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Accurate wind speed forecasting is an effective way to improve the safety and stability of power grid. A novel hybrid model based
on twice decomposition, phase space reconstruction (PSR), and an improved multiverse optimizer-extreme learning machine
(IMVO-ELM) is proposed to enhance the performance of short-term wind speed forecasting in this paper. In consideration of the
nonstationarity of the wind speed signal, a twice decomposition based on improved complete ensemble empirical mode de-
composition with adaptive noise (ICEEMDAN), fuzzy entropy, and variational mode decomposition (VMD) is proposed to
reduce the nonstationarity of the original signal firstly. )en the PSR based on C-C method is employed to reconstitute the
decomposed signal as the input of the prediction model. Lastly, an improved multiverse optimizer is proposed to improve the
stability and efficiency of ELM which is used as prediction model. Furthermore, two experiments are designed to verify the
performance of the proposed method; the results indicate that (1) the wind speed forecasting with twice decomposition of original
wind speed signal is better than other once-decomposition methods and much better than forecasting without decomposition; (2)
the C-C-PSRmethod can determine the input dimension of ELM and improve the prediction accuracy of ELM; (3) the IMVO has
improved the stability of ELM, and the optimization efficiency is better than other comparison optimization methods. )e results
show that the proposed hybrid approach is a useful tool for short-term wind speed forecasting.

1. Introduction

With exhaustion of fossil energy and increase of require-
ments of environmental protection, energy supply has be-
come an important problem. Developing clean energy is an
effective way to solve energy problems. Wind energy as a
cheap, recyclable, pollution-free energy has been vigorously
developed by many countries, and the capacity of wind
turbine is increasing rapidly [1]. According to statistics, the
wind-turbine capacity increased from 487GW in 2016 to
702GW in 2020 [2].

Wind speed has the characteristics of randomness, in-
termittence, and fluctuation which makes the output power
of wind turbine unstable. With the grid-connected large-
scale wind power, the unstable output power brings great
challenge to power grid [3]. Accurate wind speed forecasting
is an effective tool to improve the safety and stability of
power grid [4]. Many of wind speed forecasting methods

have been proposed in the fast few decades.)emethods can
be classified into two categories [5]: the physical-driven
methods and the data-driven methods. )e physical-driven
methods are usually established with topography, temper-
ature, density, air pressure, and altitude. And the numerical
weather prediction (NWP) is employed for forecasting [6, 7].
With the low resolution of NWP, the physical-driven
methods usually cannot meet the demand of short-term
wind speed forecasting [8].

)e data-driven methods just need the history data for
forecasting which is more suitable for short-termwind speed
forecasting. )e data-driven methods can be divided into
two categories: statistical algorithms and artificial intelli-
gence algorithms. )e statistical algorithms employed for
wind speed forecasting mainly include autoregressive
moving average model (ARMA) and autoregressive inte-
grated moving average model (ARIMA) [9, 10]. )e ARMA
model is a linear model which is not very suitable for the
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nonstationary signals [11]. )e ARIMA model can convert
nonstationary signals into stationary time series which
improved the prediction accuracy of wind speed [12]. With
the development of computer science, the artificial intelli-
gence algorithms have been widely employed in wind speed
forecasting, such as support vector machine (SVM) [13, 14],
backpropagation (BP) [15], Elman neural network [16, 17],
and extreme learning machine (ELM) [18, 19]. Among these
artificial intelligence algorithms, the ELM has the fastest
calculation speed and stronger generalization ability [20]
which mean it is more suitable for short-term forecasting.

With the nonstationarity of wind speed, data pre-
processing can get more useful data features from original
wind speed signal to improve the prediction accuracy
[21, 22]. Data preprocessing methods have been widely used
to reduce the nonstationarity of wind speed signal, such as
wavelet transform (WT) [12], empirical mode decomposi-
tion (EMD) [23], ensemble empirical mode decomposition
(EEMD) [24], complete ensemble empirical mode decom-
position with adaptive noise (CEEMDAN) [25], improved
complete ensemble empirical mode decomposition with
adaptive noise (ICEEMDAN) [26], and variational mode
decomposition (VMD) [27].)e ICEEMDAN has solved the
modal mixing problem and the residual components in
intrinsic mode function (IMF) are greatly reduced [28, 29].
)e VMD can also solve the modal mixing problem by
decomposing signal into band-limited subseries [30, 31].

In this paper, a novel hybrid model for short-term wind
speed forecasting based on twice decomposition, phase
space reconstruction (PSR), and an improved multiverse
optimizer-extreme learning machine (IMVO-ELM) is pro-
posed. )e proposed method includes data processing
module, prediction module, and combination of final results
module. A twice-decomposition method based on ICE-
EMDAN, fuzzy entropy, and VMD is proposed as data
processing module. A prediction model based on C-C-PSR
and IMVO-ELM is proposed as prediction module. )e
main contributions of this paper are illustrated as follows:

(1) A twice decomposition based on ICEEMDAN, fuzzy
entropy, and VMD is proposed for wind speed signal
to improve the prediction accuracy. )e ICE-
EMDAN is utilized to the original wind speed signal
firstly. As some of the high frequency IMFs are still
complex for the prediction, the VMD is employed to
decompose the complexity of IMFs. And the fuzzy
entropy is utilized to estimate the complexity of each
IMF.

(2) )e PSR based on C-C method is used for estab-
lishing the input signal of the prediction model to
improve the prediction accuracy.

