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A novel version of the exponential Weibull distribution known as the extended exponential Weibull (ExEW) distribution is
developed and examined using the Lehmann alternative II (LAII) generating technique.'e new distributions basic mathematical
properties are derived. 'e maximum likelihood estimation (MLE) technique is used to estimate the unknown parameters of the
proposed distribution. 'e estimators’ performance is further assessed using the Monte Carlo simulation technique. Eventually,
two real-world data sets are utilized to show the applicability of the new distribution.

1. Introduction

Analysis of lifetime data has seen applications in various
fields, including health, business, engineering, finance, etc.
[1, 2]. 'emain objective of such analysis is usually to model
the distribution time to an event and/or the determinants of
time to event of interest.

For modeling lifetime data, a variety of probability
models are available, including log-logistic, beta, gamma,
Weibull, exponential, and others. Furthermore, in many
cases, these traditional models are inappropriate for mod-
eling lifetime data [3, 4] necessitating the use of updated
versions of current distributions [5]. New models bring up
new possibilities for theoretical and practical researchers to
solve real-world issues since they suit asymmetric and
complicated random occurrences so well [6].

'e Weibull distribution has been used to cope with
several challenges in a wide range of survival data and to
model lifespan data. 'e Weibull distribution, with its

negatively and positively skewed density forms, is the pri-
mary option when modeling monotone hazard rates [7].

'e parameters of this distribution’s tremendous flexi-
bility allow for a range of techniques, all of which have the
same key property.

'e hazard rate is a monotone function that can be
decreasing, constant, or growing [8]. 'e Weibull distri-
bution is inappropriate for survival data with a non-
monotone failure rate function.

As a result, scientists explored for extensions and
modifications of the Weibull distribution. Mudholkar and
Srivastava [9] developed a three-parameter model by
exponentiating the Weibull distribution, known as the
exponentiated Weibull distribution. Silva et al. [10] pro-
posed the beta modified Weibull distribution. Bourguignon
et al. [11] introduced the Weibull-G family. Pinho et al. [12]
developed the gamma-exponentiated Weibull distributions
(GEW). Xie et al. [13] developed a three-parameter modified
Weibull extension.
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Lee et al. [14] introduced the beta Weibull model, which
can be incorporated into data sets with nonmonotone and
monotone hazard rate functions (hrf ) and has the expo-
nential, exponentiated Weibull, and exponentiated expo-
nential models as submodels, among others. Carrasco et al.
[15] defined and investigated a novel four-parameter
modification of the Weibull distribution that can simulate
bathtub-shaped failure rate forms.

Cordeiro et al. [16] developed the exponential Weibull
distribution. Bander et al. [17] proposed the (P-A-L) ex-
tended Weibull distribution, which is a novel generalization
of the three-parameter extended Weibull distribution.
Almheidat et al. [18] suggested a generalization of the
Weibull distribution, described by four parameters that
specify the shape and scale properties. Famoye et al. [19]
developed the Weibull-normal distribution and found that
the Weibull-normal distribution can be unimodal or bi-
modal. Aldahlan [20] introduced a novel model called the
inverse Weibull inverse exponential (IWIE) distribution.
Hassan and Abd-Allah [21] proposed the exponentiated
Weibull Lomax, a novel five-parameter model derived from
the exponentiated Weibull-generated family.

Additional important generalized forms of the Weibull
model are introduced by Korkmaz et al. [22–24], Abouel-
magd et al. [25–27], Cordeiro et al. [28], Bhatti et al. [29],
Nasir et al. [30], Alizadeh et al. [31], Afify et al. [32, 33],
Hussein et al. [34], Mead et al. [35] and Nassar et al. [36].

In recent years, the technique of parameter induction has
attracted a lot of attention, for example, Tahir and Nadarajah
[37] reviewed the most common G families introduced in
the last decade using the parameter induction technique.
Tahir and Cordeiro [38] presented a survey for probability
families formulated by parameter induction techniques, and
they developed some new G families. Ahmad et al. [39]
reviewed and presented a brief survey of recent advances in
distribution theory with a focus on the parameter induction
technique. Recently, Muse et al. [40] presented a survey of
the log-logistic (LL) distribution and its generalizations by
focusing on the new LL distributions formulated from the
parameter induction technique.

