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In this note, the problem of tracking random references and rejecting random perturbations in a quadrotor, both generated by an
auxiliary system named exosystem, is solved by extending the deterministic tracking problem to the area of stochastic processes.
Besides, it is considered that only a part of the state vector of the quadrotor is available through measurements. As a consequence,
the state vector of the plant must be estimated in order to close the control loop. On this basis, a controller to track random
references and to reject random perturbations is developed by combining a Kalman filter to estimate the references and per-
turbations of an exosystem and an observer to estimate the states of a quadrotor. Besides, to obtain a more practical controller, the
analysis is carried out in discrete time. Numerical simulations are used in a quadrotor to confirm the validity and effectiveness of
the proposed control.

1. Introduction

In the control field, the problem of imposing random ref-
erences on some outputs of unmanned aerial vehicles is a
very recurrent problem. (is is because such scenarios
appear in many disciplines of science and technology, and
among them, aeronautics is one of those areas. Besides, the
study of a quadrotor is gaining great interest because of their
wide range of applications and low cost [1]. For instance, the
chaotic approach [2–4], the chaotic attractors [5–7], the
adaptive technique [8–10], the sliding mode strategy

[11–13], the robust technique [14–16], the learning strategy
[17–19], and the structure method [20, 21] are used for the
tracking of quadrotors. As can be expected, the bibliography
related to the control of quadrotors is vast and it goes on and
on.

In other orders of ideas, the tracking theory is a well-
posed frame of work providing the tools to ensure as-
ymptotic stability while references are tracked and pertur-
bations are rejected. Roughly speaking, the solution for the
tracking problem is provided by a control vector achieving
two goals: (1) the asymptotic stabilization of the equilibrium
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of the quadrotor and (2) the tracking of random references
and the rejecting of random perturbations, both produced
by an auxiliary system named exosystem [22].

For the linear problem, the solution has been presented
by [23]. (ere, the author showed that the existence of the
desired control coincides with the existence of the solution
of some simultaneous equations, which can be represented
in a matrix form and they are named Francis equations.
Afterward, the nonlinear tracking problemwas analyzed and
it was concluded that the linear result is a particular case of
the nonlinear problem. However, some nonlinear partial
differential equations need to be solved in order to obtain the
nonlinear control. Unfortunately, in many cases, the solu-
tion of such nonlinear partial differential equations is very
difficult to obtain [22]. (us, the avoiding of such nonlinear
partial differential equations has been also studied. For
instance, Takagi-Sugeno fuzzy systems and neural networks
have been successfully used to extrapolate the linear control
to the nonlinear field, without involving nonlinear partial
differential equations [24].

On the other hand, most of the references and pertur-
bations in nature are not perfectly harmonic. For instance,
the flight of butterflies, the behavior of the heart, brain,
human march, among others, include a little bit of ran-
domness, to say the least. To estimate these kinds of ref-
erences and perturbations, the Kalman filter [25] has been
and still is a very good alternative. In this sense, in [26], the
Kalman filter is used for the quadrotors parameters iden-
tification, and in [27, 28], the Kalman filter is used for the
quadrotors states estimation.

With all this in mind, the problem to be studied in
current work can be stated as the problem of ensuring that
the output of a quadrotor behaves as an external random
perturbation while the stability property is maintained.
Roughly speaking, the main contribution of this paper is the
extension of the deterministic references tracking and de-
terministic perturbations rejection to the stochastic field, by
assuming that the generator of references and perturbations
is subject to random uncertainties.

Besides, in order to make the problemmore realistic, it is
assumed that only a part of the state is available. (e novelty
of the proposed approach is the combination of the Kalman
filtering and the regulation theory to solve the references
tracking and perturbations rejection; this problem cannot be
solved by the Kalman filter or the regulation theory by
themselves. In this sense, the desired controller must achieve
two goals which are very similar to those considered in the
tracking problem: (1) to stabilize the quadrotor around an
operation point when the exosystem is affecting it and (2) to
minimize the tracking error when the quadrotor is influ-
enced by external perturbations. On the basis of the observer
and Kalman filter, some random references will be imposed
on the quadrotor, while some random perturbations are
rejected as well.

(e rest of the work is arranged in the following way:
Brief reminders of the tracking and Kalman filter are given in
Section 2. Besides, the numerical model of the quadrotor and
the definition of the problem are also included there. Section
3 is devoted to obtaining the main results. (e numerical

simulations of a quadrotor are analyzed in Section 4, while
some conclusions are given in Section 5.

2. Problem Setup

In this section, the control problem is defined. But before
that, the control, the Kalman filter, and the quadrotor are
briefly introduced.

