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)e concept of attractors is considered critical in the study of dynamical systems as they represent the set of states that a system
gravitates toward. However, it is generally difficult to analyze attractors in complex systems due to multiple reasons including
chaos, high-dimensionality, and stochasticity. )is paper explores a novel approach to analyzing attractors in complex systems by
utilizing networks to represent phase spaces. We accomplish this by discretizing phase space and defining node associations with
attractors by finding sink strongly connected components (SSCCs) within these networks. Moreover, the network representation
of phase space facilitates the use of well-established techniques of network analysis to study the phase space of a complex system.
We show the latter by introducing a new node-based metric called attractivity which can be used in conjunction with the SSCC as
they are highly correlated. We demonstrate the proposed method by applying it to several chaotic dynamical systems and a large-
scale agent-based social simulation model.

1. Introduction

Practical applications of dynamical systems analysis can be
found in various subjects of study including transportation
networks, food systems, cancer, and game theory [1–5]. A
commonality stemming from analyses in these subjects is an
attempt to understand the evolution and long-term states of
these systems. One way to do this is by studying the tra-
jectories of these systems towards attractors in order to
understand their long-term behavior. However, several
definitions exist for what constitutes an attractor, leading to
several different ways to formulate an analysis [6]. Many of
these ways involve finding solutions through analytical
computation. )is makes it fundamentally difficult to an-
alyze systems with nonlinear dynamics [7]. )e problems
become amplified in higher dimensions as well with many
variables. Additionally, little research has been done on
analyzing the dynamics within an attractor consisting of
many states.

In this paper, we offer a different approach to analyzing
complex dynamical systems based on two significant

attributes associated with attractors, states that are reached
after an extended period of time and the inability of a system
to escape an attractor. Networks are then used as the basis of
algorithmical analyzing of the trajectories in complex dy-
namical systems instead of analytical methods. )is allows
networks to be used both as a dimension reduction tech-
nique and for analyzing the attractors. )is leads to two
computational approaches to analyze long-term behavior of
a system with a network-based phase space. One approach
focuses on finding the set of states associated with the
attractor of the system by finding sink strongly connected
components in the network-based phase space. )e other
approach focuses on calculating a node-specific value that
we refer to as “node attractivity.” )is metric can be viewed
as an indicator of how strongly a node in the network-based
phase space is associated with an attractor in the system. We
will then present the results from applying this method to
ODE-based systems as well as show its applicability to high-
dimensional systems. )e results will also be visualized with
details on how modifications can be incorporated without
changing the essence of the method.
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2. Literature Review

System dynamics are important for understanding the long-
term behavior of a system. Long-term behavior that lead to a
single steady state, or fixed point attractor, have an extensive
research history that includes their properties [8] and use
cases such as in ecological and neurophysiological models
[9, 10]. )is form of analysis bodes well for determining
stability and the dynamics of the system in the region
surrounding the fixed point. However, there are other types
of attractors, including periodic, quasi-periodic, and chaotic
cycles [11]. With the rise in popularity of complexity science,
other forms of attractors have also been used to identify
more complex structures and situations such as health
sciences [12, 13], racial identity [14], thermodynamics [15],
and human interaction. As these attractors are more
complex, existing approaches for analyzing these attractors
have also become more complex in comparison to fixed
points. Along with the increased awareness of chaotic be-
havior in the real world, this has led to research into how we
can extract information out of chaotic (strange) attractors
[17, 18].

)e embrace of complexity has fueled adoption of
networks for understanding complex structures and com-
puter simulations for modeling complex phenomena, which
in turn has been fueled by the rise of computing power [7].
Networks provide a nearly universal conceptual structure to
be applied for any complex system. Some information often
calculated for complex systems such as entropy and fractal
dimension can be calculated for networks as well [19, 20].
However, there are also network-specific information such
as closeness and harmonic centralities, and clusters and
strong/weak components that can be gathered
algorithmically.

Attractors can be useful in a network representation of
a system as well. In neural networks, attractors are
identified through recurrent neural connections [21]. As
an example, this definition has been used to study the
dynamics of perceptual bistability without assumptions
used in other models [10]. )is combination of attractors
and networks was mostly found in neuroscience for fixed
point attractors.

