simultaneously at steady state. We also set
Sh � S∗h , Lh � L∗h , Ih � I∗hRh � R∗h , and M � M∗ for the sake
of convenience, then the corresponding endemic equilib-
rium leads to X2 � (S∗h , L∗h , I∗h , R∗h , M∗), whoso components
are defined by the following equation:

S
∗
h �

ϱ1ϱ2α
σ

βσ1ϱ2α
σ

+ ασc
σ
1c

σβσ2 + ψσβσ3η
σ
1ϱ2 + ησ2c

σ
1ψ

σβσ3
,

L
∗
h �

ασd
σϱ2ϱ1 R0 − 1( 􏼁

q2 βσ1ϱ2α
σ

+ ασc
σ
c
σ
1β

σ
2 + ψσβσ3η

σ
1ϱ2 + ησ2c

σ
1ψ

σβσ3( 􏼁
,

I
∗
h �

c
σ
1
ϱ2

L
∗
h , R
∗
h �

1
d
σϱ2

c
σ
2ϱ2 + c

σ
1c

σ
3( 􏼁L
∗
h ,

M
∗

�
1

ασϱ2
ησ1ϱ

σ
2 + c

σ
1η

σ
2( 􏼁L
∗
h .

(16)

+e endemic equilibrium reveals that X2 exists only if
R0 > 1. For this, we sate the following result.

Lemma 3. Ce endemic equilibrium X2 � (S∗h , L∗h , I∗h ,

R∗h , M∗) for the proposed problem (6) exists only whenever,
the threshold quantity (R0) is greater than unity.

We use the linear stability analysis to discuss the temporal
dynamics of the fractional model (6) aroundX1 and X2. So we
have the following results.

Theorem 1. If the threshold quantity (R0) is less than unity,
then the local, as well as global dynamics of the problem, is
asymptotically stable around X1 � (Sh0, 0, 0, 0, 0).

Proof. Following +eorem 3 reported in [37] to obtain the
required results. Since it is clear that all other compartments
of the proposed model do not depend explicitly on the
recovered class, so we study the dynamics of the model for
only the three-compartment, which will be enough for the
whole model. Let A(X1) be the Jacobian matrix of the
proposed model (6) around X1; then,

A X1( 􏼁 �

− d
σ

−
βσ1Λ

σ

d
σ −

c
σβσ2Λ

σ

d
σ −

ψσβσ3Λ
σ

d
σ

0
βσ1Λ

σ

d
σ − ϱ1

c
σβσ2Λ

σ

d
σ

ψσβσ3Λ
σ

d
σ

0 c
σ
1 − ϱ2 0

0 ησ1 ησ2 − ασ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (17)

+e calculation shows that A(X1), obviously has two
negative eigenvalue i.e., λ1 � − dσ and λ2 � − ασ . To find the
nature of the remaining, we take the matrix given by the
following equation:

A X1( 􏼁 �

βσ1Λ
σ

d
σ − ϱ1

c
σβσ2Λ

σ

d
σ

c
σ
1 − ϱ2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (18)

It is sufficient for the Routh–Hurwitz criteria that H1:
trace(A(x1))< 0, and det(A(X1))> 0 holds. We calculate
the trace(A(x1)) and det(A(X1)), such that

trace A X1( 􏼁( 􏼁 � − ϱ1 1 − R1( 􏼁 − ϱ2, (19)

det A X1( 􏼁( 􏼁 � q2q3 1 − R1 + R2( 􏼁( 􏼁. (20)

It can be noted from the above equations (19)–(20) that
trace(A(X1))<0 and det(A(X1))>0, if R1+R2<1.. So the
Routh–Hurwitz criteria are satisfied if R0 < 1. It proves the
conclusion that the local dynamics of the model (6) is as-
ymptotically stable, if R0 < 1. □

+e application of linear stability analysis is utilized to
find the dynamics of the proposed model (6) around its
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associated endemic equilibrium (16). For this, we describe
the result as follows. □

Theorem 2. If the threshold quantity (R0) is greater than
unity i.e., R0 > 1, then the local as well as the global dynamics
of the endemic equilibrium, X2 � (S∗h , L∗h , I∗h , R∗h , M∗) is as-
ymptotically stable.