2.1. 6e Control for Deterministic Plants. Let the plant be

_x(t) � Ax(t) + Bu(t) + Pw(t), z(t)

� Czx(t),
(1)

where x(t) ∈ Rn is the state of the plant, u(t) ∈ Rp is the
control input, z(t) ∈ Rmz is the output, and w(t) ∈ Rℓ is the
solution of the exosystem:

_w(t) � Aexow(t), zref(t) � Cexow(t). (2)

With zref(t) ∈ Rmz as the references to be tracked and
Pw(t) as the perturbations to be rejected, system (1) and (2)
corresponds to the regulation problem in continuous time,
where (1) is the plant to be regulated, while (2) is an auxiliary
system used to model the references/perturbations signals.

Clearly, it is possible to construct a block diagonal matrix
Aexo, such that each block on the diagonal describes the
behavior of the references or perturbations to be generated
by (2). So, Cexo and P can be viewed as output matrices for
such an exosystem.

(e tracking error is e(t) � z(t) − zref(t), and the
control u(t) must achieve

lim
t⟶∞

e(t) � 0. (3)

In [22, 23], it has been shown that the control u(t) which
solves the control problem is

u(t) � K(x(t) −Πw(t)) + Γw(t), (4)

where the steady-state xss(t) � Πw(t) is invariant through
uss(t) � Γw(t), where Π ∈ Rn×ℓ and Γ ∈ Rp×ℓ solve the
Francis equations, defined as

AΠ + BΓ + P � ΠAexo, CzΠ − Cexo � 0. (5)

Notice that equations (5) are a set of (n × ℓ) + (mz × ℓ)
simultaneous equations with (n × ℓ) + (p × ℓ) unknowns.
(ese equations can be readily solved. (ese equations can
be solved analytically or with the help of numerical tools, in
general, when p≥mz. (e following theorem summarizes
the previous analysis.

Theorem 1. Assuming that the exosystem is given by (2) and
H1: 6ere exists a matrix K which stabilizes the pair (A , B)
and H2:6ere exists a solution for Francis equations (5) given
by Π ∈ Rn×ℓ and Γ ∈ Rp×ℓ, then, the tracking problem de-
scribed by (1) and (2) can be solved by (4).

Proof. Consider ess(t) � x(t) −Πw(t) as the steady-state
error. Now, its first-order derivative is
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_ess(t) � _x(t) − Π _w(t),⇒ _ess(t)

� Ax(t) + Bu(t) + Pw(t) − ΠAexow(t).
(6)

At this point, it is easy to obtain

_ess(t) � (A + BK)ess(t) + AΠw(t) + BΓw(t) + Pw(t) −ΠAexow(t). (7)

From (7), it is clear that ess(t) is zeroed as t⟶∞ if (1)
A + BK is Hurwitz (Assumption H1), and (2)
AΠ + BΓ + P � ΠAexo, which coincides with (5). Observe
that (5) involves n × ℓ equations with n × ℓ + p × ℓ
unknowns.

But, the tracking error is rewritten as

e(t) � Cz ess(t) + Πw(t)( 􏼁 − Cexow(t). (8)

(e missing equations are obtained. Notice that (8)
coincides with (5), in steady-state, i.e., when ess(t) � 0. To
conclude, notice that if mz � p, then equation (5) may have a
unique solution; if p>mz, then an infinite of solutions may
exist. And, if p<mz, then (5) may not have solution, in
general [23]. □

2.2. Kalman Filter (KF). (e Kalman filter is an iterative
process based on the least square method, which is able to
estimate the states of a plant in an optimal way [25].

Consider the following discrete-time plant:

xk+1 � Axk + Buk + Mξk, yk

� Cxk + Nηk,
(9)

where, as usual, the discrete time is represented by k, and
xk ∈ R

n, uk ∈ R
p, and yk ∈ R

m are the state, input, and
output vectors, respectively. (e dynamic noise is ξk ∈ R

q

with normal distribution, zero mean, and variance
Q ∈ Rq×q, while the measurement noise is ηk ∈ R

r with
normal distribution, zero mean, and variance R ∈ Rr×r. It is
important to mention that matrices A ∈ Rn×n, B ∈ Rn×p,
C ∈ Rm×n, M ∈ Rn×q, and N ∈ Rm×r are obtained by line-
arizing the discrete-time quadrotor plant around a suitable
operation point. On this basis, the Kalman filter (KF) is
defined by