(3) An improved multiverse optimizer is proposed to
optimize the weight coefficients from input layer to
hidden layer and the bias of hidden layer of ELM.
)e IMVO-ELM can improve the stability and ef-
ficiency of ELM.

)e rest of this paper is organized as follows: the the-
oretical background which is related to the proposedmethod

is described in Section 2. In Section 3, the proposed hybrid
model and the methodology of the article are described
detailedly. Experiments are conducted and the results are
analyzed in Section 4. Conclusions are given in Section 5.

2. Theoretical Background

)e theoretical backgrounds related to the proposed method
of this paper are briefly reviewed in this section, including
ICEEMDAN, VMD, fuzzy entropy, PSR based on C-C, and
ELM.

2.1. ICEEMDAN. ICEEMDAN is proposed by Colominas
based on CEEMDAN which is recognized as the important
improvement of EEMD [32]. )e ICEEMDAN adds the
mode of white noise to original signal instead of white noise
which greatly reduces the residual noise in IMFs. )e de-
tailed steps of ICEEMADN are as follows:

Step 1: )e modes of white noise which is processed
with EMD are added to the original signal.

f
(i)

� f + β0E1 w
(i)

􏽨 􏽩, i � 1, 2, . . . , I, (1)

where f is the original signal, β0 is the SNR, Ek[·]
represent the the k-th subseries decomposed by EMD,
and w(i) denotes the i-th white noise which adds to the
original signal. I is the total number of white noises.
Step 2: )e first-order residuals and the first IMF are
calculated:

r1 �
1
I

􏽘

I

i�1
M f

(i)
􏽨 􏽩,

c1 � f − r1,

(2)

where r1 is the first-order residuals,M[·] represents the
calculation of local mean value, and c1 represents the
first IMF.
Step 3: )e rest of the orders of residuals and IMFs are
calculated by the following equations:

rk �
1
I

􏽘

I

i�1
M rk + βk−1E w

(i)
􏽨 􏽩􏽨 􏽩, k � 2, 3, . . . , N, (3)

ck � rk−1 − rk, (4)

where rk represents the k-th order residual, and ck is the
k-th IMF.

2.2. VMD. VMD is an adaptive decomposition algorithm
which can decompose a signal into IMF with limited
bandwidth [30]. )e detailed steps of VMD can be described
as follows:

Step 1: )e variational problem of VMD can be de-
scribed as
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(5)

where f is the original signal,K is the number of IMFs of
the original signal, uk is the k-th IMF of f, and ωk
represents the center frequency of uk.
Because equation (5) cannot be solved directly, the
augmented Lagrangian function of equation (5) can be
described as

L uk, ωk, η( 􏼁 � α􏽘
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where η represents the Lagrange multiplier, and α
represents the penalty factor.

Step 2: )e un+1
k ,ωn+1

k , ηn+1
k are updated to search the

saddle point of equation (6). )e updating process can
be described as follows:

u
n+1
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(7)

where uk(ω), fk(ω), and ηk(ω) are frequency domain
signal of uk(t), fk(t), and ηk(t). τ represents the updating
step.

In the process, the center frequency and bandwidth of
each mode are constantly updated, and several IMFs with
narrow bandwidths are obtained finally.

2.3. Fuzzy Entropy. Fuzzy entropy is an improved com-
plexity evaluation method based on sample entropy [33].
Membership function in fuzzy theory is employed in fuzzy
entropy to replace the threshold value in sample entropy
which can make similarity evaluation more clearly. )e
detailed steps of fuzzy entropy are described as follows:

A time series with N samples is assessed as [u(1), u(2),
. . ., u(N)]. )e phase space U is reconstructed with the time
series which can be described as

U(i) � [u(i), u(i + 1), . . . , u(i + m − 1)] − u0(i),

u0(i) �
1
m

􏽘

m−1

j�0
u(i + j),

i � 1, 2, . . . , N − m,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

where m represents the dimension of the phase space. )e maximum absolute distance of U(i) and U(j) is
described as

dij � d[U(i), U(j)] � max
p�1,2,...,m−1

u(i + p − 1) − u0(i)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − u(j + p − 1) − u0(j)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑. (9)

)e similarity is calculated as

O
m

(n, r) �
1

N − m
􏽘
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i�1

1
N − m − 1

􏽘

N−m
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exp −d

m
ij􏼐 􏼑

n
/r􏽨 􏽩⎛⎝ ⎞⎠, (10)

Complexity 3



where n and r present the gradient and width of the
boundary of an exponential function. Equations (8)–(10) are
repeated to get the similarity for phase space with m+ 1
dimension.

)e Fuzzy entropy is defined as

FEn(m, n, r) � lim
N⟶∞

ln O
m

(n, r) − ln O
m+1

(n, r)􏽨 􏽩. (11)

2.4. PSRBasedonC-C. )e PSR is a basic method for chaotic
time series analysis [34]. For a time series x� {xi | i� 1, 2, . . .,
N}, the PSR model can be described as

X � Xi | Xi � xi, xi+τ , . . . , xi+(m− 1)τ􏽨 􏽩
T
, i � 1, 2, . . . , M􏼚 􏼛,

(12)

where m represents the embedding dimension, and τ is the
delay time.

)e embedding dimension m and delay time τ are
identified by the C-Cmethod usually [35].)e detailed steps
are as follows:

)e correlation integral of time series is defined as

C(m, N, r, t) �
2

M(M + 2)
􏽘

1≤i≤j≤M
g r − Xi − Xj

�����
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1, θ≥ 0.