'e addition of one or more extra shape parameters to
the parent distribution makes it more flexible, which is
especially useful when analyzing tail features.

Based on the above discussion, this study proposes a new
probability distribution called the extended exponential
Weibull (ExEW) distribution, as a modification of the ex-
ponential Weibull distribution using the Lehmann-type II
approach.

'ere are two main methods for developing the expo-
nentiated family (EF) of distributions in the literature. 'ese
techniques are the Lehmann alternative I (LAI) technique,
which has gotten a lot of attention, and the Lehmann al-
ternative II (LAII) technique, which has received less
attention.

'e method of LAII aids in the derivation and under-
standing of its many features. According to Nadarajah and
Tahir [37], the LAII technique is defined as follows:

If G(x) is the cumulative distribution function (cdf) and
G(x) � 1 − G(x) is the survival function (sf) of the existing
distribution, then, by taking one minus the αth power of
G(x), the cdf of the LAII family or the exponential family
(EF) follows as

F(x) � 1 − [1 − G(x)]
α
. (1)

According to (1), the probability density function (pdf)
reduces to

f(x) � [1 − G(x)]
α− 1

G(x)(α). (2)

'e sf is defined as follows:

S(t) � [1 − G(t)]
α
. (3)

'e hazard rate function (HRF) is

h(t) �
g(t)(α)

1 − G(t)
. (4)

'e reverse hazard function is

r(t) �
pdf

cdf
�

g(t)(α)

G(t)
. (5)

'e cumulative hazard function H(t) is

H(t) � − log[1 − G(t)](α). (6)

'e following can be used to briefly outline the article’s
motivations: (i) using the LAII parameter induction ap-
proach, a tractable extension of the Weibull distribution
will be introduced, which provides increasing, decreasing,
and constant hazard rate forms. (ii) Createing a modified
Weibull distribution with a more adaptable kurtosis
compared to the standard Weibull model. (iii) Extending
the parent Weibull distribution to one that is extended so
that its density function can display symmetrical, asym-
metrical, unimodal, J, and reversed-J shapes. (iv) Creating a
more comprehensive model that can be used to represent
different types of data in the fields of engineering, medicine,
actuarial science, and other applied fields. 'is fact is
demonstrated by modeling two real-life data sets from the
engineering and medical disciplines, demonstrating its
superiority as compared to other competing distributions.
(v) lastly, our motivation stems from the desire to dem-
onstrate how the inclusion of a single parameter may in-
crease the application and tractability of the parent
distribution. 'e remainder of the research develops and
talks about each of those issues.

'e remainder of the article is structured as follows:
Section 2 discusses the basic lifetime functions of the pro-
posed distribution and its submodels. Section 3 provides
some of the mathematical properties of the ExEW distri-
bution. 'e estimation of the ExEW parameters is investi-
gated in Section 4. An extensive Monte Carlo simulation
study is presented in Section 5. Section 6 presents two real-
life data applications of the proposed distribution. In Section
7, concluding remarks are presented.
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2. The ExEW Distribution

�e ExEW distribution generalizes the exponential Weibull
distribution. It is formulated by using the LAII approach.

Let X ∼ ExEW(a, b, c, α), then the cdf of the ExEW
distribution can be de�ned by applying (1) as follows:

F(x) � 1 − e− ax+bxc( )[ ]
α
, x> 0, (7)

where α> 0, a> 0, and c> 0 are shape parameters and b> 0 is
the scale parameter.

2.1. Submodels. �e proposed ExEW distribution has some
submodels that are often utilized in parametric survival
modeling. Its submodels include the exponential (E),
Weibull (W), exponentiated exponential (EE) [41], and the
exponential Weibull (EW) distributions [16]. �ese sub-
models are listed in Table 1.

2.2. Probabilistic Functions for the ExEW Distribution. In
this section, the pdf, hrf, and sf of the ExEW are presented.
In addition to the above probabilistic functions, cumulative
hrf (chrf ) and reverse hrf (rhrf ) are also formulated.

