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For the limitation of Poincaré plot analysis, the three-dimensional Poincaré plot analysis is proposed to analyze the heart rate
variability. Firstly, the Poincaré plot and some classic indicators are briefly discussed. Because the standard analysis method
inherently ignores the embedding temporal information of the RR interval time series, the temporal variation of the time series
cannot be adequately reflected. Secondly, for the limitation of the Poincaré plot analysis, a three-dimensional Poincaré plot is
presented, which can fully describe the temporal and spatial characteristics of the RR interval time series. )irdly, we propose the
local distribution entropy, which can quantify the temporal and spatial patterns of the scatter points in novel space. Finally,
PhysioNet/PhysioBank is applied in this study. )e experimental results demonstrate the effectiveness of the three-dimensional
Poincaré plot analysis.

1. Introduction

Heart rate variability (HRV) is the variation in the beat-to-
beat timing of the heart, which has a close relation with the
autonomic nervous system (ANS) [1]. )rough cardiovas-
cular disease research, the interactions of the sympathetic
nervous system (SNS) and the parasympathetic nervous
system (PNS) have been adequately studied. Research shows
that many heart diseases can result in the obvious variation
of the SNS and PNS activity universally, which can be di-
rectly reflected by the HRV. )us, HRV is often used to
evaluate the state of the cardiovascular system. As a sig-
nificant prognostic indicator, the time and frequency
characteristics of the HRV have been extensively researched.
In 1963, the clinical significance of HRV was firstly used by
Hon and Lee [2], who noted that fetal distress was ac-
companied by changes in interbeat intervals.

As a significant tool, the Poincaré plot is widely applied
to analyze the HRV. Various distributions of scatter points
derived from the RR interval time series represent the
corresponding physiology status and the distribution pattern
of points can provide a wealth of physiological information

of the cardiovascular system [3]. For instance, the Poincaré
plot of healthy humans is an approximate ellipse. To analyze
the distribution pattern objectively and extract physiological
information from the cloud of points quantitatively, in the
past decade, many indicators are presented [4–8] and are
applied in various detections of cardiovascular diseases
[9–15]. )e Poincaré plot is an effective analytical method
for heart rate variability. Via the tool, the RR interval time
series can be visualized in a two-dimensional coordinate
system. As the basic indicators, the minor and major axes of
the fitted ellipse (SD1, SD2) [4] are extensively used to
estimate the morphology of the fitted ellipse, which partly
represents the short-term and the long-termHRV.)e fitted
ellipse area of scatter points (S) [5] is another basic indicator,
which reflects the degree of dispersion of the points and
depicts the level of variation of the HRV.

In the Poincaré plot, all scatter points are divided into
two parts by the main diagonal. As the RR intervals are
nonlinear time series, the numbers of these scatter points in
the two areas are inequal and the unbalanced distribution of
points contains a great deal of physiological information.
)e asymmetry of the distribution for these scatter points is
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measured by some typical asymmetry indexes, such as Ehler
index (EI) [6], Guzik index (GI) [7], and Porta index (PI) [8].
Based on the Poincaré plot, the RR interval time series in the
form of the scatter points is reconstructed in two-dimen-
sional space, whereas the temporal information contained in
the RR time series is inherently ignored by the Poincaré plot
and those basic indicators.

)e study of feature extraction via the Poincaré plot is a
continuation of our preliminary research [16–20]. Aiming at
the limitation of the classic Poincaré plot, two crucial
problems need to be solved. )e first is how to reasonably
represent the temporal characteristic and the spatial dis-
tribution of scatter points in three-dimensional space. In the
study, the time element of scatter points will be embedded in
the standard Poincaré plot. We expect that based on the
improved Poincaré plot, the temporal and spatial charac-
teristics of the RR interval time series would be fully de-
scribed. )e second is how to reasonably calculate the
temporal–spatial information of scatter points in the im-
proved Poincaré plot. Here, in the novel coordinate system,
the space is divided into several subspaces. By calculating the
entropy of all subspaces, we hope to obtain a rational
evaluation value for a certain pattern of scatter points. the
main contributions of this study are as follows:

(1) We propose a three-dimensional Poincaré plot
(TDPP). Based on the TDPP, the RR interval time
series is reconstructed and the physiological status of
the heart can be comprehensively reflected.