⎧⎪⎪⎨

⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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(13)

)e statistics S1(m, N, r, t) is defined as

S1(m, N, r, t) �
1
t

􏽘

t

s�1
C m,

N

t
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N

t
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(14)

When the number of samples is infinite, equation (14)
can be described as

S2(m, r, t) �
1
t

􏽘

t
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C(m, r, t) − C

m
(1, r, t)􏼂 􏼃. (15)

And some statistics of S2 can be calculated as

ΔS2(m, t) � max S2 m, rj, t􏼐 􏼑􏽮 􏽯 − min S2 m, rj, t􏼐 􏼑􏽮 􏽯,
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(16)

)e first zero point of SM2(t) or the first minimum value
is the best delay time τ. )e minimum value of S2cor(t) is the
length of time series window: Tw � (m − 1)τ.

2.5. ELM. Extreme Learning Machine is a feedforward
neural network which has the characteristic of fast learning
speed. For an ELM with single hidden layer, the ELMmodel
can be described as [36]

yj � 􏽘

L

i�1
βih ωi · Xj + bi􏼐 􏼑, j � 1, 2, . . . , N, (17)

where yj is the output of ELM, Xj is the input of ELM, L is the
neurons number of the hidden layer, ωi represents the
weight coefficient of neurons from input layer to hidden
layer, βi represents the weight coefficient of neurons from
hidden layer to output layer, bi denotes the bias of neurons of
hidden layer, and h(x) is the activation function.
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)e objection function of ELM training is to get the
minimum output error. If the output error is close to zero,
the ELM model can be described in matrix form as

Y � βH,

Y � y1, y2, . . . , yn( 􏼁,

β � β1, β2, . . . , βL( 􏼁,

H �

g ω1 · x1 + b1( 􏼁 · · · g ω1 · xn + b1( 􏼁

⋮ ⋱ ⋮

g ωL · x1 + bL( 􏼁 · · · g ωL · xn + bL( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

where Y is formed with the real output, and ωi and bi are
randomly selected.

)e β can be determined by

min‖Hβ − Y‖
2
. (19)

3. The Proposed Hybrid Model

3.1.=e Structure of the ProposedModel. )e structure of the
proposed method is shown in Figure 1. )e proposed
method is mainly composed of three modules including data
processing module, prediction module, and combination of
final results module.

Module 1: Data processing
In this module, the original wind speed data is
decomposed by ICEEMDAN firstly. )en, the entro-
pies of each IMF are calculated. )e IMFs with higher
entropies which are regarded as more complexity
subseries are decomposed by VMD again. )e detailed
process of the twice decomposition is presented in
Section 3.2. )e details of VMD and ICEEMDAN are
presented in Sections 2.1 and 2.2.
Module 2: Prediction
)e IMFs which are got by module 1 are utilized for
prediction. Firstly, the C-C and PSRmethod are used to
reconstitute the input of the prediction model which
can get more useful information. And the dimension of
the input can be also determined by the C-C method.
)e details of C-C and PSR method are presented in
Section 2.3. )en, the IMVO-ELM model is employed
for prediction for each IMF. )e detail of IMVO-ELM
model is presented in Section 3.3.
Module 3: Combination of final results
)e summation of the prediction result of each IMF is
the final result.

3.2. Twice Decomposition Based on ICEEMDAN, Fuzzy En-
tropy, and VMD. In this paper, a twice-decomposition
method is proposed to reduce the complexity of the input
data of the prediction model. With nonstationarity of the
original wind speed, the ICEEMDAN is employed to de-
compose the original wind speed which can reduce the
complexity in prediction firstly. But some of the IMFs which
are got by ICEEMDAN are still complex for prediction

model, especially for the high frequency subseries. In order
to find these IMFs, the fuzzy entropy is employed to estimate
the complexity of each IMF. )en, the IMFs are reclassified
into two datasets. )e reclassification process is as follows:

IMFi ⊂ L, FEn IMFi( 􏼁< FEn(original),

IMFi ⊂ H, FEn IMFi( 􏼁≥ FEn(original),
i � 1, 2, . . . , n,􏼨

(20)

where FEn(IMFi) represents the fuzzy entropy of the i-th
IMF. FEn(original) represents the fuzzy entropy of the
original wind speed. )e dataset L includes the IMFs with
lower fuzzy entropy which are easy for prediction. )e
datasetH includes the IMFs with higher fuzzy entropy which
are difficult for prediction.

)e VMD is employed to decompose the IMFs in dataset
H again to reduce the complexity of the IMFs which are with
high entropy. )e subseries got by the twice decomposition
have greatly reduced the complexity and can be used for
prediction.

3.3. Improved Multiverse Optimizer for ELM. As the EML
method introduction in Section 2.5, the weight coefficients
from input layer to hidden layer and the bias of hidden layer
are formed randomly, and the values remain constant in
training processing. According to the researches [18, 37],
this principle makes the ELM have faster training pro-
cessing, but it will also make the poor effect in training
processing. In order to solve this problem, optimization
methods have been widely employed to improve the ELM
model [38, 39]. )e parameter number which needs to be
optimized in ELM is determined by the number of neurons
in input layer and hidden layer. )e optimal parameter
number is usually too big to be effective which makes that
more efficient optimization methods are necessary.

