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In this paper, we study the synchronization of a class of multiple neural networks (MNNs) with delay and directed disconnected
switching topology based on state observer via impulsive coupling control. *e coupling topology is connected sequentially, and
the controller adjusts the state value through event-triggering strategies. Different from the related works on MNNs, its state in
this paper is assumed to be unmeasurable, and the time delay is also unmeasurable. *erefore, the observer does not contain the
time-delay term. *e impulsive switching controller and observer controller adjust the system through the observed value. By
constructing the corresponding augmented matrix, the system can finally achieve quasi-synchronization (synchronization).
*rough derivation, we give the sufficient conditions ensuring quasi-synchronization (synchronization) via the event-triggered
impulse control mechanism. In addition, numerical simulation examples are given to test our results of the theorem.

1. Introduction

*ere has been rapid development of multi-agent systems
(MASs). In practical application, the application of MAS
mainly includes power engineering [1], bioengineering [2],
robot formation control [3], vehicle formation control [4],
and some other fields. *eoretically, the dynamic behavior
of MAS, such as stability [5], robustness [6], synchroni-
zation [7], and so on, has become the basis of various
theories and greatly promoted the development of MAS. So
far, a number of achievements have been made in the study
of MAS.

In addition, as a complex network, the topology of MAS
plays an important role in the dynamic behavior. For ex-
ample, in [8], second-order leaderless and leader-following
consensus algorithms with communication and input delays
in directed network topology are studied. In addition, this
paper involves three different situations: leaderless con-
sumption, consumption regulation, and consumption
tracking. On the other hand, the network topology plays an
important role in the asymptotical stability scheme. In the
leader-following problem of multi-agent network, it is as-
sumed that the network topology switches arbitrarily

between limited topology sets and there is a time-varying
delay in the coupling of agents [9]. Different from the
general topology, the switching topology in this paper is of
great significance to the sudden change or failure of the
environment, so switching topology widely exists in MAS.

In recent years, MNNs have been widely used, especially
in automatic control [10], signal processing [11], optimi-
zation [12], and so on. Such complex systems are extremely
dependent on the synchronization and stability of MNNs.
*erefore, synchronization problem is receiving more and
more attention and has always been a very important re-
search direction [13–16]. Especially, Chen et al. [16] con-
sidered synchronization for nonlinear neural complex
networks by a switching topology. On the other hand,
different from synchronous, quasi-synchronous is a special
form of dynamical behavior, where all of the control systems
in networks are almost synchronized with a given syn-
chronization error, which could not tend to zero with time.
Chen et al. [17] discussed the quasi-synchronization prob-
lem through a coupled memristor neural network with
time-varying delay. *e quasi-synchronization problem in
fractional-order multi-layer networks with fractional mis-
match is studied in [18].
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With the development of industrial demand and in-
formation technology, some traditional control strategies
have been replaced by other control schemes. *e feasibility
and advantages of event-triggered control (ETC) have been
proposed for the first time since 1999. Different from tra-
ditional control scheme, ETC can ensure system perfor-
mance while effectively reducing the execution of control
tasks. In recent years, ETC has become a popular research
subject [19–22]. Because we only need to adjust the state of
the controller at the event-trigger instants via setting an
appropriate event-trigger mechanism. Different from con-
tinuous control and ETC, controller status is updated only at
the moment of event trigger, it is adjusted to meet the needs
of the system. At present, existing work of ETC in the
multiagent field (see [23, 24]). Especially, [25] the recurrent
neural network triggered by finite-time event-triggered
strategy is studied, and the stability of finite-time systems is
proved by novel inequality methods such as, Lyapu-
novCKrasovskii functional and Wirtinger single and double
integral inequality. Compared with static trigger conditions,
dynamic trigger conditions have more advantages. For ex-
ample, a new fuzzy filter error system model under dynamic
event-triggered control strategy is considered. In addition,
there are different triggered thresholds for different fuzzy
rules, which can save communication resources more ef-
fectively in [26].

In order to realize the synchronization of MNNs, we
often add appropriate controllers to the system. According
to Tang et al. [27], the leader following consistency problem
for a class of nonlinear multiagent systems with mixed
impulses and time-varying bounded delays is studied. *e
time-varying impulses in this paper is not only composed of
synchronization impulses and desynchronization impulses
but also placed in some nodes of the system. Based on
Riemann Liouville derivative, Lyapunov functional method
and comparison theorem, we can get the global synchro-
nization problem of time-varying delay neural networks
with impulsive fractional complex memristor [10]. *e
impulse controller is one of the most widely used controllers
in recent years. Different from the traditional continuous
control strategy, impulse control mechanism has the ad-
vantage of short action time, which makes it possible to use
the impulse controller to occupy less communication re-
sources for a system with a very large amount of information
transmission (see [28, 29]). In order to reduce communi-
cation bandwidth and save communication costs, a new
control strategy based on event-trigger impulse is given. For
example, Yi et al. [30] proposed an impulsive control
mechanism based on ETC. Except for above control strategy,
the impulse coupling protocol is also studied. *e coupling
between neural networks only occurs at some discrete-time
instants, that is, impulse instants. Consequently, the impulse
coupling scheme is naturally proposed.

Observer-based output feedback control is one of the
traditional hot topics. It can be divided into two categories
according to whether the variables are measurable or not.
For the former, a relaxed stability condition based on state
observer is proposed [31], and for the latter, a scheme based
on fuzzy controller for a class of nonlinear systems is

presented [32]. More recently, it is usually presumed that
MAS state is measurable. Due to the limitations of mea-
surement methods, many states cannot be measured. On the
other hand, system states are unavailable for the state
feedback control or too expensive to measure. *us, it is
imperative to research the observer for the system state is not
measurable.