(2) )e local distribution entropy (LDE) is presented,
which is applied to measure the distribution of
scatter points in the TDPP.

(3) In the study, five datasets and six indicators are being
used to validate our method. )e experiment’s re-
sults illustrate that the TDPP and LDE are effective
and the performance of the algorithm is relatively
stable.

)e arrangement of this paper is organized as follows:
)e Poincaré plot and the conventional descriptors are
briefly introduced in Section 2. Section 3 provides the three-
dimensional Poincaré plot and the local distribution entropy
in detail. In Section 4, experiments are given to demonstrate
the performance of our method. )e main conclusions are
given in Section 5.

2. Poincaré Plot Analysis

In this section, we will review the theory of the Poincaré plot
and several basic descriptors briefly. Meanwhile, the limi-
tations of the Poincaré plot analysis will be discussed.

2.1. Poincaré Plot. Poincaré plot is a nonlinear and geo-
metrical analysis method for HRV, which can reconstruct
the RR interval time series in two-dimensional space. Via the
Poincaré plot, the time series in the form of scatter points is
distributed in a plane, which intuitively shows abundant
distribution patterns. )e theoretical foundation of the
Poincaré plot is the Takens theorem [21].

Based on the theory, the dynamic characteristic of the
heart is reconstructed appropriately in a bidimensional
phase space by a given time delay. In Figure 1, for the
Poincaré plot of HRV, the coordinate values of the scatter
points are described by two consecutive RR intervals. )e
x-coordinate and the y-coordinate of the scatter points are
RRi and RRi+1, respectively, where RRi is the ith time in-
terval. Various distribution patterns of scatter points rep-
resent different physiological states of the heart; for instance,
in general, a healthy human’s heart status is comet-shaped, a
heart failure patient’s pattern is fan-shaped, an artificial
pacemaker of the heart rate’s pattern is round, etc.

2.2. Quantitative Indicators. In recent decades, a large
number of indicators were proposed to recognize the dis-
tribution pattern of scatter points quantitatively. In the
Poincaré plot, the scatter points can be fitted to an ellipse.
)e half minor axis (SD1) and the half major axis (SD2) of
the ellipse are the most important quantitative indicators.
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where N is the length of the RR interval time series and RR

denotes the mean of the time series. )e indicator SD1 is the
minor axis of the fitting ellipse, which represents the vari-
ation in the two successive RR intervals. )e other indicator
SD2 reflects the range of the RR intervals. Based on the basic
indicators, the degree of dispersion of scatter points
quantitatively is objectively estimated and the variation of
the HRV is reflected indirectly.

In addition, the area of the fitted ellipse (S) is a useful
indicator to detect the distribution pattern.
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1
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Figure 1: Standard Poincaré plot. SD1 and SD2 are the minor and
major axes of the fitted ellipse, respectively.
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S � π × SD1 × SD2. (2)

In the Poincaré plot, the main diagonal divides the plane
into two parts. )e number of points in the two regions is
usually unequal. )us, many studies have focused on the
asymmetric indicators of the Poincaré plot. )ese typical
indicators are listed as follows.

)e Porta indicator (PI) is used to calculate the pro-
portion of points in different parts.
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where C(P+
i ) denotes the number of points above the main

diagonal and C(P−
i ) is the number of points below the main

diagonal.
)e Guzik indicator (GI) depicts the asymmetry of

distribution through the proportion of distances of the
points from the main diagonal.
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where D+
i is the distance of the ith point above the main

diagonal from the main diagonal, Di is the distance of the ith
point from the main diagonal, and N is the number of scatter
points.