(1) �e pdf corresponding to (7) takes the form

f(x) � α a + bcxc− 1( )e− ax+bxc( )( ) e− ax+bxc( )[ ]
α− 1
, x> 0.

(8)

Figure 1 illustrates pdf shapes of the ExEW distri-
bution for various choices of the parameters. �e pdf
of the ExEW distribution can be symmetrical,
asymmetrical, unimodal, J, and reversed-J shapes.

(2) �e sf corresponding to (7) is as follows:

S(x) � e− ax+bxc( )[ ]
α
. (9)

(3) �e hrf of the proposed distribution is expressed as

h(x) �
α a + bcxc− 1( )e− ax+bxc( )( )

e− ax+bx
c( )[ ]

α . (10)

Figure 2 shows the hrf which is clearly decreasing,
increasing, constant, J-shaped, and reverse J-shaped.

(4) �e rhrf is written as follows:

r(x) �
α a + bcxc− 1( )( ) e− ax+bxc( )[ ]

α

1 − exp − ax + bxc( )( )[ ]α
. (11)

(5) �e chrf is obtained as

H(x) � − α log 1 − exp − ax + bxc( )( )[ ]α[ ]. (12)

3. Mathematical Properties

In this part, the ExEW distribution’s mathematical prop-
erties are discussed.

3.1.�e Quantile Function. �e quantile function (qf) is the
reverse of the cdf and is signi�cant in quantitative and
statistical data analysis. A probability distribution can be
described using either the qf or the cdf [42].

Let x � Q(p) � F− 1(p), for 0<p< 1, then the qf of the
ExEW distribution is given by reversing (7), thus F(x) �
1 − [e− (ax+bxc)]α � p for x, then the qf will be the solution of
the equation,

Table 1: Submodels of the ExEW(a, b, c, α) distribution.

Model a b c α
E a 0 0 1
W 0 b c 1
EE a 0 0 α
EW a b c 1

0.0
0.0 0.5 1.0 1.5 2.0

a = 0.02, b = 2, c = 30, α = 1.01

a = 0.05, b = 1, c = 1.40, α = 1.2

a = 5, b = 1.5, c = 2.00, α = 1.65
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Figure 1: Shapes of the pdf of the ExEW distribution for various
choices of the parameters.
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Figure 2: Shapes of the HRF of the ExEW distribution for di�erent
values of the parameters.
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ax + bx
c

� − ln 1 − p 
1/α

. (13)

3.2. Residual and Reverse Residual Life Functions. In reli-
ability analysis and risk management, residual life has a wide
range of applications. 'e residual life of the ExEW r.v. is

R(t)(x) �
S(x + t)

S(t)
,

R(t)(x) �
e

− a(x+t)+b(x+t)c
( )

 
α

e
− at+btc( )

 
α .

(14)

Furthermore, the reverse residual life of the ExEW
distribution can be calculated as follows:

R(t)(x) �
S(x − t)

S(t)
,

R(t)(x) �
e

− a(x− t)+b(x− t)c
( )

 
α

e
− at+btc( )

 
α .

(15)

3.3. Moments. Moments can be used to analyze some of a
distribution’s most important characteristics and properties,
such as dispersion, tendency, kurtosis, and skewness.

'e rth moment of an r.v. X ∼ ExEW(a, b, c, α) is

E X
r

(  � 

∞

j,k,m�0

(− 1)
j+k+mΓ(α)

j!k!m!Γ(α − j)
a

m

αaΓ(r + k + m + − 2c/c)

c[b(1 + j)]r + k + m + 1/c
+

bΓ(r + m − c/c)

[b(1 + j)]
r+c+m/c .

(16)

Proof. An r.v. X with pdf f(x), the rth moment, is written as
follows:

μr
′ � 
∞

0
x

r
f(x)dx. (17)

(8) is substituted for equation (17) and the result is

E X
r

(  � αa 
∞

0
x

r
e

− ax+bxc( )
e

− ax+bxc( )
 

α− 1
dx

+ bc 
∞

0
x

r
x

c− 1
e

− ax+bxc( )
e

− ax+bxc( )
 

α− 1
dx.