)e MVO is a nature-inspired algorithm for global
optimization which is proposed by Mirjalili et al. in recent
years [40]. Many researches have proved the better per-
formance of MVO compared to other well-known opti-
mization methods. Although the MVO has better
optimization ability, the exploration ability and exploitation
ability are difficult to balance and the initial populations
have uneven distribution. In this paper, an improved
multiverse optimizer (IMVO) has been proposed with two
improved strategies.

Firstly, the cubic chaos mapping is employed to increase
the diversity of the initial populations. )e cubic chaos
mapping can be described as follows:

xn+1 � ax
3
n − bxn, (21)

where a and b represent influence factors of chaos which
influence the state and scope of the mapping. In general, the
mapping is chaotic when b ∈ (2.3, 3). xn ∈ (−2, 2) when a� 1,
and xn ∈ (−1, 1) when a� 4.

Secondly, a sine function is proposed for WEP which is a
control parameter in MVO. )e WEP parameter control
strategy is shown as follows:
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WEP � WEPmin + WEPmax − WEPmin( 􏼁 · sin
iter

itermax
·
π
2

􏼠 􏼡, (22)

where WEPmax and WEPmin are the maximum value and
minimum value of WEP, iter represents the current itera-
tion, and itermax denotes the maximum iteration.

Under this control strategy, WEP changes slowly in the
early stage to improve the exploration ability. In the middle
period, the WEP changes fast which makes the algorithm
quickly change from exploration to exploitation. And the
WEP also changes slowly in the late stage to improve the
exploitation ability.

4. Experiments and Analysis

4.1. Dataset Description. )e experiments data of this paper
is collected from Sotavento Galicia wind farm. Wind speed
data is recorded with a time interval of 10mins. )ere are
four datasets which are collected in different seasons and
utilized for the experiments. )e wind speed of the four
datasets is shown in Figure 2. For each dataset, the first 1000
samples are used as the training dataset and the last 100
samples are used as testing dataset. Meanwhile, the statistical
information which includes mean value, maximum value,
minimum value, standard deviation, skewness, and kurtosis
is illustrated in Table 1. )e maximum wind speed and the
minimum wind speed are in wide variation range in all
datasets. )e standard deviation, skewness, and kurtosis
show that the wind speed is not normally distributed. All the

above statistical information indicates that the wind speed
presents strong nonlinearity and nonstationarity.

4.2. Evaluation Metrics. In order to evaluate the perfor-
mance of each forecasting method, it is necessary to calculate
the evaluation metrics which are based on the forecasting
result and the actual result. In this paper, mean absolute
percentage error (MAPE), root mean square error (RMSE),
and mean absolute error (MAE) are utilized as evaluation
metrics which can be described as follows:

MAPE �
1
L

􏽘

L

i�1

yi − yi
′

yi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
× 100%,

RMSE �

�������������

􏽐
L
i�1 yi − y′( 􏼁

2
i

L
,

􏽳

MAE �
1
L

􏽘

L

i�1
yi − y′

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

(23)

where L represents the number of samples, and yi and yi
′ are

the observed and forecasting wind speed value at time i.

4.3. Comparison and Analysis with Different Optimization
Methods for ELM. In this paper, the IMVO method pro-
posed in Section 3, 4 is used to improve the efficiency of ELM.
In order to demonstrate the performance of the proposed

With lower entropy

With higher entropy

Strat

The original wind speed data

Signal processing by ICEEMDAN

IMF1 IMF2 IMFn

The entropy of each IMF is calculated
and the IMFs are reclassified

IMFl1 IMFl2 IMFlp

Prediction 
of IMFl1

Prediction 
of IMFl2

Prediction 
of IMFlp

Signal processing by VMD

IMFh11 IMFh12 IMFh1k IMFhq1 IMFhq2 IMFhql

Reconstructed input signalwith cc-PSR

IMVO-ELM

Prediction 
of IMFh11

Prediction 
of IMFh12

Prediction 
of IMFhql

The predictions of each IMFs are combined as the final prediction result

IMFh1 IMFh2 IMFlhq

Module 1

Module 2

Module 3

Figure 1: )e structure of the proposed hybrid method.
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IMVOmethod, the proposed IMVOmethod is compared to
genetic algorithm (GA), particle swarm optimization (PSO),
grey wolf optimizer (GWO), and MVO which are well-
known optimization methods.

Firstly, the parameters of these optimizationmethods are
set to make sure the amount of computational complexity is
roughly the same. )e population is 30 and max iteration is
50 for all the optimization methods, and the other main
parameters of these methods are set as follows:

GA: generation gap� 0.95, crossover rate� 0.7, muta-
tion rate� 0.01.

PSO: accelerating constants c1 � 2 and c2 � 2, inertia
weight ω� 0.6.
MVO: WEPmax � 1, WEPmin � 0.2, p� 6.
IMVO: WEPmax � 1, WEPmin � 0.2, p� 6, a� 4, b� 2.5.

)e number of input neurons of ELM is set as 5 and the
number of hidden neurons is set as 8.

Secondly, the ELM model is employed to establish the
forecasting model with the training datasets. )e above op-
timization methods are utilized to optimize the ELM model

which will make the ELM have better performance. )e
objective function is set as the minimum MAPE of training
processing. With the randomness of intelligent optimization
algorithms, eachmethod is calculated 20 times independently.
)e average values of evaluation metrics of training pro-
cessing by different method and different datasets are illus-
trated in Table 2. And the boxplots of the evaluationmetrics of
the 20 times’ calculations are shown in Figure 3.