)e Ehler indicator (EI) calculates the degree of asym-
metry of distribution by the first difference of consecutive
RR intervals.
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Although many quantitative analysis indicators of the
standard Poincaré plot have been presented to identify the
distribution patterns of scatter points, they still have some
primary limitations. In the Poincaré plot, the coordinates of
the scatter points are composed of two consecutive RR
intervals, respectively. )e spatial locations of consecutive
scatter points contain a great deal of temporal information,
which is an important information source to recognize the
cardiovascular disease. However, as mentioned earlier, these
basic and asymmetric indicators only focus on the spatial
distribution of scatter points, and the temporal information
of the RR interval time series is inherently ignored.

To overcome the limitations of the standard Poincaré
plot analysis, the improved analysis method is given in the
next section.

3. Three-Dimensional Poincaré Plot Analysis

In the study, the standard Poincaré plot is modified properly.
We set a new coordinate axis, z-axis, that is perpendicular to
the plane of the standard Poincaré plot. In the space of the
improved Poincaré plot, the physiological states of the heart
can be shown adequately.

In Figure 2, the coordinates of the three points Pi, Pi+1,
and Pi+2 are (RRi, RRi+1), (RRi+1, RRi+2), and (RRi+2, RRi+3),

respectively. We can find that the y-coordinate of Pi is the
same as the x-coordinate of Pi+1. Hence, the symmetry of the
two points on the side of the main diagonal depends on the
x-coordinate of Pi and the y-coordinate of Pi+1. Actually, the
symmetry of two successive data points well depicts the
difference between the two RR intervals RRi and RRi+2 from
another perspective. )e symmetry of the two points can be
calculated by the parameter L.

Li,i+1 � RRi − RRi+2


, (6)

where RRi is the x-coordinate of Pi and RRi+2 is the
y-coordinate of Pi+1. )e value of Li,i+1 reflects the variation
of the HRV to a certain extent.

On the other hand, because the coordinates of a scatter
point are the consecutive RR intervals, the difference be-
tween the horizontal and vertical coordinates of the point
reflects the change of consecutive RR intervals RRi and RRi+1
in essence. )e more the distance D, the more the difference
between RRi and RRi+1 is significant. In other words, the
value of D is in a positive correlation with the magnitude of
change between two consecutive RR intervals. In addition,
the degree of the variation can be quantified by distance D
further.

Di �
RRi − RRi+1




�
2
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where Di is the distance from point Pi to the main diagonal,
and RRi and RRi+1 are the horizontal and vertical coordi-
nates, respectively.

)e two parameters Di and L reflect the variation of the
HRV partly, which will be used to describe the embedding
temporal information of the RR interval time series.

In the study, we build a z-axis that is perpendicular to the
plane of the standard Poincaré plot and the RR interval time
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Figure 2: )e positional relationship of consecutive points in the
Poincaré plot.
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series is reconstructed in a three-dimensional Poincaré plot.
In Figure 2, the z-coordinate of the scatter point Pi+1 can be
calculated as

Zi+1 � Li+1 Di+1 + ε( , (8)

where Li+1 �
������������
L2

i,i+1 + L2
i+1,i+2


. In the Poincaré plot, some

points may be on themain diagonal and the parametersDi of
these points are zero. We add a parameter ε in the equation
to avoid this case. Here, the parameter ε is set to 0.01. In the
TDPP, the coordinates of the point Pi+1 are (RRi+1, RRi+2,
Zi+1).

As we know, the points are distributed in the first
quadrant of the Poincaré plot and they are usually near the
main diagonal. With the distribution position of these
points, it is difficult to calculate the various quantitative
indicators. To facilitate the calculation of these indicators, we
hope that the center of the fitting ellipse of all data points
moves to the origin of the Poincaré plot and themajor axis of
the ellipse overlaps the x-axis of the Poincaré plot by the
transformation of coordinates. Here, the coordinates of the
point in the TDPP are rotated clockwise by 45°. )e rotated
coordinates are calculated as
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where RRn and RRn+1 are the means of the x-axis and y-axis
of all scatter points, respectively. )en, the new coordinates
of Pi+1 are (RRi+1′, RRi+2′, Zi+1).