In general, we design an observer to estimate the value of
different MNNs and then use the information to establish an
observer based on feedback controller. However, the mea-
sured value is usually collected in discrete time.*erefore, an
impulse observer is promoted. It was first proposed by Raf
and Allgower in [33]. *e observer is updated in the form of
impulsive; hence, the measured output is discrete. So, use the
impulse observer to estimate the error. Apart from this,
designing a suitable control scheme based on impulsive
observer is still a challenging problem.

Motivated by the previous research, this paper studies
synchronization problem of MNNs with observer via an
ETCmechanism.*emain contributions of this paper are as
follows:

(1) An impulsive switching controller is designed via the
event-triggered strategy of MNNs with disconnec-
tion switching topology. Considering the practical
needs, the actual state may be unpredictable in re-
ality. *us, the system state in this paper is assumed
to be unmeasurable.

(2) A particular observer is constructed. Considering the
unknown time delay in practical application, the
observer does not exhibit time delay. *rough the
observation value of synchronization error and the
tracking error of synchronization error, an aug-
mented system is formed. *e synchronization
(quasi-synchronization) of the augmented system is
also of the MNN system.

(3) *e MNNs with a switching topology is studied and
the topology is disconnect. At the same time, impulse
control, event-triggered strategies, and observers are
used to study synchronization (quasisynchroniza-
tion) issues. In the real system, the sufficient con-
ditions of the synchronization (quasi-
synchronization) are proved. We discuss this kind of
question and give the relevant theorems. *e Zeno
behavior can be ruled out.

*e remainder of this article is organized as follows.
Section 2 describes problem formulation and some neces-
sary preliminaries. In Section 3, a number of results are
presented. In Section 4, a numerical simulation is presented
to test the obtained theoretical analysis. Some conclusions
are drawn in Section 5.

2. Preparation and Modeling

Notations. *roughout this study, sign( ) is the standard sign
function. Z and Z+ represent a set of integer and positive
integer. Rn represents n-dimensional Euclid space. ‖ · ‖
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represents 1-norm. sign(x) � (sign(x1), sign(x2), . . . ,

sign(xn))T, and thus ‖x‖ � sign(x)Tx where x ∈ Rn, and I is
an identity matrix. Let G � (F ,S) denote a graph. F is
the set of nodes. S⊆F × F is the set of edges. An arbitrary
matrix A � (aij)N×N ∈ RN×N is given, corresponding to A,
and thus from G(A) � (F ,S), the graph is indicated,
where (i, j) ∈ S if and only if aij > 0.

Also, a subsetK⊆F and a graphG � (F ,S) are given.
Define the neighborhood of z(K,G) k ∈ F /{ K|∃i ∈K,
such that (i, k) ∈ S}. If K is a singleton set, z(K,G)

represents the neighborhood of one single point.
When (j, i) � (i, j), the graph G is undirected.

G � (F ,S) has a directed path from node i to j if there is a
sequence of edges in the form (i, i1), (i, i2), · · ·, (i, ik) and the
ip ∈ N, wherep � 1, 2, . . . , k, G is called connected if there
exists a directed path between each pair of nodes.*e node r

is called a root of G if has a directed path from r to every
other nodeG contains a directed spanning tree if there exists
at least one root.

For the graphs G1 � (F,S1) and G2 � (F,S2),
G1 ∪G2 � (F,S1 ∪S2) is the union of G1, G2. A sequence
of graphs with common nodes(Gi)

m
i�1 is jointly connected if

∪ m
i�1Gi contains a spanning tree. A sequence of graphs with

common nodes(Gi)
m
i�1 is sequentially connected if there

exist m + 1node sets F 0, F1, . . . , Fmsuch that
F k+1⊆ z(Gk+1,Ωk) and Ωk � ∪ k

l�0 F l , Ω0 � F 0is a set of
Singleton, Ωm � F .

*en, by the following dynamics:

dxi

dt
� Axi(t) + Bxi(t − τ(t)) + ui(t) + I(t), (1)

where t⩾ t0, i ∈ F � 1, 2, . . . , N{ }, xi(t) � (xi1(t),

xi2(t), . . . , xin(t))T, A � (aij)n×n and B � (bij)n×n are weight
matrices; τ(t) is transmission delay and satisfies τ ⩾ τ(t)⩾ 0;
ui(t) is a controller; and I(t) ∈ Rn indicates external input.

In the actual situation, considering that the system state
value cannot be measured, we give the observer of the
corresponding ith node as follows:

dxi(t)

dt
� Axi(t) + vi(t) + I(t). (2)

xi(t) � (xi1(t), xi2(t), . . . , xin(t))T is the estimated
value of the corresponding ith node. vi(t) ∈ Rn is the
controller of the observer. Under (2), we can see that the
observer does not contain time-delay term. Considering the
fact that the time delay is unknown in practical application,
observer (2) does not contain time delay.

Let S ⊂ Z+ be a limited set of index and Gs: s ∈ S  be a
directed graph set. σ(t): [t0, +∞)⟶ S represent function
of switching in Gs: s ∈ S , and tp � qh, q ∈ Z+  (where
h> 0 ) represent instants of switching impulsive time. Let
Gσ(t) indicate the graph of directed at t, where t⩾ t0. *us,

obviously t � tq is the switch time unchanged for
t ∈ (tq, tq+1). We use (ϖσ(t)

ij )N×N to express Gσ(t) of adjacent
matrix, where ϖσ(t)

ij � 1 when the system sends information
from node j to node i and ϖσ(t)

ij � 0 otherwise. In addition,
we giveϖσ(t)

ii � 0, namely, there is no self-loop inGσ(t) where
t⩾ t0. In order to convenient calculation, we assume that
ϖσ(t)

i � 
N
j�1 ϖ

σ(t)
ij and ϖ � supt⩾ t0

maxi∈Fϖ
σ(t)
i

Consider the following assumptions:

(A1) *e set of discrete graphs Gσ(t): tmT ⩽ t< t(m+1)T 

is sequentially connected, if there exists a positive
integer T ∈ Z+, where m ∈ Z+.