3. Methods

Recognizing that attractors are a critical component of
complex systems, we will provide two complementary
methods for finding a attractor-like structure within a
network representation of a system. )ese methods
function regardless of attractor type and rely on algo-
rithmic processes to avoid potential complexity from
analytical computation. Both approaches involve first
computing a network representation of the phase space.
We will show that minimal adjustment is made if the
phase space is continuous rather than discrete. After-
ward, the first approach will lead to the discovery of a
network substructure that we consider as the attractor
represented in a network-embedding. )e second ap-
proach will provide a node-specific metric that can be

calculated with the expectation of distinguishing between
attractor nodes and nonattractor nodes as time passes.

3.1. Network Representation of Phase Space. A continuous
phase space of a system can be represented as a network by
first dividing the phase space into nonoverlapping (disjoint)
regions. Each region can then be represented by a unique
node in a network. For discrete states in a phase space, each
state can be directly represented by a node. Next, we can add
directed edges between nodes where the weight represents
the frequency that a transition occurred from a state rep-
resented by one node to a state represented by another. )e
resulting network can then be analyzed algorithmically for
attractors. Note the resulting network is the state transition
graph, or state diagram, of the system when the states are
discrete and each node uniquely represents a single state.

3.2. Identifying Attractors in Networks

3.2.1. Sink Strongly Connected Component. Consider two
major properties of an attractor: (1) no exit exists once a
system enters an attractor and (2) any position in an
attractor should be approachable from any other position in
the same attractor.)e first property coincides with a sink in
a network. )e second property can be interpreted as a
connectivity requirement for an attractor. In a directed
network, this interpretation coincides with the definition of
a strongly connected component (SCC). A set of nodes that
meets both of these properties in a network would then be a
sink strongly connected component (SSCC) and can rep-
resent an attractor for the associated system. All of the nodes
with a path leading to a SSCC would then be a sink weakly
connected component of the network to correlate with the
basin of attraction. Stochastic state transitions are also
covered by the possibility of a node existing in multiple sink
weakly connected components. )e resulting analogous
terms are shown in Table 1.

A simulation approach involves executing many simu-
lations with different initial states.)e observed network can
be reconstructed after every time step across all simulations
to incorporate all states and state transitions from the be-
ginning of the simulation to the most recent time step. )e
result is a series of networks where each network has at least
the same number of nodes as the previous and the sum of
state transitions increases by the number of simulations.)e
SSCC may then reappear with another new transition soon
after. To reduce the possibility of SSCCs incorrectly dis-
appearing once identified, we introduce the concept of
“SSCC efficiency” for a component and a corresponding
“SSCC efficiency threshold.” )e SSCC efficiency of a
component is defined as the percentage of nodes in the
component that are also part of an SCC.With this metric, we
can define the algorithm to finding the SSCC of a network as
the following:

(1) Find all strongly connected components (SCCs) in
the network. Each SCC becomes a candidate
component.
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(2) Check if the candidate component is a sink.

(a) If the candidate component is a sink, then it is
the SSCC.

(b) Otherwise,
(i) create a new candidate component from the set

of candidate component nodes and their out-
going neighbors;

(ii) if the candidate component has an SSCC effi-
ciency greater than the threshold t, then go to
step 2a with the new candidate component;

(iii) otherwise, an SSCC is not found.

(3) Go back to step 2 for next SCC.

)is approach loosens the definition of an SSCC. In our
case, we found it sufficient to use a threshold of 95% when
one attractor was expected and a lower threshold of 65% was
used when expecting multiple attractors. A visual example of
the overall approach is represented in Figure 1.

3.2.2. Node Attractivity. )e SSCC approach provides a
discrete, Boolean answer for whether or not a node should be
associated with an attractor. To provide a continuous answer
between 0 and 1, we offer an alternative approach utilizing
harmonic centrality.

Harmonic centrality utilizes harmonic mean in place of
the arithmetic mean as used for calculating closeness cen-
trality, given d(v, u) represents the distance from v to u [22]

Hraw(u) � 
v≠ u

1
d(v, u)

Hnormalized(u) �
1

N − 1
∗ 

v≠ u

1
d(v, u)

.

(1)

)is has led to harmonic centrality being used in a few
different ways, including calculating network topology
scores in large social networks [23] and transportation
networks [1] as well as a hybridization of node-weighted
centralities [24]. It contains two major properties for us to
consider: (1) if a path does not exist from node u to node v,
then there will be no contribution to the harmonic centrality
and (2) as the shortest path between nodes u and v shrinks,
the contribution of this path to the harmonic centrality
increases.