Proof. Using the theory of a dynamical system, we discuss
the local dynamics of the proposed system around the en-
demic equilibrium. Let A(X2) be the Jacobian matrix of
system (6) around X2; then,

A X∗( 􏼁 �

− d
σ

+ βσ1L
∗
h + c

σβσ2I
∗
h + ψσβσ3M

∗
( 􏼁 − βσ1S

∗
h − c

σβσ2S
∗
h − ψσβσ3S

∗
h

βσ1L
∗
h + c

σβσ2I
∗
h + ψσβσ3M

∗ ψσβσ3S
∗
h − ϱ1 βσ2S

∗
h

0 c
σ
1 − ϱ2 0

0 ησ1 ησ2 − ασ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (21)

We find the characteristic polynomial of the matrix (21),
such that

p(λ) � λ4 + k1λ
3

+ k2λ
2

+ k3λ + k4, (22)

where

β2 β1

0

2

4

1
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0.0020 0

R 0

(d)

Figure 1:+e graphical results demonstrate the local sensitivity analysis of the threshold quantity (R0) with respect to the model parameters
β1, β2, η1, η2, c1, c2, and c. For this we use the parametric values as follows: Π � 0.2453, ψ � 0.00180, β1 � 0.0001847, c3 � 0.09960,
c � 0.8631, c4 � 0.01470, β2 � 0.0004615, μ1 � 0.00130, μ0 � 0.00002, μ2 � 0.00230, c1 � 0.2381, η1 � 0.00200, c2 � 1.3184, and
η2 � 0.00005. (a)R0 verses β1 and β2. (b)R0 verses η1 and η2. (c)R0 verses c1 and c2. (d)R0 verses c and c1.
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k1 � ασ + d
σ