􏽢xk|k−1 � A􏽢xk−1|k−1 + Buk−1,

Pk|k−1 � APk−1|k−1A
T

+ MQMT
,

Gk � Pk|k−1C
T

CPk|k−1C
T

+ R􏼐 􏼑
− 1

,

􏽢xk|k � 􏽢xk|k−1 + Gk yk − C􏽢xk|k−1􏼐 􏼑,

Pk|k � I − GkC( 􏼁Pk|k−1,

(10)

where 􏽢xk−1|k−1 and Pk−1|k−1 are the estimations for the state
xk−1 and error variance at iteration k − 1, respectively, while
􏽢xk|k−1 and Pk|k−1 are the predictions for state xk and variance
at iteration k, respectively. And, 􏽢xk|k and Pk|k are the updated

estimations, through the Kalman gain Gk, for state xk and
error variance at iteration k, respectively [25].

Evidently, the Kalman filter can be extended to the
nonlinear domain by linearizing the quadrotor plant at every
discrete instant and by applying the previous equations it-
eratively. Such a result is known as the extended Kalman
filter (EKF).

2.3. 6e Mathematical Model of the Quadrotor. (e pro-
posed controller will be tested on a quadrotor with suffi-
ciently complex behavior; the quadrotor can be considered
as an aerial robot. (e free-body diagram of the quadrotor is
given in Figure 1, while its mathematical model is [29]

_x(t) � f(x(t), u(t), w(t)), y(t)

� h(x(t)).
(11)

With x(t) � [x1(t) . . . x12(t)]T, u(t) � [u1(t) . . .

u4(t)]T,

f(x, u) �

x2(t),

f1(x(t), u(t)),

x4(t),

f2(x(t), u(t)),

x6(t),

−g + cos x9(t)( 􏼁( cos x7(t)( 􏼁
β1
m

,

x8(t),

x10(t)x12(t)
Iyy − Izz

Ixx

−
Jtp

Ixx

x10(t)ω +
lβ2
Ixx

,

x10(t),

x8(t)x12(t)
Izz − Ixx

Iyy

+
Jtp

Iyy

x8(t)ω +
lβ3
Iyy

,

x12(t),

x8(t)x10(t)
Ixx − Iyy

Izz

+
β4
Izz

.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(12)

With
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f1(x(t), u(t)) � sin x11(t)( 􏼁sin x7(t)( 􏼁 + cos x11(t)( 􏼁sin x9(t)( 􏼁cos x7(t)( 􏼁􏼂 􏼃
β1
m

,

f2(x(t), u(t)) � −cos x11(t)( 􏼁sin x7(t)( 􏼁 + sin x11(t)( 􏼁sin x9(t)( 􏼁cos x7(t)( 􏼁􏼂 􏼃
β1
m

,

β1 � b u1(t)
2

+ u2(t)
2

+ u3(t)
2

+ u4(t)
2

􏽨 􏽩,

β2 � b u
2
4 + u

2
3 − u

2
1 − u

2
2􏽨 􏽩,

β3 � b u2(t)
2

+ u3(t)
2

− u1(t)
2

− u4(t)
2

􏽨 􏽩,

β4 � d u1(t)
2

+ u3(t)
2

− u2(t)
2

− u4(t)
2

􏽨 􏽩,

Ω � u1(t) − u2(t) + u3(t) − u4(t),

h(x(t)) � Cx(t),

(13)

where C is chosen,

h(x(t)) � x1(t)x3(t)x5(t)x7(t)x9(t)x11(t)􏼂 􏼃
T
. (14)

t is the continuous time.(e frequencies of rotors 1, 2, 3,
and 4, which are in fact the effective controls, are described
by u1(t), u2(t), u3(t), and u4(t), respectively, and they are
given in radians per second. (e states x1(t), x3(t), and
x5(t) are given in meters and they describe the linear
movements along the Earth fixed axes Xe, Ye, and Ze, re-
spectively. On the other hand, states x7(t), x9(t), and x11(t)

are given in radians representing angular movements
around the body-fixed axes Xb, Yb, and Zb, respectively.
And, the even states can be easily identified as the velocities
of abovementioned states.

(e value of the parameters are as follows [29]: b �

54.2 × 10− 6 N · s2 is the thrust coefficient, d � 1.1 × 10− 6 N ·

m · s2 is the drag coefficient, l � 0.24m is measured from the
quadrotor’s center to the rotors’ middle point, m � 1 kg is
the mass of the quadrotor, g � 9.81m/s2 is the gravity
constant, Jtp � 104 × 10− 6N · m · s2 is the rotors’ momen-
tum, and Ixx � 8.1 × 10− 3 N · m · s2, Iyy � 8.1 × 10− 3

N · m · s2, and Izz � 14.2 × 10− 3 N · m · s2 are the

momentum respect to Xe, Ye, and Ze, respectively. With
these values, the quadrotor can be maintained in hovering
when uo1 � uo2 � uo3 � uo4 ≈ 212.7183rad/s, where u1 . . . u4
are the static controls needed to keep the quadrotor in a
static floating position.