(A2) *e set of discrete graphs Gσ(t): tmT0
⩽

t< t(m+1)T0
} is jointly connected, if there exists a

positive integer T0 ∈ Z+, where m ∈ Z+.

ti
q 

+∞
q�1 denotes a sequence of triggering time. Hence, we

will give the event-trigger protocol (ETP). In order to make
the system achieve synchronization (quasi-synchroniza-
tion), we design the impulsive switching controller with ETP
and the controller of the corresponding observer. In order to
make the system achieve synchronization (quasi-synchro-
nization), we design the impulsive switching controller and
the corresponding observer controller of the ith node as
follows:

ui(t) � c 
+∞

q�1
δ t − tk(  

N

j�1
ϖσ(t)

ij xj t
i
q  − xi t

i
q  , (3)

vi(t) � η 
+∞

q�1
δ t − tk(  

N

j�1
ϖσ(t)

ij xj t
i
q  − xi t

i
q  , (4)

where c> 0, η> 0.
*e state is not measurable.
*erefore, (3) and (4) are only related to the observed

values. Fori ∈V, the measurement error is defined as
follows:

Λi(t) � 
N

j�1
ϖσ(t)

ij xj t
i
q  − xi t

i
q   − 

N

j�1
ϖσ(t)

ij xj(t) − xi(t) .

(5)

Meanwhile, by Figure 1, we can get the block diagram for
ETC and the ETP:

t
i
q+1 � inf t> t

i
q, Λi(t)

����
����> βe

− ς t− t0( ) + α , (6)

where ς> 0 , α2 + β2 ≠ 0; moreover, α⩾ 0 and β⩾ 0. *ey are
both threshold parameters.

From (1)–(4), we have
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dxi
dt

� Axi(t) + Beij(t − τ(t)) + I, t≠ tk,

x̂i t
+
k( ) � xi tk( ) + c∑

N

j�1
ϖσ(t)ij x̂j t

i
q( ) − x̂i t

i
q( )( ), t � tk,




(7)

dx̂i(t)
dt

� Ax̂i(t) + I, t≠ tk,

xi t
+
k( ) � xi tk( ) + η∑

N

j�1
ϖσ(t)ij x̂j t

i
q( ) − x̂i t

i
q( )( ), t � tk,




(8)

where k⩾ 1, i ∈ F , tiq ⩽ tk < tiq+1, xi(t+k ) � limt⟶tk+0xi(t),
and xi(t−k ) � xi(tk).

Let Cτ be a Banach space and Cτ � C([− τ, 0],Rn). Let
φ: [− τ, 0]⟶ Rn represent all continuity functions, and
thus the initial value of (7) and (8) can be given:

xi t0 + θ( ) � φi(θ), θ ∈ [− τ, 0],
x̂i t0( ) � φ̂i t0( ), i � 1, . . . , N,

(9)

for φi ∈ Cτ and φ̂i(t0) ∈ Rn. Let eij(t) � xi(t) − xj(t) denote
the synchronization error for i, j ∈ F , where t⩾ t0 and
êij(t) � x̂i(t) − x̂j(t) denotes the observed value of eij(t).

�en,

deij(t)
dt

� Aeij(t) + Beij(t − τ(t)), t≠ tk,

eij t
+
k( ) � eij tk( ) + c ∑

N

v�1
ϖσ(t)iv x̂v t

i
q( ) − x̂i t

i
q( )( ) − ∑

N

v�1
ϖσ(t)jv x̂v t

j
q( ) − x̂j t

j
q( )( ) 

� eij tk( ) + c ∑
N

v�1
ϖσ(t)iv êvj tk( ) − êij tk( )( ) +∑

N

v�1
ϖσ(t)jv êiv tk( ) − êij tk( )( )  + c Λi tk( ) − Λj tk( )( ), t � tk,




(10)

dêij(t)
dt

� Aêij(t), t≠ tk,

êij t
+
k( ) � êij tk( ) + η ∑

N

v�1
ϖσ(t)iv x̂v t

i
q( ) − x̂i t

i
q( )( ) − ∑

N

v�1
ϖσ(t)jv x̂v t

j
q( ) − x̂j t

j
q( )( ) 

� êij tk( ) + η ∑
N

v�1
ϖσ(t)iv êvj tk( ) − êij tk( )( ) +∑

N

v�1
ϖσ(t)jv êiv tk( ) − êij tk( )( )  + η Λi tk( ) − Λj tk( )( ), t � tk.




(11)

k=k+1

x

System

ETC

Impluse
Control

Yes No

ETC Framework

Figure 1: �e block diagram for ETC.

4 Complexity



Let ξij(t) � eij(t) − eij(t) denote tracking error of syn-
chronization error of ith node and jth node.