An example of a TDPP is shown intuitively in Figure 3.
)e distribution pattern of the standard Poincaré plot is fully
reserved in the point projections of the lower end of the
space. Meanwhile, the z-coordinates of the scatter points
well quantize the change of the consecutive RR intervals and
provide a large amount of time information of the RR in-
terval time series.

Compared with the standard Poincaré plot, in the TDPP,
the potential temporal and spatial characteristics of the time
series can be shown more comprehensively. Nevertheless,
how to analyze the HRV in the TDPP is another crucial
problem. In this study, the local distribution entropy is

proposed, which can calculate the temporal and spatial
characteristics of the scatter points quantitatively. Specifi-
cally, the three-dimensional space of the TDPP is divided
into several subspaces. )e LDE can be calculated by the
number of points in every subspace.

In Figure 4, the distribution patterns of all points are
analyzed in an elliptical cylinder. For the enclosed space, the
maximum value of the z-coordinate of all scatter points is
selected as the height. )e upper and lower ends of the space
are an ellipse, which is fitted in the standard Poincaré plot.
)e maximum coordinates of the x-coordinate and the
y-coordinate of all scatter points are chosen as the major axis
and the minor axis of the ellipse, respectively. )e elliptical
cylinder is divided into several subspaces further in order to
analyze data distribution in detail. In Figure 4, there are
three subspaces with the height of the subspace being h, in
which we can calculate the LDE by counting the points of the
subspace.

)e concept of entropy in information theory is usually
used to calculate the complexity of the dynamic system. In
this paper, based on the TDPP and the concepts of entropy, a
novel indicator of local distribution entropy that can esti-
mate the variation levels of HRV is proposed. It is defined as
follows:
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Figure 3: )ree-dimensional Poincaré plot of No. nsr001, derived
from the normal sinus rhythm RR interval database.
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where N is the number of subspaces, M is the number of all
points in the TDPP, m is the average number of the scatter
points in every subspace, l is a constant, and si and hi are the
number of scatter points that possess negative and positive
values of the y-coordinate in the ith subspace, respectively.
In the formula (10), min(si, hi)/max(si, hi) is a ratio of si and
hi in the ith subspace, which reflects the equilibrium of the
scatter point distribution on both sides of the x-axis and
describes the degree of variation of the heart rate. Fur-
thermore, |si + hi − m|/M depicts the relationship between
the number of points in the ith subspace and the mean value
m. Based on the distribution of the points, the parameter pi

is selectively calculated under three conditions. Firstly, the pi
is calculated under the first case if the points are distributed
over both sides of the y-axis and the number of the points in
a subspace is unequal to the average of the points in every
subspace. Secondly, if only the points in the subspace are
located on one side of the y-axis, the parameter will be
computed under the second case. Finally, pi is set to be a
constant l if the number of points in the subspace is equal to
the average m. Based on the formula (10), we can find that
the parameter pi is restricted by min(si, hi)/max(si, hi) and
|si + hi − m|/M. If there is a significant difference in the
number of points on both sides of the x-axis or the number
of the points in the ith subspace is closer to the mean value,
the parameter pi is closer to zero. In the formula (11), EL is
the sum of the entropy of all subspaces, which can reflect the
variation levels of the HR as a whole. From a macro per-
spective, if the variation level of the HR is higher, the points
in the TDPP are more likely to be distributed in every
subspace and we could obtain a larger LDE. On the other
hand, if most of the points are located in the “lower”
subspaces, the indicator LDE will be smaller.

In conclusion, theoretically, a three-dimensional
Poincaré plot analysis can ensure that the temporal and
spatial characteristics of HR are adequately shown and
properly measured.

In order to extract the features of HRV more effectively,
the RR interval time series needs to be preprocessed by the
moving average filter.

RR(i) � 
N−τ

i�1


τ−1

j�0
RRi+j+1/τ , (12)

whereN is the length of the time series and τ is the size of the
moving window.

Now, the steps of the three-dimensional Poincaré plot
analysis are listed as follows:

(1) )e RR interval time series is processed by equation
(13).