(e discrete-time approximation for equation (11) can
be derived by means of the Euler discretization method
[25]:

_x(t) ≈
x(t + T) − x(t)

T
, (15)

where T is the sampling time and it is sufficiently small such
that the main features of the continuous-time system are
preserved, while the controllability property is not affected.
(us,

x(t + T) ≈ x(t) + T _x(t). (16)

Consequently, the discrete-time approximation for (11)
is

xk+1 � xk + Tf xk, uk, wk( 􏼁,

yk � h xk, wk( 􏼁,
(17)

x5

x1

x11

x3

Ze

Zb

Xb

Yb
x9

Ω3

Ω4

Ω1

Ω2

x7

Xe

Ye

Figure 1: Quadrotor free-body diagram.
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with f(·, ·, ·) as in (12), with T � (1/40)s.
On the other hand, in order to produce the random

references and random perturbations, the following sto-
chastic exosystem is considered:

wk+1 � Aexowk + qMkξk,

zref ,k � Cexowk + rNkηk,
(18)

where for this case Aexo ∈ R
5×5, Mk � I5×5, Cexo ∈ R

3×5, and
Nk � I3×3, while the dynamic and measurement noises are
characterized by their standard deviations q and r, re-
spectively, such that Q � q2Mk and R � r2Nk. Equation (18)
is the Euler discretization of the nonlinear model of the
quadrotor, and equation (19) is the stochastic exosystem
generating the references to be tracked and the perturbations
to be rejected. In the following section, the dimensions of
Aexo and Cexo are clarified.

2.4. 6e Problem of Tracking Random References in the
Presence of Random Perturbations. In this work, it is sup-
posed that only six from the twelve states of the quadrotor
are available for measurement, namely, x1, x3, x5, x7, x9, and
x11; i.e., only the linear and angular displacements in the axes
Xe, Ye, Ze, Xb, Yb, and Zb are available. To overcome this
problem, a full-state observer will be considered during the
stabilization of the quadrotor.

Under such conditions, one random reference will be
imposed on x1, another on x3, and the last one on x5.
Besides, a random perturbation will affect x2.

Both the references and perturbations are generated by a
set of equations similar to (9) and (19):

wk+1 � Aexowk + Mkξk,

zref ,k � Cexowk + Nkηk.
(19)

For the definition of structure of the exosystem, it is
important to mention that the references and perturbations
to be imposed on x1, x3 are pseudoperiodic with frequency
of πrad/s, the reference to be imposed on x5 is random with
zero mean, and the perturbations affecting the state x2 are
also pseudo periodic of (π/2)(rad/s). (erefore, by con-
sidering the dimensions of system (11), one way of gener-
ating such references and perturbations is through (20) with
matrices Aexo � aexo,ij􏽮 􏽯 ∈ R5×5, Cexo � cexo,ij􏽮 􏽯 ∈ R3×5, and
P � pij􏽮 􏽯 ∈ R12×5, where aexo,11 � aexo,22 � 0.997,
aexo,12 � −aexo,21 � 0.078, aexo,44 � aexo,55 � 0.999, and
aexo,45 � −aexo,54 � 0.039, the other terms of Aexo have a
value of 0, cexo,11 � cexo,22 � cexo,33 � 1, the other terms of
Cexo have a value of 0, p25 � 1, and the other terms of P have
a value of 0. At this point, the perturbations can be defined as
Pwk.

(us, as mentioned before, in order to track the random
references and to reject the random perturbations, they will
be estimated online by means of a Kalman filter. In the
following section, the structure of the matrices involved in
the estimation of the references and perturbations is thor-
oughly analyzed.

3. Main Result

To estimate the random references and random perturba-
tions by means of the Kalman filter, it must be recalled that
both matrices Cexo and P can be viewed as output matrices
for the exosystem, and because of their dimension, they can
be used to construct an overall output matrix for the exo-
system, namely, CTot � [CT

exoPT]T, with CTot ∈ R
15×5.

With this in mind, and by considering the expressions
for the exosystem, i.e., (20), the estimation problem for the
references and perturbations can be solved by a Kalman
iterative process like the one defined through equations (9)
and (10), where A � Aexo, B � 0, and C � CTot, for all k≥ 0.