+ ϱ1( 􏼁 βσ1ϱ2α
σ

+ ασc
σ
1c

σβσ2 + ψσβσ3η
σ
1ϱ2 + ησ2c

σ
1ψ

σβσ3( 􏼁 + ϱ1 ασc
σ
1c

σβσ2 + ψσβσ3η
σ
1ϱ2((

+ ησ2c
σ
1ψ

σβσ3 + βσ1α
σ
d
σϱ2 + ασd

σ
c
σ
1c

σβσ2 + ψσβσ3 ησ1ϱ2 + ησ2c
σ
1( 􏼁d

σ
( 􏼁 R0 − 1( 􏼁,

k2 � α2σd
σβσ1ϱ2 + d

σϱ22β
σ
1α

σ
+ α2σϱ22β

σ
1 + ασd

σψσβσ3η
σ
1ϱ2 + ασd

σησ2c
σ
1ψ

σβσ3 + ασϱ1η
σ
2c

σ
1ψ

σβσ3
+ ασϱ2η

σ
2c

σ
1ψ

σβσ3 + d
σϱ1α

σ
c
σ
1c

σβσ2 + d
σϱ1ψ

σβσ3η
σ
1ϱ2 + d

σϱ1η
σ
2c

σ
1ψ

σβσ3 + d
σϱ2α

σ
c
σ
1c

σβσ2
+ d

σϱ2η
σ
2c

σ
1ψ

σβσ3 + ϱ1ϱ2η
σ
2c

σ
1ψ

σβσ3 + α2σd
σ
c
σ
1c

σβσ2 + α2σc
σ
1c

σβσ2 + α2σϱ2c
σ
1c

σβσ2
+ ασϱ22ψ

σβσ3η
σ
1 + d

σϱ22ψ
σβσ3η

σ
1 + ϱ2ϱ

2
3ψ

σβσ3η
σ
1 + d

σ α3σβ2σ1 ϱ
2
2 + ϱ32β

2σ
1 α2σ + ϱ42α

4σβ2σ1􏼐

+ 2βσ3ψ
σϱ32η

σ
1β

σ
1α

σ
+ 2β2σ3 ψ2σϱ22η

σ
1η

σ
2c

σ
1 + 2α3σβσ1ϱ2c

σ
1c

σβσ2 + 2ϱ22β
σ
1α

2σ
c
σ
1c

σβσ2
+ 2ϱ32α

4σβσ1c
σ
1c

σβσ2 + 2ϱ42α
3σβσ1ψ

σβσ3η
σ
1 + ϱ22α

2ση22σc
2σ
1 ψ2σβ2σ3 + c

σ
1α

2σϱ2ϱ1β
2σ
2 c

σ

+ ασβ2σ3 ψ2ση2σ1 ϱ
2
2 + ασβ2σ3 ψ2σ

c
2σ
1 η2σ2 + β2σ3 ψ2σϱ1η

2σ
1 ϱ

2
2 + β2σ3 ψ2σϱ1c

2σ
1 η2σ2 + β2σ3 ψ2σϱ2c

2σ
1 η2σ2

+ ϱ22α
4σ

c
2σ
1 c

2σβ2σ2 + ϱ42α
2σψ2σβ2σ3 η2σ1 + ϱ1α

2σ
c
2σ
1 c

2σβ2σ2 + q3α
2σ

c
2σ
1 c

2σβ2σ2 + 2α2σβσ3ψ
σησ1q

2
3β

σ
1

+ 2α2σβσ3ψ
σησ1ϱ2c

σ
1c

σβσ2 + 2ασβ2σ3 ψ2σησ1ϱ2η
σ
2c

σ
1 + 2α2σβσ3ψ

σ
c
σ
1η

σ
2β

σ
1ϱ2 + 2α2σβσ3ψ

σ
c
2σ
1 ησ2c

σβσ2
+ βσ3ψ

σϱ1η1ϱ
2
2β

σ
1α

σ
+ 2βσ3ψ

σϱ1η
σ
1ϱ2α

σ
c
σ
1c

σβσ2 + 2β2σ3 ψ2σϱ1η
σ
1ϱ2η

σ
2c

σ
1 + βσ3ψ

σϱ1c
σ
1η

σ
2β

σ
1ϱ2α

σ

+ 2βσ3ψ
σϱ1c

2σ
1 ησ2α

σ
c
σβσ2 + 2βσ3ψ

σϱ22η
σ
1α

σ
c
σ
1c

σβσ2 + 2βσ3ψ
σϱ22c

σ
1η

σ
2β

σ
1α

σ
+ 2βσ3ψ

σϱ2c
2σ
1 ησ2α

σ
c
σβσ2

+ ϱ1β
σ
1ϱ2α

2σ
c
σ
1c

σβσ2 + 2ϱ32α
3σβσ1η

σ
2c

σ
1ψ

σβσ3 + 2ϱ32α
3σ

c
σ
1c

σβσ2ψ
σβσ3η

σ
1 + 2ϱ22α

3σ
c
2σ
1 c

σβσ2η
σ
2ψ

σβσ3
+ 2ϱ3σ2 α2σψ2σβ2σ3 ησ1η

σ
2c

σ
1 + ϱ1ϱ

2
2α

σβσ2β
σ
3ψ

σησ1 + ϱ2ϱ3α
σβσ2β

σ
3ψ

σ
c
σ
1η

σ
2 + β2σ3 ψ2σϱ32η

2σ
1

+ α3σc
2σ
1 c

2σβ2σ2 R0 − 1( 􏼁,

k3 � d βσ1ϱ2α
σ

+ ασc
σ
1c

σβσ2 + ψσβσ3η
σ
1ϱ2 + ησ2c

σ
1ψ

σβσ3( 􏼁 ψσϱ1η
σ
1β

σ
3ϱ

2
2 + ψσϱ2β

σ
3α

σ
q
σησ1 + ψσϱ2β

σ
3ϱ1η

σ
2c

σ
1􏼐

+ ψσβσ3ϱ1α
σ
c
σ
1η

σ
2 + ψσβσ3α

σϱ2η
σ
2c

σ
1 + ϱ22ϱ1α

σβσ2 + α2σϱ22β
σ
1 + ϱ2ϱ1α

σ
c
σ
c
σ
1β

σ
3 − ϱ1ϱ2α

σ
c
σ
1c

σβσ2
+ ϱ2α

2σ
c
σ
1c

σβσ2 + ϱ1ϱ2α
2σβσ2 + c

σ
1α

2σϱ1β
σ
2c

σ
+ c

σ
1α

σ
R0 − 1( 􏼁 + d

σϱ1ϱ
2
2ψ

σβσ3η
σ
1􏼐

+ d
σϱ1ϱ2η

σ
2c

σ
1ψ

σβσ3 + α2σd
σϱ22β

σ
1 + c

σ
1α

2σ
d
σβσ2c

σϱ2 + ασd
σϱ22ψ

σβσ3η
σ
1 + ασd

σϱ2η
σ
2c

σ
1ψ

σβσ3
+ c

σ
1α

2σ
d
σβσ2c

σϱ1 + ασd
σϱ1η

σ
2c

σ
1ψ

σβσ3 + ασϱ1ϱ
2
2ψ

σβσ3η
σ
1 − ϱ1ϱ

2
2α

σ βσ1ϱ2α
σ

+ ασc
σ
1c

σβσ2(

+ ψσβσ3η
σ
1ϱ2 + ησ2c

σ
1ψ

σβσ3 , and