As shown in Table 2 and Figure 3, the MAPE, MAE and
RMSE of ELM method are worse than other methods which
are caused by the instability of ELM. Some of the results have
large deviation from the average value. For example, the worst
MAE value of ELM method of dataset B is 1.62m/s, and the
average MAE value of ELM method of dataset B is 1.18m/s.
)e maximum deviation is near 50% to average value. Once
the ELM method gets into this situation, it will bring bigger
error in wind speed forecasting. )e results also indicate that
the intelligent optimization algorithms can improve the
stability of training processing of ELM model. In Figure 3(a),
theMAPE values of all the methods of dataset A and dataset B
are almost the same, and the MAPE values of IMVO method
of dataset C and dataset D are a little better than other
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Figure 2:)e original wind speed datasets of the experimental data. (a))e original wind speed of dataset A. (b))e original wind speed of
dataset B. (c) )e original wind speed of dataset C. (d) )e original wind speed of dataset D.

Table 1: Statistical analysis of each dataset.

Datasets Mean (m/s) Max (m/s) Min (m/s) Std Skewness Kurtosis

A
All samples 5.914 16.810 0.400 2.794 1.104 4.164
Training data 6.212 16.810 1.240 2.745 1.112 4.150
Testing data 2.936 4.740 0.400 0.857 0.022 2.899

B
All samples 11.138 21.520 4.680 2.858 0.522 2.985
Training data 11.046 21.520 4.680 2.904 0.587 3.032
Testing data 12.057 16.940 6.890 2.159 0.010 2.800

C
All samples 6.268 12.490 0.730 2.036 0.578 3.219
Training data 5.989 12.490 0.730 1.878 0.707 3.956
Testing data 9.057 12.400 5.570 1.348 -0.067 3.114

D
All samples 8.511 20.000 1.330 2.428 0.720 3.970
Training data 8.388 20.000 1.330 2.405 0.779 4.208
Testing data 9.744 15.920 4.640 2.327 0.381 2.944
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Table 2: )e average evaluation metrics of training by different methods with 20 times’ independent calculations.

Datasets Methods
Evaluation metrics of training

MAPE (%) MAE (m/s) RMSE (m/s)

A

ELM 15.278 0.865 1.143
GA-ELM 14.471 0.827 1.099
PSO-ELM 14.430 0.824 1.093
GWO-ELM 14.419 0.823 1.091
MVO-ELM 14.410 0.823 1.092
IMVO-ELM 14.399 0.822 1.090

B

ELM 11.076 1.184 1.534
GA-ELM 10.330 1.109 1.436
PSO-ELM 10.309 1.107 1.434
GWO-ELM 10.311 1.107 1.433
MVO-ELM 10.292 1.105 1.433
IMVO-ELM 10.285 1.104 1.430

C

ELM 13.329 0.700 0.941
GA-ELM 12.399 0.661 0.903
PSO-ELM 12.331 0.659 0.900
GWO-ELM 12.324 0.658 0.902
MVO-ELM 12.305 0.658 0.900
IMVO-ELM 12.296 0.657 0.901

D

ELM 14.829 1.123 1.489
GA-ELM 13.753 1.047 1.400
PSO-ELM 13.706 1.042 1.395
GWO-ELM 13.709 1.043 1.397
MVO-ELM 13.686 1.042 1.396
IMVO-ELM 13.665 1.040 1.394
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Figure 3: Continued.
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Figure 3: )e boxplots of the evaluation metrics of different methods by 20 times’ calculation. (a) )e boxplot of MAPE of different
methods. (b) )e boxplot of MAE of different methods. (c) )e boxplot of RMSE of different methods.
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methods. In Figure 3(b), theMAE values of all the methods of
dataset B are almost the same, and the MAE values of IMVO
method are better than other methods in datasets A, C, and
D. )e GA method performance is worse than other opti-
mization algorithms. In Figure 3(c), the GWO, PSO, MVO,
and IMVO performance is almost the same and better than
GAmethod. Although the results of somemethods are almost
the same, the convergence rates and searching ability are
different which is important for short-term wind speed
forecasting. )e average convergence curves of different in-
telligent optimization algorithms in 20 times are shown in
Figure 4.

As shown in Figures 4(a)–4(c), the MVO has better
searching ability than GA, GWO, and PSO method, but the
convergence rate of MVO cannot match with the PSO and
GWO method. )e proposed IMVO method has not only
increased the searching ability but also improved the con-
vergence rate. As shown in Figure 4(d), although the con-
vergence rate of the proposed IMVOmethod is a little slower
than PSO method in early period, the strong searching
ability makes it have better result in the mid to late period.

)e results indicate that the proposed IMVO-ELM
method can make the ELM model more stable to avoid the
extreme situation. And the proposed IMVO method has
strong searching ability and fast convergence rate which
makes the ELM model more effective.