(18)

Applying binomial expansion and further simplification,
(18) becomes

E X
r

(  � 
∞

j,k�0

(− 1)
j+kΓ(α)(aj)

j!k!Γ(α − j)
αa 
∞

0
x

r+k
e

− ax+bxc( )

e
− jbxc

dx + 
∞

j,k�0

(− 1)
j+kΓ(α)(aj)

j!k!Γ(α − j)

bc 
∞

0
x

r+c− 1
e

− ax+bxc( )
− jbx

c
dx.

(19)

But,

e
− ax+bxc( )

� e
− ax

× e
− bxc

. (20)

By using McLaurin’s series expansion

e
− ax

� 
∞

m�0
(− 1)

m
×

a
m

x
m

m!
. (21)

Substituting (21) in (19), we have

E X
r

(  � 
∞

j,k,m�0

(− 1)
j+k+mΓ(α)

j!k!m!Γ(α − j)
αa

m+1

∞

0
x

r+k+m
e

− bxc(1+j)
dx 

+ bca
m


∞

0
x

r+c+m− 1
e

− bxc(1+j)
dx .

(22)

Let

w � bx
c
(1 + j). (23)

We get

x
c

�
w

b(1 + j)
⇒

w
1/c

[b(1 + j)]
1/c. (24)

Hence,

x �
w

1/c

[b(1 + j)]
1/c. (25)

'en,

dx

dw
�

1/cw
1− c/c

[b(1 + j)]
1/c, (26)

which is as follows:

dx �
w

1− c/c

c[b(1 + j)]
1/c dw. (27)

Substituting (27) in equation (22), we obtain

E X
r

(  � 
∞

j,k,m�0

(− 1)
j+k+mΓ(α)

j!k!m!Γ(α − j)
αa

m+1

∞

0

w
r+k+m/c

[b(1 + j)]
r+k+m/ce

− w
⎧⎨

⎩

⎫⎬

⎭

×
w

1− c/c

c[b(1 + j)]
1/c dw + bca

m

∞

0

w + c + m − 1/c
[b(1 + j)]

r+c+m− 1/ce
− w

×
w

1− c/c

c[b(1 + j)]
1/c dw .

(28)
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After simplification, (28) becomes

E X
r

(  � 
∞

j,k,m�0

(− 1)
j+k+mΓ(α)

j!k!m!Γ(α − j)
a

m

αaΓ(r + k + m + − 2c/c)

c[b(1 + j)]
r+k+m+1/c +

bΓ(r + m − c/c)

[b(1 + j)]
r+c+m/c

⎧⎨

⎩

⎫⎬

⎭.

(29)

Table 2 reports the values of the first five moments,
standard deviation (SD), coefficient of variation (CV),
skewness (CS), and kurtosis (CK) of the ExEW model for
various parameter values.

From Table 2, the ExEW distribution is quantitatively
versatile in terms of mean and variance. As evidenced by its
values, CS can be right skewed, almost symmetrical, or
somewhat left-skewed. 'e CK values indicate whether the
ExEW distribution is leptokurtic, platykurtic, or mesokurtic.
All of these features point to the ExEW distribution’s ver-
satility, which makes it an ideal choice for modeling.

3.4. Moment Generating Function (mgf). 'e mgf of the
ExEW distribution is written as follows:

Mt(t) � E e
tx

  � 
∞

− ∞
e

tx
fExEW(x)dx. (30)

Using the results from Subsection 3.3, we can get the
closed-form for the mgf.'en, themgf of ExEW distribution
reduces to

E e
tx

  � 

∞

j,k,m�0

(− 1)
j+k+mΓ(α)

k!m!j!Γ(− j + α)

(t)
r

r!
a

m

αa
Γ(((r + k + m + − 2c)/c))

c[b(1 + j)]
((r+k+m+1)/c)

+ b
Γ(((r + m − c)/c))

[b(1 + j)]
((r+c+m)/c)

⎧⎨

⎩

⎫⎬

⎭.

(31)

4. Maximum Likelihood Estimation

Maximum likelihood (ML) is used to estimate the unknown
parameters of the ExEW distribution using a full sample.