k4 � d
σϱ2ϱ3α

2σ ϱ22β
σ
2β

σ
3c

σ
c
σ
1ψ

σα3σ + ϱ22β
σ
1β

σ
2α

σ
+ ϱ22β

σ
2β

σ
3ψ

σησ1 + ϱ2c
σ
1β

2σ
2 c

σασ + ϱ2β
σ
2β

σ
3ψ

σ
c
σ
1η

σ
2􏼐

+ ϱ2c
σ
1β

σ
2β

σ
3η

σ
1c

σψσ
+ ϱ2β

2σ
3 c

σ
c
σ
1ψ

σησ1 + c
2σ
1 βσ − 2βσ3c

2σασ + β2σ3 c
σ
c
2σ
1 ψσησ2

+ c
2σ
1 βσ2β

σ
3η

σ
2c

σψσ
R0 − 1( 􏼁.

(23)

Eigenvalues (roots) of (22) are negative or having
negative real parts, if (H0): ki > 0, i � 1, 2, . . . , 4 and δ > 0
holds, where

Δ4 �

k1 1 0 0

k3 k2 k1 1

0 k4 k3 k2

0 0 0 k4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (24)

It could be noted, from the above equations, that ob-
viously H0 holds, if R0 > 1. +us, we conclude that the local
dynamics of the proposed model (6) at endemic equilibrium
(X2) is asymptotically stable, if the threshold quantity is
greater than unity. □

Theorem 3. If R0 ≤ 1, then the point X1 of the model (6) is
globally asymptotically stable, while the same holds for X2
whenever R0 > 1.

Proof. To perform the global analysis of the proposed
fractional order epidemiological model, first we assume that
X(t) � (Sh(t), Lh(t), Ih(t), Rh(t), M(t)) and if t⟶∞,
then it has finite limit, therefore by following the result 3.1 in
[38], then from first equation of the model (7), we may write
the following equation:

CFD
α
0,tSh(t)≤Λσ − d

σ
Sh(t). (25)

Since for every ϕ≤ϕet, so by following the result +e-
orem 1 in [38] with the application of mean value theorem,
the above (25) may leads to the following equation:

Sh(t)
����

����≤ aU exp[− (− d){ } + 1]t, t≥T, (26)

Complexity 7



where a � ‖Sh(0)‖e− T + KTσe− T/σΓ(σ) + Λσ , and U> 0.
Consequently, we may derive the following equation:

lim
t⟶∞

Sh(t)≤UΛσ . (27)

Similarly, lim of Lh(t), Ih(t), Rh(t), and M(t) can be
proved. We also assume that

lim
t⟶∞

X(t) � S
∞
h , L
∞
h , I
∞
h , R
∞
h , M
∞

( 􏼁,

ϑ(X) �

ψ1(X)

ψ2(X)

ψ3(X)

ψ4(X)

ψ5(X)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

Λσ − βσ1Lh(t) + c
σβσ2Ih(t) + ψσβσ3M(t) + d

σ
( 􏼁Sh(t),

βσ1Lh(t) + c
σβσ2Ih(t) + ψσβσ3M(t)( Sh(t) − ϱ1Lh(t),

c
σ
1Lh(t) − ϱ2Ih(t),

c
σ
2Lh(t) + c

σ
3Ih(t) − dRh(t),

ησ1Lh(t) + ησ2Ih(t) − ασM(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
(28)

+us, in the light of mean value theorem, there exists
constants C1 > 0, C2 > 0, such that

‖ϑ(X)‖≤C1 + C2‖X‖. (29)

So, +eorem 2.1 and 1 in [39] implies that
CFDα

0,t(Sh(t), Lh(t), Ih(t), Rh(t), M(t)) is uniformly

continuous. +us, the application of Barbalat’s Lemma (see
for detail, [40]) gives the following equation:

lim
CF

t⟶∞
D

α
0,t(X(t)) � (0, 0, 0, 0, 0, 0). (30)