4.4. Comparison and Analysis with Different Prediction
Models. In this subsection, the proposed short-term wind
speed forecasting method is verified. And seven comparative
methods are carried out, including IMVO-ELM, EMD--IMVO-
ELM, CEEMDAN—IMVO-ELM, ICEEMDAN--IMVO-ELM,
EMD-cc-PSR-IMVO-ELM, CEEMDAN-cc-PSR-IMVO-ELM,
and ICEEMDAN-cc-PSR-IMVO-ELM. All the above methods
are based on the IMVO-ELM model which has been dem-
onstrated to be effective in the previous subsection. )e dif-
ference of these methods is the different input signal. )e
IMVO-ELM approach is based on original wind speed for
input directly. )e EMD--IMVO-ELM, CEEMDAN—IMVO-
ELM, and ICEEMDAN--IMVO-ELM approaches are
based on the EMD decomposition, CEEMDAN decom-
position, and ICEEMDAN decomposition of original
wind speed for input, respectively. In EMD-cc-PSR-IMVO-
ELM, CEEMDAN-cc-PSR-IMVO-ELM, and ICEEMDAN-
cc-PSR-IMVO-ELM approaches, the original wind speed is
decomposed by EMD, CEEMDAN, and ICEEMDAN, re-
spectively. )en the PSR whose dimension and time delay
are determined by C-C method is employed to reconstitute
the input signal with the decomposition signal.

As the input neuron number of ELM can be determined
by the cc-PSR method, the EMD-cc-PSR-IMVO-ELM,
CEEMDAN-cc-PSR-IMVO-ELM, ICEEMDAN-cc-PSR-
IMVO-ELM, and the proposed approach can determine the
input neuron number of ELM automatically. But the IMVO-
ELM, EMD--IMVO-ELM, CEEMDAN—IMVO-ELM, and
ICEEMDAN--IMVO-ELM approach require human
judgement for the input neuron number of ELM. Traversing
method is employed to get the best input neuron number of

ELM of the IMVO-ELM, EMD--IMVO-ELM, CEEMDAN-
IMVO-ELM, and ICEEMDAN--IMVO-ELM. )e input
neuron number of ELM is traversed from 1 to 10. )e other
parameters of the IMVO and ELM are set as Section 4.3. And
20 time’s independent calculations are applied for each
approach. )e average MAPE, MAE, and RMSE values of
forecasting result under different approaches and different
input neuron number are demonstrated in Figure 5.

According to the traversing calculation, the best input
neuron number of IMVO-ELM is 5, 6, 3, and 6 for datasets
A, B, C, and D, respectively. )e best input neuron number
of EMD--IMVO-ELM is 3, 2, 3, and 2 for datasets A, B, C,
and D, respectively. )e best input neuron number of
CEEMDAN-IMVO-ELM is 3, 3, 3, and 3 for datasets A, B, C,
and D, respectively. And the best input neuron number of
ICEEMDAN--IMVO-ELM is 3, 6, 3, and 3 for datasets A, B,
C, and D, respectively.

)e results with the best input neuron number of IMVO-
ELM, EMD--IMVO-ELM, CEEMDAN-IMVO-ELM, and
ICEEMDAN--IMVO-ELM are used for comparison to the
other methods. Meanwhile, each of the EMD-cc-PSR-
IMVO-ELM, CEEMDAN-cc-PSR-IMVO-ELM, ICE-
EMDAN-cc-PSR-IMVO-ELM, and the proposed approach
is employed 20 times independently for each dataset. )e
average evaluation metrics of the wind speed forecasting of
all the above approaches are shown in Table 3.

As shown in the results in Table 3, the IMVO-ELM
approach with original wind speed has the worst perfor-
mance which indicates that the original wind speed has
characteristic of nonstationarity and is difficult to predict by
the IMVO-ELM model directly. )e forecasting perfor-
mance had been greatly improved by EMD-IMVO-ELM,
CEEMDAN-IMVO-ELM, and ICEEMDAN-IMVO-ELM
approaches which are with the input of the decomposition
signal by EMD, CEEMDAN, and ICEEMDAN. )e results
indicate that the random component, periodic component,
and trend component of the signal are well decomposed by
these signal decomposition methods which is helpful for the
forecasting. Meanwhile the experiments show that the
ICEEMDAN is better than CEEMDAN and the CEEM-
DAN is better than EMD in this wind speed forecasting
experiment. )e EMD-cc-PSR-IMVO-ELM, CEEMDAN-
cc-PSR-IMVO-ELM, and ICEEMDAN-cc-PSR-IMVO-
ELM approaches have been added to the cc-PSR method
to reconstruct input signal of each IMF, and the perfor-
mance is better than EMD-IMVO-ELM, CEEMDAN-
IMVO-ELM, and ICEEMDAN-IMVO-ELM, respectively.
)e results illustrate that more useful information can be
gleaned from time series by cc-PSR method.

)e proposed method has the best performance in
evaluation metrics for all the datasets.)e forecasting area of
dataset A belongs to the low wind speed area, the MAPE of
IMVO-ELM is over 25%, and the MAPE of other methods
except the proposed method is near by 10%. )e MAPE of
the proposed method is 6.68% which is much better than
other methods. )e forecasting area of datasets B, C, and D
belongs to the medium and high wind speed area, the
MAPE, MAE, RMSE of the proposed method have reduced
nearly 0.5%, 0.05m/s, and 0.05m/s comparing with the best
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Figure 4: Continued.
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Figure 4: )e average convergence curves of different intelligent optimization algorithms. (a) )e average convergence curves of dataset
A. (b) )e average convergence curves of dataset B. (c) )e average convergence curves of dataset C. (d) )e average convergence curves of
dataset D.
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Figure 5: Traversing calculation of input neuron number of different prediction methods. (a) Dataset A. (b) Dataset B. (c) Dataset C.
(d) Dataset D.