*en,

%

dξij(t)

dt
� Aξij(t) + Beij(t − τ(t)), t≠ tk,

ξij t
+
k(  � ξij tk(  +(c − η) 

N

v�1
ϖσ(t)

iv evj tk(  − eij tk(   + 
N

v�1
ϖσ(t)

jv eiv tk(  − eij tk(  ⎛⎝ ⎞⎠ +(c − η) Λi tk(  − Λj tk(  , t � tk.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(12)

Let Wij(t) �
eij(t)

ξij(t)
 ; from (10) and (11), there are the

following augmentation systems:

dWij(t)

dt
�

A 0

0 A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

eij(t)

ξij(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ +

0 0

B B

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

eij(t − τ(t))

ξij(t − τ(t))

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠, t≠ tk,

Wij t
+
k(  �

I 0

0 I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

eij tk( 

ξij tk( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ +

Iη 0

I(c − η) 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

N

v�1
ϖσ(t)

iv

evj tk( 

ξvj tk( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ −

eij tk( 

ξij tk( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

Iη 0

I(c − η) 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

N

v�1
ϖσ(t)

jv

eiv tk( 

ξiv tk( 

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠ −

eij tk( 

ξij tk( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ +

Iη 0

I(c − η) 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Λi tk(  − Λj tk( 

Λi tk(  − Λj tk( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠, t � tk.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

In addition, assume that C1 �
A 0
0 A

 ,

C2 �
0 0
B B

 ,C3 �
Iη 0

I(c − η) 0  and ∇i(t) �
Λi(t)

Λi(t)
 

where i ∈ F and
t⩾ t0.

*us, from (13), it follows that

dWij(t)

dt
� C1Wij(t) + C2Wij(t − τ(t)), t≠ tk,

Wij t
+
k(  � Wij tk(  + C3 

N

v�1
ϖσ(t)

iv Wvj tk(  − Wij tk(   + 
N

v�1
ϖσ(t)

jv Wiv tk(  − Wij tk(  ⎛⎝ ⎞⎠ + C3 ∇i tk(  − ∇j tk(  , t � tk.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(14)

Definition 1. (14) is called to achieve final synchronization,
if limt⟶∞‖Wij(t)‖ � 0.

Definition 2. (14) is called to achieve final quasi-synchro-
nization, if limt⟶∞‖Wij(t)‖⩽ a, where a> 0.

Remark 1. From augmented matrix (14), we can find that
there are limt⟶∞‖eij(t)‖ � 0(limt⟶∞

�����eij(t)
�����⩽ a) if

limt⟶∞‖Wij(t)‖ � 0(limt⟶∞

�����Wij(t)
�����⩽ a) for any

i, j ∈ F . *e synchronization (quasi-synchronization) of
augmented system (13) is also of (1). Moreover,
limt⟶∞‖eij(t)‖ � 0 by observer of error systems eij(t) and
ξij(t) of tracking error of error system. We do not directly
quote the state of the error system, and thus it has certain
significance for the system. Its state is not measurable in
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practical application. For notational convenience, we denote
ϖσ(tk)

ij � dij(tk) at any time instant tk for i, j ∈ F , and Gk

denotes Gσ(tk).

3. Main Results

where W(t) � sup− τ ⩽ θ⩽ 0W(t + θ).where
0< ζ ⩽ min 2‖C3‖, 1 − 4‖C3‖ϖ}.

Lemma 1. A sequence of graphs Gj 
T0

j�1 is jointly connected
if a sequence of graphs Gj 

T

j�1 is sequentially connected.

Lemma 2. 5ere exists l> 0 such that

l + C2
����

����e
lτ

+ d1 ⩽ 0, (15)

for any i, j ∈ F and t ∈ (tk, tk+1] where d1 denotes the
largest eigenvalue of C1 , and we obtain that

Wij(t)
�����

����� ⩽ Wij(t)
�����

�����⩽ Wij t
+
k( 

�����

�����e
− l t− tk( ). (16)

Proof. Let V(t) � ‖Wij(t)‖el(t− tk) for t ∈ (tk, tk+1). From
(14), we can deduce

dV(t)

dt
� sign Wij(t) 

TdWij(t)

dt
e

l t− tk( ) + lV(t)

� sign Wij(t) 
T
C1Wij(t)e

l t− tk( ) + sign Wij(t) 
T

C2Wij(t − τ(t))e
l t− tk( ) + lV(t)

⩽ d1V(t) + C2
����

����V(t − τ(t))e
lτ

+ lV(t).

(17)

Here let V(t) � sup− τ ⩽ θ⩽ 0V(t + θ).
We have

dV(t)

dt
⩽ d1 + C2

����
����e

lτ
+ l V(t) ⩽ 0. (18)

*en, one has dV(t)/dt⩽ 0, and so ‖Wij

(t)‖el(t− tk) � V(t)⩽V(t+
k )⩽ V(t+

k ) � ‖ Wij(t+
k )‖, i.e.,

‖Wij(t)‖ ⩽ ‖ Wij(t+
k )‖e− l(t− tk). *e proof is completed.

FromAssumption (A2), there exists a sequence of graphs
Gj 

(m+1)T

j�mT+1 which is sequentially connected where m ∈ Z+.
Hereafter, Gm

r represents GmT+r. A sequence of graphs
Gm

r 
T
r�1 is sequentially connected for any m ∈ Z+; mean-

while, Ωm
T � F and Ωm

0 is a set of singleton.
Let

H(t) � max
i,j∈F

Wij(t)
�����

�����,

H(t) � sup
θ∈[− τ,0]

H(t + θ),

H
m
r � H tmT+r( ,

H
m+
r � H t

+
mT+r( ,

H
m
r (t) � max

i,j∈Ωm
r

Wij(t)
�����

�����,

H
m

r (t) � sup
θ∈[− τ,0]

H
m
r (t + θ),

H
m
r � H tmT+r( ,

H
m+
r � Hr+1 t

+
mT+r( ,

(19)

where 0⩽ r⩽T − 1 and m ∈ Z+. □

Lemma 3. By Assumption (A2), if0< ‖C3‖< 1/2ϖ, then

Wij t
+
k( 

�����

�����⩽ ζH
m
r tk(  +(1 − ζ)H tk(  + 4 C3

����
���� βe

− ς(mT+r)h
+ α ,

(20)

wherem ∈ Z+,0⩽ r⩽T − 1,ti
q ⩽ tmT+r < ti

q+1,q ∈ Z+,
and0< ζ ⩽ min ‖C3‖, 1 − 2ϖ‖C3‖ .