On the other hand, an observer capable of estimating the
full state of a plant from the available outputs when it is subject
to random perturbations must be designed. So, for system (21),
a quasi-solution for the observability problem is given next.

Theorem 2. Consider a plant in the form of

xk+1 � Axk + Buk + Pwk,

zk � Czxk,

yk � Cxk.

(20)

yk is considered as the vector of available output and zk

as the set of output where the references are to be imposed.
As before, xk ∈ R

n, uk ∈ R
p, yk ∈ R

m, zk ∈ R
mz , and

wk ∈ R
ℓ as the solution of the exosystem

wk+1 � Aexowk,

zref ,k � Cexowk.
(21)

zref ,k ∈ R
mz are considered as the vector of references to

be tracked.(en, the state xk can be taken to a neighborhood
around its equilibrium if the pair (A, B) is stabilizable, the
pair (A, C) is detectable, and there exists an estimation for
perturbation pk � Pwk. Moreover, the quasi-stabilizer is
given by the dynamic system:

xo,k+1 � Axo,k + Buk + p
⌢

k + L yk − yo,k􏼐 􏼑, yo,k

� Axo,k, uk

� Kxo,k,

(22)

where xo,k is the state of the observer.

Proof. Let the observer for (21) be (23) and eo � xk − xo,k

with uk as in (22) for both (21) and (23). (us eo,k+1 can be
written as

eo,k+1 � Aeo,k + ep,k + LCeo,k, (23)

where ep,k � pk − 􏽢pk. (us, by continuity, if the system (21) is
detectable and if ep,k is sufficiently small, then gain L exists
because ep,k could be disregarded. Besides, if (21) is stabilizable
the gain K also exists and both state vectors xk and xo,k tend to
a neighborhood around the equilibrium by means of (22).

Notice that, previously, it has been supposed that pk can
be estimated by the Kalman filter.
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Figure 2: Control scheme.
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Now, the regulation problem presented in Section 2.1
must be extended to the field of the discrete-time systems,
but considering that the states and output of the exosystem
are influenced by noise. To this end, consider the discrete-
time plant (21) and the exosystem (20).

(us, by mimicking the procedure in Section 2.1, the
tracking error is given by ek � zk − zref ,k, and the tracking
problem for discrete time is solved by a control vector uk

such that

lim
k⟶∞

ek � 0. (24)

As above, it will be considered that the tracking problem
for discrete-time plants is solved by

uk � K xo,k − Π􏽢wk􏼐 􏼑 + Γ􏽢wk, (25)

where xo,k is the observed state of the plant, 􏽢wk is the Kalman
estimation for wk, the manifold of steady-state is
xss,k � Π􏽢wk, and the steady-state input is uss,k � Γ􏽢wk, with
Π ∈ Rn×ℓ and Γ ∈ Rp×ℓ as the solution of

AΠ + BΓ + P � ΠAexo, CΠ − Cexo � 0. (26)

At this point, the following result naturally arises. □

Theorem 3. Considering the tracking problem defined by
(20) and (21), and assuming H1: 6ere exists a matrix K
which stabilizes (A, B), H2: 6ere exists a matrix L, such that
the pair (A, C) is detectable, and H3:6ere exists a solution for
Francis equation (26) given by Π ∈ Rn×ℓ and Γ ∈ Rp×ℓ, then,

the tracking problem for the discrete-time system defined by
(20) and (21) is solved by (25).

Proof. Let the steady-state error be ess,k � xo,k − Π􏽢wk. (us,

ess,k+1 � xo,k+1 − Π􏽢wk+1,

⇒ess,k+1 � Axo,k + Buk + Pwk − ΠAexo 􏽢wk.
(27)

By the definition of ess,k and by substituting (26) in (27),
one gets

ess,k+1 � (A + BK)ess,k + AΠ􏽢wk + BΓ􏽢wk + P􏽢wk − ΠAexo 􏽢wk. (28)

From (28), it is obvious that ess,k dissipates when (1)
matrices A + BK and A − LC have their eigenvalues inside
the unit circle [30] (Assumptions H1 and H2), and (2)
AΠ + BΓ + P � ΠAexo, which coincides with (26). As in
(eorem 1, by considering the tracking error ek � zk − zref ,k
in steady-state, the missing equations are obtained from

ek � Cz ess,k + Π􏽢wk􏼐 􏼑 − Cexo 􏽢wk. (29)

In steady-state it coincides with (26). As above, this
analysis entirely relies on the fact that the Kalman estimation
􏽢wk is sufficiently close to wk. (e rest of the proof follows the
same path as in (eorem 1. □

Remark 1. (eorems 1 and 2 correspond to results in
continuous time and discrete time, where no uncertainties
were considered. However, (eorem 3 states the conditions
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Figure 4: Tracking errors with minimum randomness.
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under which that regulation problem can be solved, even if
the exosystem is subject to uncertainties.