(2) Via the preprocessed RR interval time series, con-
struct the scatter points of the standard Poincaré plot
P1, P2, . . . , Pn . )e coordinates of the point pi are
(RRi, RRi+1).

(3) Calculate the symmetry parameter Li,i+1 by Equation
(7) and the Euclidean distance Di by Equation (8).

(4) Compute the z-coordinate of the point by Equation
(9).

(5) Transform the coordinates of scatter points by
Equation (10).

(6) Divide the elliptical cylinder into several subspaces
and calculate the LDE by Equations (11) and (12).

In this section, the algorithm of the three-dimension
Poincaré plot analysis is adequately introduced. In the next
section, our method is applied in several cardiovascular
diseases and the performance of the algorithm is further
illustrated.

4. Application of the Three-Dimensional
Poincaré Plot Analysis

As an important database, PhysioNet/PhysioBank contains
over 36000 recordings of physiological signals and time
series, which has been widely used in the field of biological
signal analysis. In this section, five databases, Normal Sinus
Rhythm RR Interval Database (nsr2db) [22], MIT-BIH
Arrhythmia Database (mitdb) [23], Post-lctal Heart Rate
Oscillations in Partial Epilepsy (szdb) [24], CU Ventricular
Tachyarrhythmia Database (cudb), and Sudden Cardiac
Death Holter Database (sddb) [22], are used to assess the
performance of the three-dimensional Poincaré plot anal-
ysis. In this experiment, all physiological signals need be
processed by three steps: Firstly, to highlight the charac-
teristics of the RR interval time series, each experimental
dataset is preprocessed by a moving average filter. Secondly,
based on the Takens theorem, the filtered data are used to
construct the Poincaré plot. )irdly, via the constructed
points, the parameters Li,i+1, Di, z-coordinate, and LDE are
calculated.

In Section 4.1, the moving window width of the filter and
the number of subspaces of the TDPP will be chosen ob-
jectively. Via the five databases, the performance of the
algorithm will be further illustrated in Section 4.2.

4.1. Parameter Setting. To highlight the biological features of
the processed signals, the moving average filter is applied to
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Figure 5: LDE of nsr2db with the changed moving window width
τ.
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preprocess the raw RR interval time series. Choosing a
reasonable moving window width is a key problem for the
preprocess.

In this subsection, nsr2db is applied to choose the
moving window width τ, which includes 54 long-term ECG
signals of the normal sinus rhythm. In the dataset, the ECG
signal is digitized at 128 samples per second and noted by
automated analysis with manual review and correction.

Figure 5 shows the sensitivity of the LDE with the
changed moving window width τ. )e number of subspaces
is preliminarily set to 20. )e experimental results show that
there are some larger LDEs when the parameter τ changes in
the interval [17, 37]. Hence, in this experiment, the pa-
rameter τ is set to 25.

Based on the novel analysis method, all reconstructed
scatter points are fully interspersed in the TDPP. By
counting the points in each subspace, the distribution of the
points can be well estimated quantitatively. )erefore, the
number of subspaces in the TDPP is closely related to the
value of the LDE, which needs to be chosen properly.

Table 1 shows the LDEs of the t-test with different
number of subspaces. For the two datasets nsr2db and cudb,
the LDEs of the t-test decrease gradually with the number of
subspaces increasing. )e t-test results of the nsr2db and
sddb are similar to the case of nsr2db and cudb largely. For
the other datasets, nsr2db and szdb, the table shows that the
t-test results have no significant variation. It is interesting
that for nsr2db and mitdb, the change in the t-test results
increases gradually. Given the amount of computation and
the precision of our algorithm, in this study, the number of
subspaces of the TDPP is set to 200.

4.2. Performance Comparison. To validate that a healthy
human can be more easily identified from a human who
suffers from cardiovascular diseases via our algorithm, six
classic indicators of the Poincaré plot are adopted in this
experiment. )rough the difference of experimental results
between nsr2db and the other four datasets, the performance
of these indicators can be tested intuitively.