If X1, X2, . . . , Xn denote a random sample from the
ExEW distribution with an unknown parameter vector
ϕ � (a, b, c, α), then the ML function follows as

L(ϕ) � 
n

i�1
α a + bcx

c− 1
i e

− axi+bxc
i( ) e

− axi+bxc
i( ) 

α− 1
. (32)

'en, the log-likelihood function reduces to

ℓ(ϕ) � nlna + nlnb + nlnc + nlnα + nln(c − 1) 
n

i�1
lnxi −



n

i�1
axi + bx

c
i(  +(α − 1) 

n

i�1
ln e

− axi+bxc
i( ) .

(33)

'e parameter estimates are produced by performing a
partial derivative of ℓ(ϕ) with respect to each parameter, as
follows:

zℓ
za

�
n

a
− 

n

i�1
xi − (α − 1) 

n

i�1
xi.

zℓ
zb

�
n

b
− 

n

i�1
x

c
i − (α − 1) 

n

i�1
x

c
i ,

zℓ
zc

�
n

c
+

n

(c − 1)


n

i�1
lnxi − b 

n

i�1
x

c
i ln xi,

zℓ
zα

�
n

α
− a 

n

i�1
xi − b 

n

i�1
x

c
i .

(34)

'e unknown parameters can be calculated via resetting
the aforementioned equations to zero and calculating them
all at once. 'ese equations can also be numerically solved
using statistical software (for example, the adequacy model
package in R software) or an iterative technique such as the
Newton–Raphson algorithm.

Because of the predicted information matrix is too
complicated to set confidence intervals for the parameters,
the observed information matrix I(ϕ) is used.

'e following is how the information matrix is obtained:

I(ϕ) � −

zℓ2

za
2

zℓ2

zazb

zℓ2

zazc

zℓ2

zazα

zℓ2

zb
2

zℓ2

zbzc

zℓ2

zbzα

zℓ2

zc
2

zℓ2

zαzc

zℓ2

zα2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (35)

whereas the regularity criteria are satisfied and the pa-
rameters are within the interior of the parameter space but
not on the boundary;

�
n

√
(� ϕ − ϕ) converges in distribution

to N4(0, I− 1(ϕ)), where I(ϕ) is the predicted. When I(ϕ) is
substituted by the observed information matrix assessed at
J

(ϕ)
, the asymptotic behavior remains true. To construct

100(1 − τ)% two-sided 95% confidence interval for model
parameters, we use the asymptotic multivariate normal
distribution N4(0, I− 1(ϕ), where τ is the significance level.

5. Simulation Study

In this part, a comprehensive numerical inspection using
Monte Carlo simulations is achieved to evaluate the capa-
bility of the ML estimates (MLEs) for the ExEW model. 'e
absolute biases (AB), root mean square errors (RMSEs), and
coverage probability (CP) are calculated for different small
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and large samples and parameter settings to evaluate the
performance ofMLEs. To produce random samples from the
ExEW, the qf (13) is employed. With n � 25, 50, 75, 100, 150,
and 200, the simulation experiments are repeated N � 1000
times. For set I, a � 1, b � 1, c � 1.5, α � 0.12, set II:
a � 1, b � 1, c � 1.5, α � 0.14, set III: a � 1, b � 1, c � 1.5,
α � 0.25, and set IV: a � 1, b � 1, c � 1.5, α � 0.50.

'e following equations are used to calculate the AB,
RMSE, and CP for the estimates.

AB �


n
i�1 (ϕ − ϕ)

N
,

RMSE �

������������

1
N



n

i�1
(ϕ − ϕ)

2




,

(36)

where ϕ � a, b, c, α.
'e CP is the proportional of times the 100(1 − τ)%

confidence interval, which is given by

CP � ϕ∓Zτ × SE(ϕ). (37)

'e AB and RMSE values of the parameters a, b, c, and α
for various sample sizes are shown in Tables 3 and 4. 'e
visual comparisons of these results are shown in
Figures 3–10. 'e findings show that the RMSE decreases as
the sample size grows until it hits zero. Furthermore, the AB
decreases as sample size grows. As a result, the MLEs and
their asymptotic features can be used to build confidence
ranges even for tiny sample numbers. Additionally, the
confidence intervals’ CPs are quite close to the nominal 95
percent level.