Remark 2. (e proposed approach entirely relies on the
estimation of the Kalman filter. For that reason, the pro-
posed exosystem complies with the requirements established
by the Kalman theory, and Aexo must be known. Future
works may be oriented to estimate the elements of Aexo when
such matrix is unknown, but that problem exceeds the scope
of the present work.

(e control scheme is graphically described in the block
diagram of Figure 2.

4. Numerical Simulations

Please refer to Appendix where a detailed description of the
matrices considered to construct the control is given.

(e numerical simulations are carried out considering a
linearization of (17) around the origin, because the ground
effect is not considered in the mathematical model. Con-
sequently, the observer (23) is construct from the matrices
A � aij􏽮 􏽯 ∈ R12×12, B � bij􏽮 􏽯 ∈ R12×4, C � cij􏽮 􏽯 ∈ R6×12,
and L � lij􏽮 􏽯 ∈ R12×6, and L has been computed by con-
sidering the set of desired eigenvalues:

λ �
0.435 0.44 0.445 0.45 0.455 0.46

0.465 0.47 0.475 0.48 0.485 0.49
􏼨 􏼩. (30)

(e control (26) is formed from the matrix
K � kij􏽮 􏽯 ∈ R12×4. K has been computed by the dlqr al-
gorithm with Q � 103I12, and R � 10− 3I4 with Ij as the
identity matrix of dimension j, and the solution for (27) is
given by Π � πij􏽮 􏽯 ∈ R12×5 and Γ � cij􏽮 􏽯 ∈ R4×5, Aexo, Cexo,
and P are given in Section 2.4.

Remark 3. (e design of the controller has been performed
on the linear model of the quadrotor, although the results
presented correspond to the response of the nonlinear
system under the action of the designed controller.

With all of the basis stated in previous sections, the
results are given next.

Example 1. Minimum randomness with the proposed
method.

At first, the simulations are carried out with very small
randomness in order to validate the approach in the quasi-
deterministic case. As mentioned before Mk � I5×5,
Nk � I3×3, while the dynamic and measurement noises are
characterized by their standard deviations q and r, re-
spectively, such thatQ � q2Mk andR � r2Nk.(e results are
given in Figures 2 to 6.

So, for this example, the standard deviation values are
q � 1 × 10− 6 and r � 1 × 10− 6. (e initial conditions for the
nonlinear model of the quadrotor (18) are
x0 � [0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0]T, while the initial state for
the observer is xo, 0 � [0, 1 + ε1, 0, 0, 2 + ε2, 0, 0, 0, 0, 0, 0, 0]T,
where ε1 and ε2 are random numbers with zero mean and
standard deviation q. On the other hand, the references and
perturbations are generated by the exosystem (19) with
initial conditions w0 � [0, 1, 3, 0, 0]T, while the initial state
for the Kalman filter is 􏽢w0 � w0 + [η1, η2, η3, η4, η5]

T, where
η1 . . . η5 are random numbers with zero mean and standard
deviation r. Under these conditions, the obtained results are
depicted from Figures 3 to 7.

In Figure 3 are shown the tracking outputs against the
corresponding reference. It can be observed how the proposed
controller achieves the desired goals. Besides, in the same
figure, the available outputs are depicted also. Figure 4might be
more helpful to determine the efficacy of the controller by
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Figure 9: Tracking errors for random references considering the structure method.
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showing the tracking errors under the mentioned conditions.
Please, note that the oscillations presented in such a figure are
due to the fact that a controller is applied to a quadrotor. In
other words, persistent oscillations can be reduced or even
eliminated by means of a nonlinear controller; however, such
analysis exceeds the scope of the present work.

(e estimation of the references and the perturbations
can be viewed in Figure 5. From there, it can be concluded
that the estimates provided by the Kalman filter are ac-
ceptable, at least in this case.

(us, the 3D behavior of the quadrotor is shown in
Figure 6 and the rotors’ frequencies appear in Figure 7. It is
worth mentioning that the frequencies of the rotors remain
positive, all of them. (is is an important feature of the
quadrotor that must be kept all the time because the rotors of
such system rotate in one and only one direction.

Notice also that the frequencies of the rotors are not the
same. (is is due to the fact that the quadrotor is describing
circles during its operation.