Table 3: )e average evaluation metrics of forecasting by different methods with 20 times’ independent calculations.

Datasets Methods
Evaluation metrics of forecasting

MAPE (%) MAE (m/s) RMSE (m/s)

A

IMVO-ELM 25.919 0.508 0.647
EMD--IMVO-ELM 13.326 0.320 0.399

CEEMDAN—IMVO-ELM 10.586 0.237 0.308
ICEEMDAN--IMVO-ELM 9.314 0.207 0.281
EMD-cc-PSR-IMVO-ELM 11.849 0.307 0.391

CEEMDAN-cc-PSR-IMVO-ELM 9.765 0.226 0.297
ICEEMDAN-cc-PSR-IMVO-ELM 8.081 0.184 0.252

)e proposed method 6.682 0.162 0.225

B

IMVO-ELM 12.069 1.361 1.685
EMD--IMVO-ELM 8.345 0.976 1.182

CEEMDAN—IMVO-ELM 7.420 0.868 1.066
ICEEMDAN--IMVO-ELM 6.821 0.785 0.944
EMD-cc-PSR-IMVO-ELM 7.415 0.874 1.104

CEEMDAN-cc-PSR-IMVO-ELM 6.446 0.746 0.891
ICEEMDAN-cc-PSR-IMVO-ELM 5.830 0.673 0.812

)e proposed method 5.392 0.625 0.767

C

IMVO-ELM 9.033 0.814 1.069
EMD--IMVO-ELM 5.227 0.465 0.585

CEEMDAN—IMVO-ELM 5.521 0.493 0.641
ICEEMDAN--IMVO-ELM 5.013 0.444 0.589
EMD-cc-PSR-IMVO-ELM 5.071 0.448 0.572

CEEMDAN-cc-PSR-IMVO-ELM 4.419 0.397 0.522
ICEEMDAN-cc-PSR-IMVO-ELM 4.013 0.361 0.477

)e proposed method 3.446 0.308 0.419
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Table 3: Continued.

Datasets Methods
Evaluation metrics of forecasting

MAPE (%) MAE (m/s) RMSE (m/s)

D

IMVO-ELM 12.717 1.173 1.574
EMD--IMVO-ELM 8.592 0.799 1.021

CEEMDAN—IMVO-ELM 8.536 0.775 0.944
ICEEMDAN--IMVO-ELM 7.800 0.711 0.875
EMD-cc-PSR-IMVO-ELM 8.334 0.778 1.003

CEEMDAN-cc-PSR-IMVO-ELM 6.946 0.646 0.808
ICEEMDAN-cc-PSR-IMVO-ELM 5.832 0.541 0.699

)e proposed method 5.435 0.509 0.668
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of other methods, respectively. )e results indicate that the
proposed method is useful for wild range of wind speed.

)e forecasting wind speed in time series of each ap-
proach is compared to the original wind speed in Figure 6.
Meanwhile, the errors of each approach are also presented.
As shown in the figures, the proposed method matches the

original curve well, especially in the peak of the curve. And
the error curve of the proposed method is smoother and
more closed to the zeros.

Finally, the average calculation time of each method is
listed in Table 4. )e results indicate that although the
proposed method costs a little more time than other
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Figure 6: Forecasting results and error based on different predication methods. (a) Forecasting results and error of dataset A.
(b) Forecasting results and error of dataset B. (c) Forecasting results and error of dataset C. (d) Forecasting results and error of dataset D.
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methods, the calculation time of the proposed method is still
acceptable for short-term wind speed forecasting.

According to the above comparison results, it can be
seen that the proposed method has higher prediction ac-
curacy and stronger adaptable in wild range of wind speed
than other comparison methods.

5. Conclusions

A novel hybrid model based on twice decomposition, PSR,
and IMVO-ELM is proposed to enhance the performance of
short-term wind speed forecasting. In the proposed hybrid
model, a twice decomposition based on ICEEMDAN, fuzzy
entropy, and VMD is proposed to reduce the nonstationarity
of original wind speed signal. )en, decomposed signal is
reconstituted by C-C-PSR method as the input data of
prediction model. And an IMVO-ELMmodel is proposed as
the prediction model. )e proposed IMVO is utilized to
improve the stability and efficiency of ELM. Finally, two
comparison experiments are designed to verify the perfor-
mance of the proposed method, and the experimental
conclusions are as follows:

(1) )e wind speed forecasting with twice decomposi-
tion has greatly reduced the nonstationarity of
original wind speed signal.

(2) )e C-C-PSR method can determine the input di-
mension of ELM which can improve the prediction
accuracy of ELM.

(3) )e IMVO has improved the stability of ELM, and
the optimization efficiency is better than other
comparison methods.

)erefore, the proposed hybrid approach is a useful tool
for short-term wind speed forecasting.

Data Availability

)e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

Acknowledgments

)is work was supported by National Natural Science
Foundation of China (NSFC) (51709121).

References

[1] W. Fu, K. Wang, C. Li, and J. Tan, “Multi-step short-term
wind speed forecasting approach based on multi-scale
dominant ingredient chaotic analysis, improved hybrid
GWO-SCA optimization and ELM,” Energy Conversion and
Management, vol. 187, pp. 356–377, 2019.

[2] Global Wind Energy Council, Global Wind Report, Global
Wind Energy Council, Brussels, Belgium, 2021.