Proof. First, we review the state equation of (14) at the
impulse instant.

Wij t
+
k(  � Wij tk(  + C3 

N

v�1
ϖσ(t)

iv Wvj tk(  − Wij tk(   + 
N

v�1
ϖσ(t)

jv Wiv tk(  − Wij tk(  ⎛⎝ ⎞⎠ + C3 ∇i tk(  − ∇j tk(  , (21)
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for ti
q ⩽ tk < ti

q+1 and q ∈ Z+.
Considering i, j ∈ Ωm

r+1 and tk � mT + r, where
Ωm

r+1 � Ωm
r ∪F

m
r+1, we give the following three cases. □

Case 1. For i, j ∈ Ωm
r , under (21), we get

Wij t
+
k( 

�����

�����⩽ sign Wij t
+
k(  

T
Wij tk(  + 2 C3

����
����ϖ H tk(  − signWij t

+
k( 

T
Wij tk(   + C3

����
���� ∇i tk( 

����
���� + ∇j tk( 

�����

����� . (22)

From (6), ETP, and ∇i, we deduce

∇i

����
����⩽ 2 βe

− ς t− t0( ) + α  , (23)

for t ∈ [ti
q, ti

q+1). Hence, due to (22), we have

Wij t
+
k( 

�����

�����⩽ 1 − 2 C3
����

����ϖ  Wij tk( 
�����

����� + 2 C3
����

����ϖH tk( 

+ 4 C3
����

���� βe
− ς tk− t0( ) + α .

(24)

From 0< ζ ⩽ min ‖C3‖, 1 − 2ϖ‖C3‖  and
Hm

r (tk)⩽H(tk), we can deduce

Wij t
+
k( 

�����

�����⩽ ζH
m
r tk(  +(1 − ζ)H tk( 

+ 4 C3
����

���� βe
− ς tk− t0( ) + α .

(25)

*erefore, (20) is established.

Case 2. Let i ∈ Fm
r+1, j ∈ Ωm

r , and dis(tk) � 1 if a, s ∈ Ωm
r .

Under (21), one has

Wij t
+
k(  � Wij tk(  + C3 Wsj tk(  − Wij tk(   + C3 

N

v�1,v≠s
ϖσ(t)

iv Wvj tk(  − Wij tk(   + 
N

v�1
ϖσ(t)

jv Wiv tk(  − Wij tk(  ⎛⎝ ⎞⎠

+ C3 ∇i tk(  − ∇j tk(  .

(26)

From (26), we can deduce

Wij t
+
k( 

�����

����� � 1 − C3
����

���� sign Wij t
+
k(  

T
Wij tk(  + C3

����
����H

m
r tk( 

+ C3
����

����(2ϖ − 1) H tk(  − sign Wij t
+
k(  

T
Wij tk(   + C3

����
���� ∇i tk( 

����
���� + ∇j tk( 

�����

����� 

⩽ ζHm
r tk(  +(1 − ζ)H tk(  + 4 C3

����
���� βe

− ς tk− t0( ) + α .

(27)

Hence, (20) is established.

Case 3. i, j ∈ Fm
r+1, dis(tk) � 1, and djq(tk) � 1 if s, q ∈ Ωm

r .
Because

Wsj tk(  + Wiq tk(  � Wsq tk(  + Wij tk( , (28)

from (21), we have

Wij t
+
k(  � Wij tk(  + C3 Wsj tk(  − Wij tk(   + C3 Wiq tk(  − Wij tk(  

+ C3 

N

v�1,v≠s
ϖσ(t)

iv Wvj tk(  − Wij tk(   + 
N

v�1,v≠q
ϖσ(t)

jv Wiv tk(  − Wij tk(  ⎛⎝ ⎞⎠ + C3 ∇i tk(  − ∇j tk(  

� Wij tk(  + C3 Wsq tk(  − Wij tk(   + C3 

N

v�1,v≠s
ϖσ(t)

iv Wvj tk(  − Wij tk(   + 
N

v�1,v≠q
ϖσ(t)

jv Wiv tk(  − Wij tk(  ⎛⎝ ⎞⎠

+ C3 ∇i tk(  − ∇j tk(  .

(29)
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By (29),

Wij t
+
k( 

�����

�����≤ 1 − C3
����

���� sign Wij t
+
k(  

T
Wij tk(  + C3

����
����H

m
r tk( 

+ C3
����

����(2ϖ − 2) H tk(  − sign Wij t
+
k(  

T
Wij tk(   + C3

����
���� ∇i tk( 

����
���� + ∇j tk( 

�����

����� 

≤ C3
����

����H
m
r tk(  + 1 − 2 C3

����
����ϖ + C3

����
����  Wij tk( 

�����

����� + C3
����

����(2ϖ − 2)H tk(  + 4 C3
����

���� βe
− ς tk− t0( ) + α 

≤ ζHm
r tk(  +(1 − ζ)H tk(  + 4 C3

����
���� βe

− ς tk− t0( ) + α .