Example 2. Stochastic problem with the structure method.
Now, a more interesting case is simulated with bigger

values for q and r; i.e., the randomness of the problem is now
notably increased. In this case q � 0.05 and r � 0.5. (e rest
of the parameters remain as those considered in Example 1.
(e results are given in Figures 8 to 9.

(e simulation considers the same situation presented in
the previous example, but the structure method of [20, 21] is
used in which the Kalman estimating is omitted and it is
assumed that the structuremethod is sufficient to describe both
the references and the perturbation even when they are, in fact,
random. (e results are given in Figures 8 and 9. Notice now
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that the references are much more complex due to the random
nature of the exosystem provoked by the values of q and r.

In this case, the boundedness of the tracking errors can
not be ensured, which totally justifies the use of the proposed
method of the next example.

Example 3. Stochastic problem with the proposed method.
(is numerical experiment considers the same situation

presented in Example 2; i.e., q � 0.05 and r � 0.5. However,
in this case the Kalman estimation is considered. (e rest of
the parameters remain as those considered in Example 1.
(e results are given in Figures 10 to 14.

In Figure 10 are depicted the tracking outputs against
their respective references. (e tracking errors are shown in
Figure 11. Observe how, in this case, the errors are smaller
than those obtained in Example 2.

(e performance of the Kalman filter can be assessed
through the results given in Figure 12. From there, one can
conclude that the estimations of the references and the
perturbation are acceptable again despite the randomness
introduced in the exosystem, corroborating in this way, that
the main issue of the tracking problem, in this case, is the
nature of the linear control.

Finally, the 3D behavior of the quadrotor is shown in
Figure 13 and the rotors’ frequencies appear in Figure 14.
Observe that the random reference is changing so abruptly
that the quadrotor is unable to track it exactly because of its

own physical restrictions. However, the quadrotor is kept in
a neighborhood around the reference, meaning that the
tracking errors are bounded. Again, the frequencies are all
positives, which implies that the controller is imposing
normal behavior in the rotors. Obviously, the strange be-
havior of the quadrotor is due to complex response of the
rotors.

Comparison of Examples 1–3:
Finally, the mean squared error (MSE) between the

tracking states of the quadrotor and the corresponding
states of the exosystem for Examples 1–3 is depicted in
Table 1.

Clearly, the inclusion of the Kalman filter for estimating
the states of the stochastic exosystem drastically reduces the
MSEs. (erefore, its use cannot be neglected when the
reference or perturbation is not fully known.

Remark 4. Example 3 should be compared with Example 2
because the same big noises with standard deviation values
of q � 0.05 and r � 0.5 are used in Examples 2 and 3; the
difference of this comparison is that the Kalman estimating
is omitted in Example 2, while the Kalman estimating is used
in Example 3. Example 1 should not be compared with
Examples 2 and 3 because small noises with standard de-
viation values of q � 1 × 10− 6 and r � 1 × 10− 6 are used in
Example 1, and the Kalman estimating is omitted in Ex-
ample 1.
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5. Conclusion

On the basis of the observer and Kalman filter, an approach
to track random references while random perturbations are
rejected has been proposed. (e control scheme analyzed in
this work can be viewed as an extension of the deterministic
tracking problem to the area of stochastic processes. It has
been shown that the estimation of the references and per-
turbation makes a great difference because, in general, the
controller is constructed on the basis that the same matrices
need to solve the deterministic case. (e validity of the
approach has been illustrated by several numerical simu-
lations considering the mathematical model of a quadrotor.
In the future work, for the case where the quadrotor includes
random dynamics, then the observer will be substituted for
an unscented Kalman filter, an extended Kalman filter, or
another estimator as the James-Stein filter.

Appendix

(e terms of the matrix A � aij􏽮 􏽯 ∈ R12×12 are
a11 � a22 � a33 � a44 � a55 � a66 � 1, a77 � a88 � a99 �

a10,10 � a11,11 � a12,12 � 1, a12 � a34 � a56 � a78 � a9,10 �

a11,12 � α1, a29 � α2, a47 � −α2, α1 � 0.025, α2 � 0.24525,
and the other terms of A have a value of 0.

(e terms of the matrix B � bij􏽮 􏽯 ∈ R12×4 are
b61 � b62 � b63 � b64 � β1, b81 � b82 � b83 � b84 � β2, b10,1 �

b10,2 � b10,3 � b10,4 � β2, b12,1 � b12,2 � b12,3 � b12,4 � β3,
β1 � 0.00057, β2 � 0.01708, β3 � 0.00082, and the other
terms of B have a value of 0.