6. Applications to Real-Life Data

To illustrate the applicability of the ExEW distribution, we
analyze and compare the fitting of the ExEW distribution
with other competing models by using two real-life data sets.
'e ExEW distribution is compared to submodels such as
the W, EE [41], and EW distributions [16], and other
common lifetime distributions including the log-logistic
(LL), beta Weibull (BW) [14], beta extended Weibull (BEW)
[43], modified beta Weibull (MBW) [44], and tan-log-
logistic (TanLL) distributions [45].

'e competing models’ pdfs are as follows:

(1) 'e pdf of the W distribution is
f(x) � acx

a− 1 exp − cx
a

( . (38)

(2) 'e pdf of EE distribution is

f(x) � ac exp(− cx) 1 − exp(− cx) 
a− 1

. (39)

(3) 'e pdf of EW distribution is

f(x) � a + bcx
c− 1

 exp − ax + bx
c

( . (40)

(4) 'e pdf of the LL distribution is

f(x) �
ac((cx))

a− 1

1 +(cx)
a

 
2. (41)

Table 3: 'e results of ABs, RMSEs, and CP for the MLEs of ExEW
distribution for I and II.

I II
Parameters n ABs RMSEs CP ABs RMSEs CP

a

25 2.327 3.646 0.995 2.390 3.643 1.000
50 1.784 2.897 0.998 1.804 2.927 0.999
75 1.603 2.675 1.0 1.571 2.698 1.000
100 1.247 2.223 0.999 1.122 2.121 1.000
150 0.818 1.555 1.000 0.793 1.583 1.000
200 0.631 1.273 1.00 0.539 1.113 1.000

b

25 0.695 0.818 0.872 0.710 0.829 0.859
50 0.570 0.736 0.926 0.578 0.749 0.914
75 0.518 0.708 0.93 0.514 0.709 0.927
100 0.451 0.651 0.952 0.403 0.642 0.959
150 0.334 0.571 0.982 0.324 0.576 0.975
200 0.281 0.535 0.99 0.259 0.528 0.993

c

25 1.332 1.910 0.97 1.509 2.139 0.957
50 0.884 1.362 0.969 1.035 1.562 0.957
75 0.785 1.263 0.97 0.857 1.376 0.964
100 0.609 1.047 0.971 0.595 1.046 0.976
150 0.387 0.705 0.971 0.404 0.764 0.971
200 0.292 0.518 0.98 0.285 0.546 0.975

α

25 0.033 0.057 0.999 0.041 0.067 0.999
50 0.028 0.044 1.000 0.036 0.051 1.000
75 0.027 0.040 1.000 0.032 0.045 1.000
100 0.021 0.034 1.000 0.023 0.038 1.000
150 0.015 0.027 1.000 0.017 0.031 1.000
200 0.012 0.023 1.000 0.013 0.025 1.000

Table 2: Numerical values of the first five moments, SD, CV, CS, and CK for various parametric values.

a, b, c, α
Moments (1, 10, 1.9, 0.05) (0.1, 1, 1.1, 1.05) (0.5, 7, 0.5, 1.1) (0.1, 1, 1.05, 1.1) (1, 7, 1.1, 2.1)
μ1′ 1.197 0.584 0.208 0.557 0.035
μ2′ 3.0132 0.433 0.119 0.414 0.012
μ3′ 1.007 0.344 0.079 0.329 0.009
μ4′ 4.173 0.286 0.058 0.273 0.003
μ5′ 2.047 0.244 0.045 0.233 0.002
SD 5.357 0.305 0.275 0.322 0.106
CV 4.474 0.522 1.323 0.577 3.068
CS 5.869 − 0.594 1.109 − 0.508 3.843
CK 4.513 2.239 3.036 2.008 19.828
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Figure 4: �e plots of ABs for the ExEW parameters in set II.
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Figure 3: �e plots of ABs for the ExEW parameters in set I.