(30)

Obviously, (20) holds. Now the proof is completed.
It is always important to assure that Zeno behavior can

not be occurred under ETC (3) and (4) in order to prove the
synchronization or quasi-synchronization that can be
reached by (14).

For error observation (11), it follows that

G(t) � max
i,j∈F

eij(t)
�����

�����,

G(t) � sup
θ∈[− τ,0]

G(t + θ),

G
m
r � G tmT+r( ,

G
m+
r � G t

+
mT+r( ,

Q
m
r (t) � max

i,j∈Ωm
r

eij(t)
�����

�����,

Q
m

r (t) � sup
θ∈[− τ,0]

Q
m
r (t + θ),

Q
m
r � Q tmT+r( ,

Q
m+
r � Q t

+
mT+r( .

(31)

Theorem 1. Assume that all the conditions of Lemma 2,
hold, and satisfy following conditions:

C1: l2 > 0 and l2 + c1 ⩽ 0
C2: 0< η< (1/2ϖ)
wherec1is the maximum eigenvalue of matrixA, and
thus (14) does not exhibit Zeno behavior. Event-triggered
time sequence ti

q is generated under event-triggered
strategy (6), which
satisfiesq⟶ +∞whenti

q⟶ +∞.

Proof. Let ti
q  be a bounded set and G(ti

q)  also be a
bounded set. It is assumed that G(ti

q)<D2.
For any i ∈ F , t ∈ [ti

q, ti
q+1), there are

Λi(t)
����

���� � 
N

v�1
ϖσ(t)

iv evi t
i
q  − 

N

v�1
ϖσ(t)

iv evi(t)

���������

���������

� 

N

v�1
ϖσ(t)

iv evi t
i
q  − ϖσ(t)

iv evi(t) 

���������

���������

⩽ 

N

v�1
ϖσ(t)

iv 
t

ti
q

_evi(t)‖dt.
����

(32)

Let m ∈ Z+ such that [ti
q, ti

q+1) ⊂ [tmT, t(m+1)T). By (11),
‖_evi(s)‖⩽D1

G(s) where D1 � ‖A‖.
Similar to Lemma 2, there is l2 + c1 ⩽ 0, where l2 > 0 and

c1 is maximum eigenvalue of A. *us, we can deduce
G(s)⩽ G(ti+

q )e|l2|(s− ti
q), where s ∈ [ti

q, t] and G(ti+
q ) �

lims⟶ti
q+0

G(s).

*en, we have

_evi(s)
����

����⩽D1
G t

i+
q e

l2 s− ti
q 

, (33)

where s ∈ [ti
q, t]. Obviously, there are G(ti+

q ) � G(ti
q)⩽D2

for ti
q ∈ (tmT, t(m+1)T).
Similar to Lemma 3, at impulse instants, (11) has

Q
m
r t

+
k(  � ψQm

r tk(  + (1 − ψ)G
m
r tk(  + 2η βe

− ς(mT+r)h
+ α  ,

(34)

if exists 0< η< 21ϖ, where0<ψ ⩽ min η, 1 − 2ϖη ,
ifti

q � tmT, Q
m

0 (tmT) � G
m

0 (tmT)thus

G t
i+
q  � G

m+

0

⩽ G
m

0 + 2η βe
− ςmTh

+ α 

⩽D2 + 2η βe
− ςmTh

+ α .

(35)

Let D2 + 2η[βe− ςmTh + α] � Π. Combine (32)–(35), and
we have
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Λi(t)
����

����⩽D1Πϖ
t

ti
q

e
l2 s− ti

q ds

�
D1Πϖ

l2
e

l2 t− ti
q 

− 1 .

(36)

From (6), event-triggered strategy is triggered to update
the controller when ‖Λi(t)‖ � βe− ς(t− t0) + α; in other words,
ti
q⟶ ti

q+1. Hence, from (36), we obtain that

Λi t
i
q+1 

�����

����� � βe
− ς ti

q+1− t0 
+ α

⩽
D1Πϖ

l2
e

l2 ti
q+1 − ti

q 
− 1 ,

(37)

which means

βe
− ς ti

q+1 − t0 
+ α l2

D1Πϖ
+ 1⩽ e

l2 ti
q+1 − ti

q 
,

(38)

and then

t
i
q+1 − t

i
q ⩾

ln βe
− ς ti

q+1 − t0 
+ α l2/D1Πϖ  + 1 

l2
,

(39)

such that the event-triggered sequence ti
q  has time interval.

*is is contrary to the assumption that the sequence ti
q  is

bounded. *is ends the proof. □

Theorem 2. By Assumption (A1), if5eorem 1,Lemma 2,
andLemma 3hold, then the quasi-synchronization of (7) can
be obtained based on observer ifl≠ 0satisfies (15) besides

e
− lTh 1 − ζT

 < 1 , (40)

where0< ζ ⩽ min 2‖C3‖, 1 − 4‖C3‖ϖ .

Proof. According to Lemma 2, we can see that

H
m
r+1 ⩽ H

m

r+1 ⩽ H
m+

r e
− lh

,
(41)

H
m
r+1 ⩽ H

m

r+1 ⩽ H
m+

r e
− lh

, (42)

where m ∈ Z+, 0≤ r≤T − 1. By *eorem 1, we can know
that Zeno behavior cannot occur.