Now, consider our network-based phase space. If we use
the inverse of each edge weight for our harmonic centrality
calculation, then this would result in an inverse weighted
harmonic centrality (IWHC). )ese values for nodes in a
network can also be easily normalized into the range of
[0, 1]. As transition frequency increases, corresponding
IWHCmeasurements also increase before normalization for
affected nodes. Nonattractor nodes would maintain lower

IWHC, creating a clear distinction between attractor nodes
and nonattractor nodes. We would expect these results to
eventually match the SSCC approach. For this reason, we can
also call this metric as “node attractivity.”)e computational
complexity calculations of both methods can be found in
Appendix A.

Both the SSCC and IWHC approaches were used in Ref.
[25] for analyzing the El Farol bar problem. Attractor
(SSCC) nodes and nonattractor (nonSSCC) nodes were
identified based on the SSCC approach. We then used lo-
gistic regression to compare a series of node-based metrics
with the SSCC results. Results confirmed that the SSCC
nodes contained high node attractivity while nonSSCC
nodes contained significantly low node attractivity. Figure 2
provides a side-by-side comparison of the results from the
chosen node-basedmetrics.We can see that node attractivity
was the best performing one. F1 score is used over accuracy,
precision, or recall due to the wide range of attractor sizes.
More details related to this analysis can be found in Ap-
pendix B.

4. ODE System Results

For systems of differential equations, we can use a similar
set-up and simulate system movement across Euclidean
space, with a series of simulations starting from different
initial states. Since these phase spaces are boundless, we will
set a boundary for the initial positions of the simulations
based on known positioning of the systems’ attractors.

)e phase space is also continuous, so we will discretize it
by establishing a unit size and rounding down every element
in a coordinate to a multiple of the unit size. )is will
determine the identity of the corresponding node in the
network and the corresponding Euclidean space associated
with it. )is unit size will be called the “granularity” of our
nodes. For example, if a new state is found at (10.4, 11.3, 2.9)

and the granularity is set to 1, the corresponding node in the
network will be at (10, 11, 2). )is also means every node
coincides with an integer coordinate representing an n-cube
with a length of 1 unit along each of n dimensions. If the
granularity was set to 2, then the corresponding node in the
network will be at (10, 10, 2), and every node would coincide
with an even integer coordinate and represent an n-cube
with a length of 2 units along each dimension. After de-
termining the region for initial positions and the granularity
to analyze, we can then proceed as we did for the El Farol bar
problem simulation, and then visualize the resulting net-
work in both 3D Euclidean space and/or in a unit-less 2D
network-embedding space. All ODE-based systems use a
step size of 0.01 during calculations. Metrics of the resulting
networks can be found in Appendix C.

4.1. Lorenz System. )e Lorenz system is a system of
equations presented by meteorologist Lorenz as a simplified
model of atmospheric convection flow [26]. A recognizable
butterfly-like shaped attractor arises from this system in
Euclidean space. )e system of equations is given in
Equation (1). For our experiment, we use the same values for

Table 1: Analogous terminology for attractors in network-based
phase space.

Traditional concepts Network-based concepts
(Observed) phase space Full network
Attractor Sink strongly connected component
Basin of attraction Sink weakly connected component
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the parameters used in the original paper, ρ � 28, σ � 10 and
β � 8/3

_x � −σ(y − x),

_y � ρx − y − xz,

_z � xy − βz.

(2)

For the Lorenz system, we used the region defined below
in Equation (2) and generated initial coordinates at every

even integer coordinate with a granularity of 2 for node
positions. We then ran the simulation for 20 steps with no
transient period

−20≤x≤ 20,

−30≤y≤ 30,

0≤ z≤ 50.

(3)

Figure 3(a) shows the results of our proposed method in
Euclidean space. Figure 3(b) shows the same results as
Figure 3(a) except visualized as a network using the
ForceAtlas 2 layout algorithm. We can call this visualization
of the attractor as the “Lorenz Attractor Network.”

Nodes in both figures are colored similarly. )ose with
high X values are yellow while nodes with low X values are
blue/purple. )is is highlighted the most by the tips of each
wing of the attractor as they are distinctly in different colors.
)e wing on the positive X (X+) side is yellow while the wing
on the negative X (X-) side is more or less purple.

)e X+ wing and X-wing are clearly distinguishable in
the Lorenz attractor network based on color where the X+
wing contains yellow nodes and the X-wing contains blue/
purple nodes. )is visualization successfully projects the
attractor into two dimensions by replacing the Euclidean
space-based spatial relationship between nodes with a layout
based solely on system dynamics. Nodes representing states
that are visited in close succession are in relatively close
proximity to each other as well.