Table 4:�e results ofABs, RMSEs, and CP for the MLEs of ExEW
distribution for III and IV.

III IV
Parameters n ABs RMSEs CP ABs RMSEs CP

a

25 1.750 2.816 0.996 1.304 2.243 0.999
50 1.362 2.330 1.000 1.111 2.070 0.997
75 1.029 1.965 0.999 0.798 1.543 1.000
100 0.871 1.617 0.999 0.742 1.372 0.999
150 0.578 1.222 1.000 0.463 1.045 1.000
200 0.455 01.036 1.00 0.361 0.998 1.000

b

25 0.592 0.725 0.87 0.518 0.685 0.914
50 0.494 0.658 0.912 0.449 0.647 0.925
75 0.386 0.617 0.944 0.370 0.593 0.943
100 0.367 0.595 0.954 0.361 0.577 0.964
150 0.285 0.536 0.976 0.250 0.508 0.988
200 0.240 0.489 0.99 0.187 0.476 0.986

c

25 1.764 2.671 0.946 2.417 3.911 0.938
50 1.179 1.892 0.969 1.705 2.917 0.955
75 0.844 1.480 0.977 1.174 2.153 0.965
100 0.745 1.314 0.976 0.984 1.726 0.966
150 0.487 0.933 0.981 0.569 1.12 0.974
200 0.352 0.711 0.973 0.466 1.054 0.983

α

25 0.063 0.111 1.000 0.092 0.197 1.000
50 0.054 0.085 1.000 0.082 0.160 1.000
75 0.040 0.071 1.000 0.062 0.136 1.000
100 0.035 0.065 1.000 0.061 0.121 1.000
150 0.025 0.049 1.000 0.035 0.093 1.000
200 0.017 0.041 1.000 0.028 0.083 1.000
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Figure 5: �e plots of ABs for the ExEW parameters in set III.
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Figure 6: �e plots of ABs for the ExEW parameters in set IV.
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Figure 7: �e plots of RMSEs for the ExEW parameters in set I.
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Figure 8: �e plots of RMSEs for the ExEW parameters in set II.
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(5) �e pdf of BW distribution is

f(x) �
Γ(a + b)
Γ(a)Γ(b)

c

α
x

α
( )

c− 1
1 − e

−
x

α
( )

c

 

a− 1

e
− b

x

α
( )

c

.

(42)

(6) �e pdf of BEW distribution is

f(x) �
α

β(c, d)
babxb− 1e− ax

b

1 − e− α 1− e− axb( )( )
c− 1
e− α d 1− e− axb( ).

(43)

(7) �e pdf of MBW is

f(x) �
αc

β(c, d)

babxb− 1e1− ax
b

1 − e− ax
b

[ ]
c− 1

e− ax
b

[ ]
d− 1

1 − (1 − α) 1 − e− ax
b

( )( )
c+d .

(44)

(8) �e pdf of TanLL distribution is

f(x) �
π
4

(b/a)(x/a)b− 1

1 +(x/a)b( )
2





sec2

π
4

(x/a)b

1 +(x/a)b( )







 .

(45)

To specify which statistical distribution best �ts the two
data, a variety of analytical measures are applied, such as the
Bayesian information criterion (BIC), the Akaike informa-
tion criterion (AIC), consistent AIC (CAIC), and the
Hannan–Quinn information criterion (HQIC). Moreover,
goodness-of-�t measures like the log-likelihood are also
adopted.

6.1. Likelihood Ratio Tests. �e ExEW distribution has some
submodels, including theW, EE, and EW distributions. As a
result, the likelihood ratio test (LRT) is used to evaluate the
following hypotheses:

(1) H0: a � 0, and α � 1, this means that the sample
comes from the W distribution.
H1: a≠ 0, and α≠ 1, this means that the sample
comes from the ExEW distribution.

(2) H0: b � 0, this indicates that the sample size comes
from the EE distribution.
H1: b≠ 0, this indicates that the sample size comes
from the ExEW distribution.

(3) H0: α � 1, this means that the sample comes from
the EW distribution.
H1: α≠ 0, this means that the sample comes from
the ExEW distribution.