Meanwhile, according to Lemma 3, it follows that

H
m+

r ⩽ ζ H
m

r +(r − ζ) H
m

r + 4 C3
����

���� βe
− ς(mT+r)h

+ α ,

H
m+

r ⩽ H
m

r + 4 C3
����

���� βe
− ς(mT+r)h

+ α .
(43)

Combining (41) and (43), we can obtain that

H
m

r+1 ⩽ e
− lh H

m

r + 4 C3
����

���� βe
− ς(mT+r)h

+ α  . (44)

*en, from (41)–(44), through the iterative method, we
can obtain that

H
m+

r ⩽ e
− lh ζ H

m+

r− 1 +(1 − ζ) H
m

r− 1  + β1e
− ς(mT+r− 1)h

+ α1

⩽ e
− 2lh ζ2 H

m+

r− 2 + 1 − ζ2  H
m

r− 2  + β2e
− ς(mT+r− 2)h

+ α2
· · ·

⩽ e
− lvh ζv H

m+

r− v + 1 − ζv
(  H

m

r− v  + βve
− ς(mT+r− v)h

+ αv,

(45)

and

α1 � 4 C3
����

����α (1 − ζ)e
− lh

+ 1 ,

α2 � e
− 2lhζ2 + 1 α1 + 4 C3

����
����(1 − ζ)e

− 2lhα,

· · ·

αv � e
− vlhζv

+ 1 αv + 4 C3
����

���� 1 − ζv− 1
 e

− vlhα,

β1 � 4 C3
����

���� (1 − ζ)e
− lh

+ e
− ςh

 β,

β2 � e
− 2lhζ2 + e

− 2ςh
 β1 + 4 C3

����
����(1 − ζ)e

− 2lhβ,

· · ·

βv � e
− vlhζv

+ e
− vςh

 βv− 1 + 4 C3
����

���� 1 − ζv− 1
 e

− vlhβ,

(46)

and thus

H
m

T ⩽ e
− lh H

m+

T− 1

⩽ e
− lTh ζT− 1 H

m+

0 + 1 − ζT− 1
  H

m

0  + e
− lhβT− 1e

− ςmTh

+ e
− lhαT− 1.

(47)

From the introduction of the previous preparation part,
we have ΩT− 1 � F and H

m

T � H
m

T � H
m+1
0 . Meanwhile,

from Ω0 which is a single point, we can obtain H
m

0 � 0. By
using (47), one has

H
m+

0 ⩽ ζ H
m

0 +(1 − ζ) H
m

0 + 4 C3
����

���� βe
− ςmTh

+ α 

⩽ (1 − ζ) H
m

0 + 4 C3
����

���� βe
− ςmTh

+ α .
(48)

By applying (47) and (48), we can prove the following
result:

H
m+1
0 ⩽ ε H

m

0 + α + βe
− mςTh , (49)

where 0< ε � e− lTh(1 − ζT
)< 1, α � 4‖C3‖αe− lTh+ e− lhαT− 1+,

and β � e− lhβT− 1 + 4‖C3‖βe− lTh. From (43), it follows that
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H
m+1
0 ⩽ ε H

m

0 + βe
− mςTh

+ α

⩽ ε2 H
m− 1
0 + βεe− (m− 1)ςTh

+ βe
− mςTh

+ εα + α

· · ·

⩽ εm− 1 H
2
0 + βεm− 2

e
− 2ςTh

+ · · · + βεe− (m− 1)ςTh
+ βe

− mςTh
+ εm− 1

+ · · · + ε + 1 α

⩽ εm H
1
0 +

e
− mςTh

− εm

1 − εeςTh
β +

1 − εm+1

1 − ε
α.

(50)

*erefore, we can obtain

lim
m⟶∞

sup H
m

0 ⩽ α. (51)

(14) can achieve quasi-synchronization. In other words,
(7) can also quasi-synchronization-based observer.

In addition, limm⟶∞sup H
m

0 � 0 if α � 0. From *e-
orem 2, (7) can reach synchronization-based observer if the
sufficient conditions are satisfied. □

Remark 2. Under all the conditions of *eorem 2, (14) can
be quasi-synchronized. According to the definition of (14),
we can find that the system is composed of an observation
error system eij(t) and a tracking error system ξij(t).
*erefore, when (14) can be quasi-synchronized by means of
eij(t)andξij(t), we can have the quasi-synchronization of
(1). In this process, we do not directly use the state value of
the original system (1). It is consistent with the situation that
the state value of the system is unknown in practical
application.

Theorem 3. Under Assumption (A3), usingLemma 2,Lemma
3, and5eorem 1, system (7) can obtain quasi-synchroniza-
tion-based observer if

e
− l(N− 1)2T0h 1 − ζ(N− 1)2T0 < 1. (52)

Proof. From Lemma 1, when the sequence of graphs Gj 
T0

j�1
satisfies e− l(N− 1)2T0h(1 − ζ(N− 1)2T0)< 1, the sequence of
graphs Gj 

T

j�1 satisfies e− lTh(1 − ζT
)< 1. *erefore, under

Lemma 2, system (7) can have quasi-synchronization-based
observer and can have synchronization if α � 0. □

4. Numerical Simulations

In this section, a numerical example is given to verify the
validity of theory analyses.

Review original system (7) with controller and observer
system (8):

dxi(t)

dt
� Axi(t) + Bxi(t − τ(t)) + I, t≠ tk,

xi t
+
k(  � xi tk(  + c 

N

j�1
ϖσ(t)

ij xj t
i
q  − xi t

i
q  , t � tk,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dxi(t)

dt
� Axi(t) + I, t≠ tk,

xi t
+
k(  � xi tk(  + η

N

j�1
ϖσ(t)

ij xj t
i
q  − xi t

i
q  , t � tk.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(53)

Let i ∈ F � 1, 2, 3, 4, 5, 6, 7, 8{ }, and the parameters in
the system are designed as follows: c � 0.12 and η � 0.05,
and the weight matrix is designed as

A �
− 4 1

2 − 3
⎛⎝ ⎞⎠,

B �
1 − 0.5

− 0.5 0.8
⎛⎝ ⎞⎠.