Figure 6 shows the results of the seven indicators for the
five datasets. (a)∼(g) are the boxplots of the indicators SD1,
SD2, S, EI, GI, PI, and LDE, which can integrally describe the
numerical range of the experimental results. In Figure 6(a),
the experimental results of SD1 show that there is a con-
siderable overlap between the box (interquartile range) of
nsr2db and the whisker (upper quartile) of cudb. In Table 2,

the means and standard deviations of nsr2db and cudb are
101.41± 0.64 and 92.73± 25.20, respectively. Similarly, the
box of nsr2db and the lower quartile of whisker of mitdb are
overlapping completely and the numerical range of them are
101.41± 0.64 and 103.33± 3.82. As a descriptor of the
standard Poincaré plot, the overlapping of numerical ranges
indicates that the normal sinus rhythm can hardly be
identified from the other two subjects, ventricular tachy-
arrhythmia and arrhythmia. Different from the above cases,
the boxes of nsr2db and the other two datasets, sddb and
szdb, are non-overlapping completely and their numerical
ranges are 101.41± 0.64, 105.29± 0.53, and 104.72± 0.67,
respectively. )e results mean that the indicator has the
ability to recognize the normal sinus rhythm from epilepsy
and sudden cardiac death.

Analogously, the classification capacity of the other five
indicators, SD2, S, EI, GI, and PI, is shown intuitively in
Figures 6(b)–6(f ). We find that there are some numerical
range overlaps between nsr2db and the other four datasets,
which illustrates that these descriptors cannot differentiate
the normal sinus rhythm from the other four subjects.

For the novel indicator LDE, the experimental results are
shown in Figure 6(g) and Table 2. Compared to the nu-
merical ranges of all results, there is non-overlapping be-
tween nsr2db and the other four datasets totally. )e mean
of the experimental result of nsr2db is higher than the others
obviously. )e results indicate that as an effective feature of
HR, LDE can be used to recognize the normal sinus rhythm
from the four arrhythmia subjects. Compared to other
classic indicators, the performance of our method is more
stable. )e presented experimental results show that only
LDE can successfully recognize the normal from the other
four pathologies.

As a common classification algorithm, the k-means al-
gorithm is preliminarily applied to recognize the normal
sinus rhythm from the other four datasets via the seven
indicators, thereby demonstrating the effectiveness of our
method. In the clustering experiment, RI is used to assess the
performance of the aforementioned indicators. )e RI is
defined as

RI �
CD

TD
, (13)

where CD is the number of correct decisions and TD is the
number of total decisions.

Table 3 shows that by comparing the clustering accuracy,
the performance of LDE is superior to the six indicators.

Table 1: Results of the t-test between nsr2db and the other four datasets, cudb, mitdb, sddb, and szdb.

Number of subspaces
p value

nsr2db, cudb nsr2db, mitdb nsr2db, sddb nsr2db, szdb
10 1.87 × 10− 15 5.34 × 10−24 0.8878 7.59 × 10− 4

50 1.21 × 10− 29 1.36 × 10− 40 0.1026 1.09 × 10− 4

100 3.79 × 10− 33 1.08 × 10− 39 0.0034 2.64 × 10− 4

150 4.83 × 10− 34 1.01 × 10− 37 1.91 × 10− 4 1.60 × 10− 4

200 2.68 × 10− 37 1.53 × 10− 36 5.84 × 10− 5 1.88 × 10− 4

250 1.81 × 10− 35 3.07 × 10− 36 2.63 × 10− 6 1.46 × 10− 4

300 9.88 × 10− 37 1.77 × 10− 35 1.13 × 10− 6 1.36 × 10− 4

350 9.88 × 10− 37 1.77 × 10− 35 1.13 × 10− 6 1.36 × 10− 4
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Figure 6: Continued.
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)erefore, as an effective feature, LDE has the ability to
classify cardiovascular diseases.