Consequently,

Λσ − βσ1Lh(t) + c
σβσ2Ih(t) + ψσβσ3M(t) + d

σ
( 􏼁Sh(t) � 0,

βσ1Lh(t) + c
σβσ2Ih(t) + ψσβσ3M(t)( 􏼁Sh(t) − ϱ1Lh(t) � 0, c

σ
1Lh(t) − ϱ2Ih(t) � 0,

c
σ
2Lh(t) + c

σ
3Ih(t) − d

σ
Rh(t) � 0, ησ1Lh(t) + ησ2Ih(t) − ασM(t) � 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(31)

+erefore, (S∞h , L∞h , I∞h , R∞h , M∞) is the equilibrium of
model (6) and by the similar procedure as adopted in [41],
we reach to the following equation:

lim
t⟶∞

(X(t)) � X1 or lim
t⟶∞

(X(t)) � X2. (32)

So, it could be concluded that the disease endemic state
X2 does not exists if R0 < 1, and so limX(t) � X1 whenever t

approaches ∞ and if R0 � 1 then X2 � X1, and limX(t) �

X1 as t approaches ∞, while on the other hand whenever
R0 > 1, then X2 exists and thus limX(t) � X2 as t tend to
∞. □

4. Numerical Simulation

In this section, we present the numerical simulation of the
proposed epidemic problem. We divided the section into

two subsections in which we discuss the sensitivity analysis
of every epidemic parameter and its relative impact on
disease transmission.We also discuss the temporal dynamics
for the long run and present the significance of fractional
parameters.

4.1. Sensitivity Analysis. We discuss the local sensitivity
analysis of the model parameters to define the relation
between threshold quantity and the epidemic parameters.
+is allows us to measure the relative impact of every ep-
idemic parameter on disease transmission. We follow the
work presented in [42] to perform the sensitivity analysis.
Using the sensitivity index formula, we get the sensitivity
indices as given in Table 1. It may be noted from the sen-
sitivity indices that the set of parameters
S1 � β1, β2, η1, η2, c􏼈 􏼉 has a direct relation with threshold
quantity, which means that increase in the value of these

Table 1: +e results represent the sensitivity indices of epidemic parameters.

Parameter Index value Parameter Index value
β1 0.1075 × 10− 7 β2 0.999999
c1 − 0.995739 η2 0.004176
c 0.3489 × 10− 8 c2 − 0.00387
c3 − 0.00029 η1 0.995823
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parameters causes an increase in the value of the threshold
quantity of the model. On the other hand, there is an inverse
relationship between the set of parameters c1, c2, c3􏼈 􏼉 and so
an increase in these parameters will cause a decrease in the

value of threshold quantity. +e highest sensitivity index
parameter is β2 having the sensitivity index 0.999999, which
means that an increase in the value of this parameter say by
10% would increase the value of the threshold quantity by
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Figure 2: +e results visualize the dynamics of the fractional order model around the disease-free state (X1), where the value of epidemic
parameters are chosen as: Λ � 0.5, β1 � 0.0011, β2 � 0.00000005, β3 � 0.0001, d � 0.3, c1 � 0.0000001, c2 � 0.5, c3 � 0.005, d1 � 0.02,
η1 � 0.2, η2 � 0.6, and α � 0.6. In this case, the value of the threshold parameter is less than unity i.e., R0 < 1.(a) Susceptible–Sh(t). (b)
Latent–Lh(t). (c) Infected–Ih(t). (d) Recovered–Rh(t). (e) Reservoir–. M(t).
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9.99999%, as shown in Figure 1(a). Similarly the collectively
impact of other parameters of S1 is approximately 9.89%, if
their values increase or decrease by 10%, as shown in
Figures 1(a) and 1(b). Moreover, the parameters of S2 have a

negative relation and therefore its collectively impact is
9.94% whenever the value of the parameters given in S2
increases or decreases by 10 % (see Figures 1(c) and Figures
1(d)). More precisely, if the value of the parameters of S2 are
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Figure 3: +e results visualizes the dynamics of the proposed model at endemic state (X2), where the value of the epidemic parameters are:
Λ � 0.5, β1 � 0.11, β2 � 0.00005, β3 � 0.1, d � 0.1, c1 � 0.001, c2 � 0.2, c3 � 0.3, d1 � 0.2, η1 � 0.3, η2 � 0.5, and α � 0.4. In this case, the
value of the reproductive number is greater than unity i.e., R0 > 1. (a) Susceptible–Sh(t). (b) Latent–Lh(t). (c) Infected–Ih(t). (d)
Recovered–Rh(t). (e) Reservoir–M(t).
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increased by 10%, the basic reproductive number will be
decreased by 9.94%, while if one decreases the value of the
parameters, the threshold quantity will be increased by
9.94%.