4.2. Yu’s Chaotic System with Multiple Attractors. Next, we
will test with a system of equations known to produce
multiple attractors. Equation (3) is the system of differential
equations for Yu’s chaotic system [27] using a value of 2.5 for
a. )e region for initial states is defined below in Equation

1
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Node
Attractivity

In Degree

Metric

Weighted
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Weighted
Out Degree

Figure 2: Box plot of F1 scores from the results of a trained logistic
regression model on a given metric versus the SSCC.

#1. Step 1
s = 1.0

Given Network N
�reshold t = 0.5
SSCC Efficiency = s

#2. Step 2 (fails)

#6. Step 2 (pass)#4. Step 2 (fails)

#3. Step 2b
s = 3/4 = 0.75 > t

#7. Step 3
(no other Sccs,
1 SSCC found)

#5. Step 2b
s = 3/5 = 0.6 > t

Figure 1: A visual example of the proposed SSCCmethod. SSCC efficiency threshold is defined as t and set to 0.5. SSCC efficiency is defined
as s. It is updated throughout the process by dividing the number of nodes in the original SCC (shown in red) by the number of nodes in the
candidate component (shown in red and orange). Since t � 0.5, an SSCC was found after a couple iterations. If t was 0.7, then the process
would have ended at 5 instead of 7. If t was 0.9, then it would have stopped by 3.
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(4) with initial positions at every integer coordinate and a
granularity of 0.5 is used. )e simulation ran for 40 steps
with no transient period

_x � −x + 0.5xz + yz,

_y � ay − 1.2xz,

_z � xy − 6z,

a � 2.5,

(4)

−18≤ x≤ 18,

−15≤y≤ 15,

−10≤ z≤ 10.

(5)

Figure 4 shows the full-generated SSCC network in 3D
Euclidean space and in the network-embedding space. Both
visuals show two attractors. In Figure 4(a), we can see that

the attractors are circling about the z-axis. Two components
are seen in the network visualization in Figure 4(b). )e
components have incidental overlap but are disconnected.
We can also tell from Figure 4(b) that the node attractivity is
higher inside the attractor, which is not as clearly seen in
Figure 4(a). It was noticed that a large granularity with a
long-running simulation can lead to merged attractors and
basins due to nodes straddling between multiple basins.

4.3. Four-Dimensional Chaotic System. Lastly, we will test
our method against a system with more than three di-
mensions. Equation (5) is the system of differential equa-
tions found in [28] containing different kinds of attractors.
However with our results, we argue that the different kinds
of attractors are all part of one multidimensional attractor.

We set the parameter values to the same ones used in the
aforementioned paper, a � 6, b � 11, and c � 5, and define
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Figure 3: Lorenz attractor visualized with similar node coloring based on X coordinate from low (blue) to high (yellow): (a) in Euclidean
space and (b) as a network resulting from proposed approach.
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to high (green/yellow): (a) in Euclidean space and (b) as a network resulting from proposed approach.
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the region as shown in Equation (6). Since the region is
rather large due to the additional dimension, the initial
coordinates are created at coordinates with X, Y, Z, and W

values at multiples of 4. )e resulting network uses a
granularity of 1, just as we did for the Lorenz network. )e
simulation ran for 70 steps with no transient period

_x � a(y − x),

_y � xz + w,

_z � b − xy,

_w � yz − cw,

(6)

−16≤x≤ 16,

−20≤y≤ 20,

−20≤ z≤ 20,

−20≤w≤ 20.

(7)
Figure 5 shows the attractor nodes of the identified

SSCC with nodes colored based on attractivity from low
(blue) to high (yellow). We found the dynamics which

Figure 5: SSCC of the four-dimensional chaotic system as a network. Nodes colors are based on node attractivity from blue (low) to yellow
(high).

Table 2: Logistic regression F1 scores.

Metric Min Max
Page rank (Damping factors� 0.85, 0.90, 0.95,
0.98, 0.99) 0 0.9946

PageRank 0 0.9946
Closeness centrality 0 1
Harmonic centrality (unweighted) 0 1
Weighted harmonic centrality 0 1
Node attractivity 0.8139 1
In degree 0.4490 1
Weighted in degree 0.6110 1
Out degree 0 1
Weighted out degree 0.6110 1

Table 3: Network data for full network and identified attractor
nodes generated from ODE systems.