5. Conclusion

As a useful analysis tool, the Poincaré plot is often used in the
heart rate variability analysis, which describes the physio-
logical information of cardiac activity intuitively. To analyze
the Poincaré plot, many asymmetry indicators were pre-
sented in the literature. However, the temporal relation of
the adjacent scatter points is ignored essentially by most
classical indicators. To remedy this limitation, a three-di-
mensional Poincaré plot analysis is presented in the study.

Two main results are obtained in this study. Firstly, a
three-dimensional Poincaré plot is presented. In the novel

coordinate system, the z-axis is perpendicular to the plane of
the standard Poincaré plot. In a TDPP, the temporal
characteristics and the distribution patterns of scatter points
can be adequately revealed. Secondly, to analyze the tem-
poral and spatial features of all scatter points quantitatively,
local distribution entropy is presented in this study. In the
TDPP, the space is divided into several subspaces. By
counting the local distribution entropy of all subspaces, we
will acquire the physiological information contained in the
RR time series.

To further verify the effectiveness of our method, five
datasets are applied in this study. )e experimental results
demonstrate that the spatial–temporal characteristics of the
sinus rhythm can be properly described and objectively
measured via the three-dimensional Poincaré plot analysis.
In addition, to demonstrate the advantage of the method, six

Table 2: )e means and standard deviations of SD1, SD2, S, EI, GI, PI, and LDE.

Indicator nsr2db Cudb Mitdb Sddb Szdb
SD1 101.41± 0.64 92.73± 25.20 103.33± 3.82 105.29± 0.53 104.72± 0.67
SD2 107.06± 1.02 113.79± 12.09 105.38± 2.03 101.55± 0.42 102.65± 0.31
S 3.41 × 104 ± 3.71 × 104 3.31 × 104 ± 2.18 × 106 3.42 × 104 ± 5.12 × 105 3.36 × 104 ± 4.72 × 104 3.38 × 104 ± 1.52 × 105
EI −1.50 × 10−5 ± 7.35 × 10−10 7.75 × 10−4 ± 1.47 × 10−5 2.26 × 10−4 ± 4.12 × 10−7 1.20 × 10−4 ± 1.31 × 10−8 1.46 × 10−4 ± 3.69 × 10−8

GI 0.50 ± 1.91 × 10−9 0.50 ± 6.79 × 10−7 0.50 ± 6.63 × 10−8 0.50 ± 1.43 × 10−9 0.50 ± 5.0 × 10−9

PI 0.99 ± 4.94 × 10−9 0.99 ± 3.60 × 10−7 0.99 ± 3.99 × 10−8 0.99 ± 6.25 × 10−9 0.99 ± 5.89 × 10−9

LDE 1.75± 0.01 0.07± 0.027 0.43± 0.06 1.41± 0.01 0.85± 0.06

Table 3: )e clustering results of SD1, SD2, S, EI, GI, PI, and LDE.

Indicator
RI

nsr2db, cudb nsr2db, mitdb nsr2db, sddb nsr2db, szdb
SD1 0.91 0.80 0.97 0.98
SD2 0.89 0.79 0.97 0.98
S 0.71 0.61 0.91 0.87
EI 0.67 0.60 0.88 0.95
GI 0.82 0.80 0.97 0.98
PI 0.84 0.81 0.95 0.95
LDE 1 1 0.98 1
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Figure 6: Results of the seven indicators for the five datasets nsr2db, cudb, mitdb, sddb, and szdb. (a–g))e experimental results of the seven
indexes SD1, SD2, S, EI, GI, PI, and LDE, respectively.
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classic indicators of the Poincaré plot are applied. )e ex-
perimental results illustrate that the three-dimensional
Poincaré plot analysis can effectively identify the sinus
rhythm from arrhythmia, heart rate oscillations in partial
epilepsy, ventricular tachyarrhythmia, and sudden cardiac
death. Nevertheless, other indicators only accomplish the
recognition tasks partly. )ese findings indicate that the
performance of the three-dimensional Poincaré plot analysis
is stable and effective. In the future, LDE can be used as a
valuable feature for physiological signal classification.
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