4.2. Verification of Stability Results. We find out the nu-
merical simulation to verify the theocratical work carried out
for the fractional-order SARS-CoV-2 transmission epide-
miological model (6). To show the validity of the analytical
findings we present the large-scale simulation. +ere are not

many choices like the traditional numerical methods to
choose various schemes for the numerical simulation of
fractional-order models [43], therefore extensive attention is
required to formulate new and convenient techniques for the
simulation of fractional models. We follow a numerical
scheme formulated in [18, 44]. We assume the time step h �

10− 3 for integration with the simulation interval [0, t], n �

T/h and n ∈ N. We also assume that u � 0, 1, 2, . . . , n,
therefore the discretization for the proposed model looks
like the following equation:

CFSh(u+1) � Sh(0) + Λσ − βσ1Lh(t) + c
σβσ2Ih(t) + ψσβσ3M(t) + d

σ
( 􏼁Sh(t)􏼈 􏼉(1 − α)

+ αh 􏽘
u

k�0
Λσ − βσ1Lh(t) + c

σβσ2Ih(t) + ψσβσ3M(t) + d
σ

( 􏼁Sh(t)􏼈 􏼉,

CFLh(u+1) � Lh(0) + βσ1Lh(t) + c
σβσ2Ih(t) + ψσβσ3M(t)( Sh(t) − ϱ1Lh(t)􏼈 􏼉(1 − α)

+ αh 􏽘

u

k�0
βσ1Lh(t) + c

σβσ2Ih(t) + ψσβσ3M(t)( Sh(t) − ϱ1Lh(t)􏼈 􏼉,

CFIh(u+1) � (1 − α) c
σ
1Lh(t) − ϱ2Ih(t)􏼈 􏼉 + αh 􏽘

u

k�0
c
σ
1Lh(t) − ϱ2Ih(t)􏼈 􏼉,

+ Ih(0),

CFRh(u+1) � (1 − α) c
σ
2Lh(t) + c

σ
3Ih(t) − d

σ
Rh(t)􏼈 􏼉 + αh 􏽘

u

k�0
c
σ
2Lh(t) + c

σ
3Ih(t) − d

σ
Rh(t)􏼈 􏼉,

+ Rh(0),

CFM(u+1) � (1 − α) ησ1Lh(t) + ησ2Ih(t) − ασM(t)􏼈 􏼉 + M(0) + αh 􏽘
u

k�0
ησ1Lh(t) + ησ2Ih(t) − ασM(t)􏼈 􏼉.

(33)
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Figure 4:+e graph visualizes the temporal dynamics of the susceptible for long run against various value of (σ), while the value of epidemic
parameters are: Λ � 0.4, β1 � 0.011, β2 � 0.005, ψ � 0.016, β3 � 0.01, d � 0.01 c1 � 0.05, c2 � 0.05, c3 � 0.05, d1 � 0.002, η1 � 0.01,
η2 � 0.06, and α � 0.06. We also used the initial population sizes: (100, 90, 80, 70, 60).
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Furthermore, we chose the value of epidemic parameters
biologically while the initial population sizes are assumed to
be non-negative values (100, 90, 80, 70, 60). We use the
MATLAB software package to execute the model for