Network # Of SSCC
nodes/total nodes

# Of SSCC
edges/total edges

SSCC
efficiency

Lorenz 34,328/118,599
(28.94%)

99,034/227,934
(43.45%) 97.80%

Yu 87,526/165,990
(52.73%)

134,877/228,201
(59.10%) 73.64%, 68.71%

4D 101,138/377,601
(26.78%)

234,907/544,629
(43.13%) 95.87%

Figure 6: Lorenz attractor projected to the X-Z plane [29].
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Figure 8: Lorenz attractor as a network resulting from the proposed approach. Nodes are colored based on Z coordinate from blue/purple
(low) to yellow (high).
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suggested a single two-winged attractor with reflection
symmetry within the system. Visualizing the entire net-
work including nonattractor nodes with the same
ForceAtlas 2 layout algorithm led to a different apparent
SSCC subgraph. We discuss this finding and more related
to this system in Appendix E.

5. Conclusion

In this paper, we provided a novel approach for discovering
attractors in complex systems by utilizing a network rep-
resentation of the phase space. Our approach focuses on two
key properties of an attractor. First, an attractor should be a

component containing no (or exceptionally rare) outgoing
edges. Second, each node should be approachable from every
other node within the identified component. )is definition
leads us to the concept of a sink strongly connected com-
ponent (SSCC) as the network-based entity associated with
an attractor in a complex system. With this baseline, we
proposed a novel metric named “node attractivity.” Al-
though the computation is more time-consuming, node
attractivity provides more details about the system behavior
than the SSCC approach. However, these two approaches
complement each other well as “node attractivity” aligns
with SSCC results over time as shown by our logistic re-
gression results.

Figure 10: Full network represented in the network-embedding space. Black nodes are attractor (SSCC) nodes. Blue nodes are nonattractor
(nonSSCC) nodes.
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Figure 11: Single trajectory of four-dimensional chaotic system in Euclidean space starting from (2, 2, 2, 2). Color of trajectory progresses
from light red to dark red. )e shade of red indicates the simulation step that the trajectory reached a particular node. (a) Two wings in the
projection to the XZW space. (b) Four wings in the projection to the YZW space.
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)e generality of both approaches were seen by ana-
lyzing simulations of the El Farol bar problem as well as
three systems of differential equations with varying di-
mensionality and number of attractors. )e results from
the El Farol bar problem showed how node attractivity
performed against in degree, weighted in degree, and
weighted out degree in predicting the SSCC. Applying
these approaches to the Lorenz system revealed the be-
havioral tendencies of the Lorenz attractor in a unit-ag-
nostic space, exposing a cyclic nature in a tornado-like
structure in the “Lorenz attractor network.” We also
showed that these approaches can successfully identify the
number of attractors in a system given a set of initial
positions and can clarify structural components of the
attractor for systems of multiple dimensions by applying
this approach to Yu’s chaotic system and a four-dimen-
sional chaotic system.

Future possibilities for research include testing this
approach for systems with more than four dimensions. It
is possible that the network becomes visually more dif-
ficult to understand, but computational analysis may
remain consistent as the nature of this approach is to
capture all of the behavior of system trajectories within a
network structure, regardless of dimensions. We can also
find possible research avenues by focusing just on node
attractivity. One key benefit that can arise from node
attractivity is to develop a proxy of the probability of
long-term system state. It may be sufficient to sum-
normalize the node attractivity since node attractivity is
already nonnegative.

Further research can be performed to see how well this
works, or if an intermediate function can be included to
model the long-term system state. We previously mentioned
potential issues that can appear when using our approach on
systems with multiple attractors due to straddling nodes
between basins. It would be worthwhile to explore ways to
mitigate this issue, such as condensing the space of initial
coordinates while adding a transitory period. Using different
condensed initial regions would likely improve identifying
attractor nodes and nodes straddling between basins since
they would presumably appear in multiple SSCCs separately.
Lastly, we can take these approaches and apply them to other
domains such as transportation systems, voting behavior, or
other decision-making systems in search of any common-
alities in the SSCC or node attractivity of different systems.

Appendix

A. Computational complexity

)e computational cost of finding all SSCCs for a directed
network N is the combination of the cost to find all strongly
connected components of N which can be executed with a
time complexity of O(V + E) with Kosaraju’s algorithm, and
the computational time to check if each component is a sink,
which can be executed with a time complexity of O(N).
Overall, this leads to a time complexity of O(V + E) for
finding all SSCCs of N.