[3] S. Chaithanya, V. N. B. Reddy, and R. Kiranmayi, “Modeling
& analysis of grid-tied PMA based offshore wind energy
system using PSCAD/EMTDC,” Ain Shams Engineering
Journal, vol. 10, no. 2, pp. 411–417, 2019.

[4] E. Cadenas and W. Rivera, “Wind speed forecasting in three
different regions of mexico, using a hybrid ARIMA-ANN
model,” Renewable Energy, vol. 35, no. 12, pp. 2732–2738,
2010.

[5] M. U. Yousuf, I. Al-Bahadly, and E. Avci, “Current per-
spective on the accuracy of deterministic wind speed and
power forecasting,” IEEE Access, vol. 7, Article ID 159547,
2019.

[6] H. Kazutoshi, F. Yu, and H. Yasuhiro, “Feature extraction of
NWP data for wind power forecasting using 3D-convolu-
tional neural networks - ScienceDirect,” Energy Procedia,
vol. 155, pp. 350–358, 2018.

[7] J. Zhang, C. Draxl, T. Hopson, L. D. Monache, E. Vanvyve,
and B.-M. Hodge, “Comparison of numerical weather pre-
diction based deterministic and probabilistic wind resource
assessment methods,” Applied Energy, vol. 156, no. 15,
pp. 528–541, 2015.

[8] J. Duan, P. Wang, W. Ma, and S. Fang, “A novel hybrid model
based on nonlinear weighted combination for short-term
wind power forecasting,” International Journal of Electrical
Power & Energy Systems, vol. 134, no. 1-7, Article ID 107451,
2022.

[9] E. Erdem and J. Shi, “ARMA based approaches for forecasting
the tuple of wind speed and direction,” Applied Energy,
vol. 88, no. 4, pp. 1405–1414, 2011.

[10] T. Ding, D. Feng, X. Lin, and J. Chen, “Ultra-short-term wind
speed forecasting based on improved ARIMA-GARCH
model,” Power System Technology, vol. 41, no. 6,
pp. 1808–1814, 2017.

[11] M. Valipour, M. E. Banihabib, and S. M. R. Behbahani,
“Comparison of the ARMA, ARIMA, and the autoregressive
artificial neural network models in forecasting the monthly
inflow of Dez dam reservoir,” Journal of Hydrology, vol. 476,
pp. 433–441, 2013.

[12] Aasim, S. N. Singh, and A. Mohapatra, “Repeated wavelet
transform based ARIMA model for very short-term wind
speed forecasting,” Renewable Energy, vol. 136, pp. 758–768,
2019.

[13] J. Ping, W. Yun, and J. Wang, “Short-term wind speed
forecasting using a hybrid model,” Energy, vol. 119,
pp. 561–577, 2016.

[14] B. Xu, “Application profiles of least support vector machine in
short-term wind speed forecasting,” Electrical Engineering,
vol. 14, no. 6, pp. 22–25, 2013.

[15] S. Wang, N. A. Zhang, L. Wu, and Y. Wang, “Wind speed
forecasting based on the hybrid ensemble empirical mode
decomposition and GA-BP neural network method,” Re-
newable Energy, vol. 94, pp. 629–636, 2016.

[16] H. Liu, H.-q. Tian, X.-f. Liang, and Y.-f. Li, “Wind speed
forecasting approach using secondary decomposition

Table 4: )e average calculation time of each method.

Methods Average calculation time (s)
IMVO-ELM 1.152
EMD--IMVO-ELM 8.674
CEEMDAN—IMVO-ELM 8.831
ICEEMDAN--IMVO-ELM 9.230
EMD-cc-PSR-IMVO-ELM 8.923
CEEMDAN-cc-PSR-IMVO-ELM 9.215
ICEEMDAN-cc-PSR-IMVO-ELM 10.517
)e proposed method 12.076

20 Complexity



algorithm and Elman neural networks,” Applied Energy,
vol. 157, pp. 183–194, 2015.

[17] P. Jiang and P. Li, “Research and application of a new hybrid
wind speed forecasting model on BSO algorithm,” Journal of
Energy Engineering, vol. 143, no. 1, Article ID 04016019, 2017.

[18] H. Liu, X. Mi, and Y. Li, “An experimental investigation of
three new hybrid wind speed forecasting models using multi-
decomposing strategy and ELM algorithm,” Renewable En-
ergy, vol. 123, pp. 694–705, 2018.

[19] A. A. Abdoos and R. A. Ak Ba, “A new intelligent method
based on combination of VMD and ELM for short term wind
power forecasting,” Neurocomputing, vol. 203, pp. 111–120,
2016.

[20] S. Qiu, J. Wang, C. Tang, and D. Du, “Comparison of ELM,
RF, and SVM on E-nose and E-tongue to trace the quality
status of Mandarin (Citrus unshiu Marc.),” Journal of Food
Engineering, vol. 166, pp. 193–203, 2015.

[21] H. Liu, H.-q. Tian, D.-f. Pan, and Y.-f. Li, “Forecasting models
for wind speed using wavelet, wavelet packet, time series and
Artificial Neural Networks,” Applied Energy, vol. 107,
pp. 191–208, 2013.

[22] T. Wang, M. Zhang, Q. Yu, and H. Zhang, “Comparing the
applications of EMD and EEMD on time–frequency analysis
of seismic signal,” Journal of Applied Geophysics, vol. 83,
pp. 29–34, 2012.

[23] J. J. Ruiz-Aguilar, I. Turias, J. González-Enrique, D. Urda,
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