(e terms of the matrix C � cij􏽮 􏽯 ∈ R6×12 are
c11 � c23 � c35 � c47 � c59 � c6,11 � 1, the rest of the terms of
C are equal to zero.

(e terms of the matrix L � lij􏽮 􏽯 ∈ R12×6 are l11 � 1.045,
l12 � −0.004849, l13 � −0.00187, l14 � 0.004604, l15 �

−3.917 × 10− 5, l16 � 0.0001877, l21 � 10.91, l22 � −0.1019,
l23 � −0.03905, l24 � 0.09537, l25 � 0.2462, l26 � 0.003895,
l31 � −0.004303, l32 � 1.047, l33 � −0.001568, l34 � 0.006485,
l35 � −0.01585, l36 � 0.000152, l41 � −0.09043, l42 � 10.97,
l43 � −0.03272, l44 � −0.1107, l45 � −0.3324, l46 � 0.003145,
l51 � −0.0002392, l52 � −0.0002246, l53 � 1.101,
l54 � 0.0001867, l55 � −0.0001424, l56 � 0.02143, l61 �

−0.005185, l62 � −0.004869, l63 � 12.12, l64 � 0.004052,
l65 � −0.003096, l66 � 0.4646, l71 � 0.003847, l72 � 0.004632,
l73 � 0.001292, l74 � 1.044, l75 � 0.007422, l76 � −0.0001401,
l81 � 0.07979, l82 � 0.09622, l83 � 0.02687, l84 � 10.89,
l85 � 0.1542, l86 � −0.002901, l91 � −6.892 × 10− 5,
l92 � −0.001195, l93 � −8.156 × 10− 5, l94 � 0.0007677, l95 �

1.104, l96 � 9.086 × 10− 6, l10,1 � −0.001524, l10,2 � −0.0264,
l10,3 � −0.001802, l10,4 � 0.01696, l10,5 � 12.19, l10,6 �

0.0002007, l11,1 � 4.419 × 10− 5, l11,2 � 4.014 × 10− 5, l11,3 �

0.001739, l11,4 � −4.137 × 10− 5, l11,5 � 3.991 × 10− 5, l11,6 �

1.109, l12,1 � 0.0009928, l12,2 � 0.0009018, l12,3 � 0.0389,
l12,4 � −0.0009294, l12,5 � 0.0008965, l12,6 � 12.29.

(e terms of the matrix K � kij􏽮 􏽯 ∈ R12×4 are
k11 � k14 � k33 � k34 � −0.4646,
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Figure 14: Rotors frequencies for random tracking.

Table 1: MSEs for Examples 1–3.

xk,1 vs zref ,k,1 xk,3 vs zref ,k,2 xk,5 vs zref ,k,3

1 0.01832414 0.1837935 0.2471288
2 1835.705 0.7743019 1.995679
3 26.1942 0.5449 0.5347
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k12 � k13 � k31 � k32 � 0.4646, k21 � k24 � k43 � k44 �

−0.8851, k22 � k23 � k41 � k42 � 0.8851, k71 � k72 � k91 �

k94 � −5.884, k73 � k74 � k92 � k93 � 5.884, k81 � k82 �

k10, 1 � k10, 4 � −2.143, k83 � k84 � k10, 2 � k10, 3 � 2.143,
k51 � k52 � k53 � k54 � 0.4981, k61 � k62 � k63 � k64 � 3.33,
k11,1 � k11,3 � 0.4977, k11,2 � k11,4 � −0.4977, k12,1 � k12,3 �

2.799, k12,2 � k12,4 � −2.799.
(e terms of the matrix Π � πij􏽮 􏽯 ∈ R12×5 are

π11 � π33 � π55 � 1, π21 � π42 � −0.1233, π71 � π92 �

−0.0789, π81 � π10, 2 � −3.136, π22 � 3.138, π41 � −3.138,
π72 � 1.002, π91 � −1.002, π82 � −0.3712, π10, 1 � 0.3712,
π95 � −4.077, π10,4 � 6.403, π10,5 � 0.1257, π11,1 � 0.04455,
π11,2 � 0.05216, π11,5 � 0.1967, π12,1 � −0.1692,
π12,2 � 0.1334, π14,4 � −0.3089, π12,5 � −0.006065, and the
other terms of Π have a value of 0.

(e terms of the matrix Γ � cij􏽮 􏽯 ∈ R4×5 are
c11 � c32 � −7.17, c12 � −1.136, c31 � 1.136, c14 � 0.289,
c24 � −0.289, c15 � −7.356, c25 � 7.356, c21 � 6.034,
c22 � 8.306, and the other terms of Γ have a value of 0.
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