Finding the attractivity of all nodes in N requires solving
the all-pairs shortest path problem. )e weights will be
positive, so we can use Dijkstra’s algorithm on each vertex in
V. Since the time complexity of Dijkstra’s algorithm is
O(E∗ log(V)) for a connected graph, the all-pairs shortest
path problem can be solved in O(V∗E∗ log(V)), which is
already more expensive. Once the all-pairs shortest path
problem is solved, we only need to sum the reciprocal of all
shortest paths from each node, which can be completed in
O(V2). Our final time complexity for finding node attrac-
tivity for all nodes would then be O(V∗E∗ log(V) + V2).

B. El Farol bar problem

Table 2 contains the list of metrics used to predict whether
or not a node should be associated with an attractor based on
the results from the SSCC approach. Predictions for each
metric were generated by performing Table 3 logistic regression
for each combination ofmetric and strategy set. F1 score is used
over accuracy, precision, or recall due to the wide range of
attractor sizes. For PageRank, we found that increasing the
damping factor did not have any effect on the results.

)e metrics that recorded a nonzero F1 score for all
experimented sets of strategies are marked bold in Table 2.
)ese were determined as better metrics for predicting the
association of a node with an attractor, reducing our list of
metrics to node attractivity, in degree, weighted in degree,
and weighted out degree. Figure 2 provides a side-by-side
comparison of the logistic regression results using each of
these four metrics. Each data point for each metric repre-
sents the network results for one unique set of strategies.

C. ODE network data

Below is a breakdown of the data for each network generated
for the ODE systems mentioned in this paper.

D. Lorenz system results

Figure 6 [29], is a visualization of the butterfly-like attractor
resulting from the Lorenz system. A similar butterfly-like
structure can be viewed when mapping the trajectories of
our results in Euclidean space as seen in Figure 7.

)e Euclidean space visualization of the attractor in
Figures 3(a) and 7 also shows that the two wings of the attractor
meet at lower Z values. A view of the same network except
colored to indicate Z coordinates results in Figure 8 with the
color representing relatively low (blue/purple) or high (yellow)
Z coordinates. By coloring, we can now see that rotational
symmetry and each band of nodes starts near the middle of the
network and curves around each other counterclockwise and
eventually point towards opposite ends of the network. )e
inner half of each are a mix of green and blue, indicating the
presence of low-middleZ coordinates for these nodes.)e outer
half of the bands are mostly yellow and blue, indicating nodes
mostly with low or high Z coordinates.)ese nodes are also less
connected to the rest of the network since they are near the edge
of the network, suggesting that these nodes coincide with the
disconnected portions of the wings from Figure 7.
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Figure 9 highlights the nodes with high attractivity in
yellow and low attractivity in blue in both the Euclidean and
ForceAtlas 2 layouts. )e nodes with high attractivity are
located in the region where the two bands meet in the
Euclidean space. )is coincides with the nodes in the center
of the network in the ForceAtlas 2 layout, further validating
our previous assessment.

Lastly, if we were to look at the network from the
ForceAtlas 2 layout more closely, we would see that the
edges tend to point in the counterclockwise direction.
However, the number of edges pointing in the clockwise
direction increases as we move towards the center of the
network. Much of this conflicting clockwise flow occurs
in the center of the network in between the two bands.
)is lines up with known dynamics in the Lorenz
attractor as well since each wing rotates in different di-
rections in the Euclidean space.

E. Four-dimensional chaotic system results

It was mentioned that this system “can generate chaotic
butterfly attractors of two wings and four wings at the same
time” [28] depending on the dimensions visualized, as seen
in the paper and in Figure 10. In the figure from the paper,
X-Y, X-Z, Y-Z, and Z-W plots clearly show two wings of an
attractor. However, X-W and Y-W plots show potentially 4
wings. In Figure 10, we visualize a single trajectory at from
two different angles. Figure 11(a) provides an angle of which
suggests two wings while the angle in Figure 11(b) shows
prospectively four wings. In both visualizations, the tra-
jectory is traced from light red to dark red.

Emphasizing different dimensions give a different per-
spective on the present attractor. Similarly, hidden di-
mensions can hide critical information about the attractor
and lead to a false perception. Our network approach aims to
instead capture information across all dimensions when
visualizing in 2D.

In Figure 5, we showed a network visualization of only
the attractor nodes identified by our method. Below is a
visualization of the full network (attractor and nonattractor
nodes) using the same results and the same layout algorithm.
)e structure of the SSCC is significantly different due to the
presence of nonattractor nodes. )e full network contains
377,601 nodes, while the SSCC contains only 101,138 nodes
(26.78%).

Data Availability

)e code used in this study is available upon request.
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