(54)

Meanwhile, the initial function is given as follows:
φ1 � [0.8, − 0.3]T, φ2 � [− 0.7, 0.4]T, φ3 � [1.2, − 0.5]T,
φ4 � [1.3, − 0.2]T, φ5 � [0.3, − 0.3]T, φ6 � [0.78, − 0.5]T,
φ7 � [0.42, − 0.32]T, φ8 � [− 0.4, − 0.6]T, φ1 � [1.1, − 0.8]T,
φ2 � [0.7, − 0.78]T, φ3 � [0.45, − 1]T, φ4 � [− 0.63, 0.9]T,
φ5 � [− 0.43, − 0.56]T, φ6 � [0.7, − 1.3]T, φ7 � [0.3, − 0.4]T,
φ8 � [0.86, − 0.3]T, and τ(t) � |sin(t)|, and we set tk � 0.5k,
k∈+. Figures 2 and 3 show the switching topology.

From Figure 2 (G2m) and Figure 3 (G2m+1), we can find
that G2m,G2m+1  is sequential connection. In the
switching period T � 2, it is also a joint connection and
T0 � 2. *e change of node set is as follows: Ω0 � 1{ },
Ω1 � 1, 4, 5, 8{ }, and Ω2 � 1, 2, 3, 4, 5, 6, 7, 8{ } � V. Satisfy
Assumptions (A1) and (A2), and the coupling matrix is as
follows:
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Figure 2: G2m.
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Figure 3: G2m+1.
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Figure 4: �e quasi-synchronization. State diagram of 8 nodes of observation system (1) and system (2), when α � 0.2.
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Figure 5: �e quasi-synchronization. State diagram of 8 nodes of observation system (1) and system (2), when α � 0.
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Figure 6: �e state diagram of 8 nodes of system (14) when α � 0.2.
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Figure 7: �e state diagram of 8 nodes of system (14) when α � 0.
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G2m �

0 0 0 1 1 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0





,

G2m+1 �

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0
1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0





. (55)

�us, we know ω � 3, T � 2.
From the above data, augmented matrix (14), we have

C1 �
A 0

0 A
[ ] �

− 4 1 0 0

2 − 3 0 0

0 0 − 4 1

0 0 2 − 3




,

C2 �
0 0

B B
[ ] �

0 0 0 0

0 0 0 0

1 − 0.5 1 − 0.5
− 0.5 0.8 − 0.5 0.8




,

C3 �
Iη 0

I(c − η) 0
[ ] �

0.05 0 0 0

0 0.05 0 0

0.07 0 0 0

0 0.07 0 0




.

(56)

For Lemma 2, l + ‖C2‖elτ + d1 � l + 1.5er − 2≤ 0 by so-
lution of the integral equation reach l< � 0.188. Let l � 0.15,
and the condition of Lemma 2 can be satis�ed.

For Lemma 3, we can obtain ‖C3‖ � 0.12≤
(1/2ω) � (1/6), and Lemma 3 is also satis�ed. According to
the conditions in �eorem 1, we have l2 + c1 ≤ 0 and l2 ≤ 2.
Let l2 � 0.15 and satisfy the condition of �eorem 1. For C2,
we have η � 0.05< (1/2ϖ) � (1/6). �us, according to
�eorem 1, there is no Zeno behavior.

For �eorem 2, 0< ζ ≤min 2‖C3‖, 1 − 4‖C3‖ϖ{ } obtain
ζ � 0.3. According to e− lTh(1 − ζT) � e− 0.15×2×0.0025
(1 − 0.32)< 1, the condition of �eorem 2 is also established
where h � 0.0025. �en, (14) can reach the quasi-synchro-
nization, namely, (1) achieves quasi-synchronization based
on observers.

Take α> 0, β � 2, and ς � 0.8.
Under quasi-synchronization, the state diagram of 8

nodes of (1) and (2) when α � 0.2 is shown in Figure 4.
Under synchronization, the state diagram of 8 nodes of (1)
and (2) when α � 0 is shown in Figure 5.
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Figure 8: �e state of sampling value is given when α � 0.2.
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Figure 9: �e state of sampling value is given when α � 0.
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Figure 6 shows the state diagram of 8 nodes of system
(14) when α � 0.2.

Figure 7 shows the state diagram of 8 nodes of system
(14) when α � 0.

In Figure 8, the state of sampling value is given when
α � 0.2. In Figure 9, the state of sampling value is given when
α � 0. When the system meets the conditions given in this
paper, all nodes reach synchronization. *us, we can find
that the theorem given in this article is valid.

5. Conclusion

*e question of quasi-synchronization (synchronization) in
MNNs with observers in impulsive coupling controller via
event-trigger strategy is discussed. An event-triggering
mechanism is designed by using the combination mea-
surement method. *e real system state in this paper is
assumed to be unmeasurable, and the system time delay is
also unmeasurable. *e state of (1) is measured by observer.
*e time delay is unknown, so the observer does not have
time delay too. *e augmented system is composed of the
observer and the tracking error system of the error system.
In the real system, the sufficient conditions of the quasi-
synchronization and synchronization are proved. Compared
with existing works, this paper considers the real state and
unmeasurable time delay, and the controller used in this
paper is a impulsive controller with event-triggered mech-
anism, so it plays a significant role in saving communication
resources. In addition, we consider trying to spread it to the
more general system and more complex systems.
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