numerical simulations. We justify the stabilities results to
show the dynamics of the disease-free and endemic states as
given in Figures 2 and 3. +is investigates the graphical
verification of the dynamics of the considered problem
around disease-free state X1. Besides from a mathematical
point of view, the biological interpretation reveals that
whenever the value of the threshold parameter is less than
unity, each solution curve of Sh will tend to its equilibrium
position as shown in Figure 2(a). +is shows that there will
be always a susceptible population. Moreover, the dynamics
of the other compartments around the disease-free state are
depicted in Figures 2(b)–2(d), and which describe that the
solution curves will tend to the associated equilibrium po-
sition and remain stable. So it could be noted that the
elimination of the contagious disease of the novel corona-
virus from the community depends on the value of R0, and
the disease could be easily eliminated if R0 < 1. Furthermore,
the dynamics of the fractional-order model around endemic
equilibrium are shown in Figures 3(a)–3(e), which respec-
tively show the temporal dynamics of susceptible, latent,
infected, recovered, and reservoirs. From these results, we
observed that if proper control measures are not adopted the
disease will attain the endemic position. It is clear that the
susceptible population decreases from the beginning and
then has no effect after some time and so becomes stable as
shown in Figure 3(a). +e dynamics of the latent population
state that there will be a sudden increase in the initial period
of infection, while then decreases after some unit of time and
become stable, as shown in Figure 3(b), which verifies that
there will be always latent population. Similarly, the dy-
namics of the infected population are shown in Figure 3(c).
+is reveals that the infected ratio increases day by day and
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Figure 5: +e plot demonstrate the dynamical behaviour of the
latent individuals against the epidemic parameters having values:
Λ � 0.4, β1 � 0.011, β2 � 0.005, ψ � 0.016, β3 � 0.01,
d � 0.01 c1 � 0.05, c2 � 0.05, c3 � 0.05, d1 � 0.002, η1 � 0.01,
η2 � 0.06, and α � 0.06, and different values of fractional parameter
(σ), while the initial sizes for compartmental population are
(100, 90, 80, 70, 60).
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Figure 6: +e graph represents the temporal dynamics of infected
individuals against the fractional parameter (σ) and model pa-
rameters value are: Λ � 0.4, β1 � 0.011, β2 � 0.005, ψ � 0.016,
β3 � 0.01, d � 0.01 c1 � 0.05, c2 � 0.05, c3 � 0.05, d1 � 0.002,
η1 � 0.01, and η2 � 0.06, while the sizes of compartmental pop-
ulation are (100, 90, 80, 70, 60).
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Figure 7: +e graph describes the dynamics of the recovered
individuals for different value of the fractional parameter (σ) and
model parameters value are: Λ � 0.4, β1 � 0.011, β2 � 0.005,
ψ � 0.016, β3 � 0.01, d � 0.01 c1 � 0.05, c2 � 0.05, c3 � 0.05,
d1 � 0.002, η1 � 0.01, and η2 � 0.06, while the initial guess are
(100, 90, 80, 70, 60).
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reaches its endemic position in a few units of time. Fur-
thermore, the simulation of the model for recovered pop-
ulation and reservoir is given in Figures 3(d)–3(e). All these
results suggest that if no proper control measure is imple-
mented, the disease will attain its endemic position when-
ever the value of the threshold quantity (R0) is greater than
unity.

We also show the significance of the fractional-order via
disease transmission as shown in Figures 4–8, which re-
spectively visualizes the temporal dynamics of Sh, Ah, Ih, Rh,
and M. Particularly, the temporal dynamics of the sus-
ceptible are shown in Figure 4.We noted a significant impact
of the fractional order on the transmission dynamics of
susceptible individuals that if the fractional parameter σ
increases than the number of susceptible individuals de-
creases as shown in Figure 4. +e long run of the latent,
infected, and the recovered population for various orders of
fractional order are presented in Figures 5–7. We noted that
there is a strong influence of (σ) on disease transmission.
+e temporal dynamics of the reservoir are presented in
Figure 8. +us, we investigate that the CF model gives more
accurate dynamics of the disease and provides valuable
outputs instead of classical models.

5. Conclusion

We investigated the dynamics of SARS-CoV-2 with
asymptomatic, symptomatic, and quarantined individuals
using an epidemic model. First, the formulation of the model
is proposed, and then consequently fractionalized due to the
increasing development in fractional calculus. Particularly,
we used the well-known Caputo-Fabrizio operator for the

said purposes. Both the biological and mathematical feasi-
bilities are discussed in detail for the proposed model and
proved that the problem is well-passed. We also calculated
the threshold parameter and performed stabilities of the
fractional model. +e detailed sensitivity is also discussed
and quantified the role of every epidemic parameter and its
relative impact on the disease transmission. We showed that
the proposed model is stable in both local and global sense.
Finally, we gave some graphical representations and showed
the validations of the obtained results. We also presented the
relative impact of the fractional parameter on the various
groups of the compartmental populations graphically and
proved that the major outcome of the reported work is that
the fractional-order CF epidemic models are more appro-
priate and the best choice rather than the classical order. We
believe that the findings of this work will be helpful for the
audience working in the field of mathematical epidemiology.
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