�e LRT is written as

LRT � − 2 ln
L ϕ̂∗;x( )( )

(L(ϕ̂, x))
, (47)

where ϕ̂∗ denotes the constrained MLEs for the null hy-
pothesisH0, whereas ϕ̂ denotes the unconstrained MLEs for
the alternative hypothesis H1. �e LRT follows the chi-
square distribution with degrees of freedom (df)(dfalt −
dfnull) when the null hypothesis is true.

�e null hypothesis is rejected if the p value is less than
5%.

6.2. Application to Airplane Windshield Data. �e airplane
windshield data consists of 84 observations. Ramos et al. [46]
recently studied the data set.. �e data set is reported in
Table 5, and its descriptive statistical analysis is shown in
Table 6 which indicates that the skewness coe£cient has a
positive value, the data is right skewed. Due to the kurtosis
having negative value, the data are platykurtic.

Figure 11 illustrates the TTT transform plot with a
concavity pattern, indicating that the data has an increasing
hazard rate shape. �is con�rms that the hrf in Figure 2 is
appropriate for analyzing this data.

3.0
3.5

2.5
2.0

Es
tim

at
ed

 P
ar

am
et

er
s

1.5
1.0
0.5
0.0

50 100

a = 1
b = 1

c = 1.5
α = 0.25

Plot of RMSE vs n

n
150 200

Figure 9: �e plots of RMSEs for the ExEW parameters in set III.
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Figure 10: �e plots of RMSEs for the ExEW parameters in set IV.
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�e MLEs of the parameters of the �tted models, as well
as the corresponding standard errors, are shown in Table 7.
At the 5% signi�cance level, all of the ExEW parameters are
signi�cant. �e ExEW model �ts the airplane windshield
data better than its submodels and other rival distributions.
Table 8 shows that the ExEW has the highest log-likelihood
and the lowest CAIC, HQIC, BIC, and AIC values as
compared to the other models. Although the ExEW model
provides the greatest �t to the data, the W distribution is a
suitable option since its �t values are more similar to the
ExEW model. Table 9.

Figure 12 illustrates the �tted density shapes for com-
petitive models, demonstrating that the ExEW distribution
�ts aircraft windshields better.

6.3.Application toCOVID-19FatalityRateData. �e second
set of data about the COVID-19 fatality rate from Mexico
contains 108 days, and it collected betweenMarch 4 and July
20, 2020. It is available at https://covid19.who.int. �e data
are recently studied by Almongy et al. [47]. Table 10 lists the
data observations and Table 11 shows the descriptive sta-
tistical analysis of the data. Because the skewness coe£cient
has a positive value, the data are right skewed. �e data are
platykurtic since the kurtosis is smaller than three. Figure 13
displays the TTTplot with a concavity shape, indicating that

the data have an increasing failure rate. �is demonstrates
that the ExEW distribution is appropriate for analyzing this
type of data.

Table 5: �e airplane windshield failure times data (in thousand hours).

0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 3.467, 0.309, 1.899, 2.610,
3.478, 0.557, 1.911, 2.625, 3.578, 0.943, 1.912, 2.632, 3.595, 1.070, 1.914,
2.646, 3.699, 1.124, 1.981, 2.661, 3.779, 1.248, 2.010, 2.688, 3.924, 1.281,
2.038, 2.823, 4.035, 1.281, 2.085, 2.890, 4.121, 1.303, 2.089, 2.902, 4.167,
1.432, 2.097, 2.934, 4.240, 1.480, 2.135, 2.962, 4.255, 1.505, 2.154, 2.964,
4.278, 1.506, 2.190, 3.000, 4.305, 1.568, 2.194, 3.103, 4.376, 1.615, 2.223,
3.114, 4.449, 1.619, 2.224, 3.117, 4.485, 1.652, 2.229, 3.166, 4.570, 1.652,
2.300, 3.344, 4.602, 1.757, 2.324, 3.376, 4.663

Table 6: Descriptive analysis of airplane windshield data.

μ Mid Mode Var CS CK Min Max
2.55745 2.3545 2.25 1.25177 0.09949 − 0.65232 0.04 4.663
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Figure 11: �e TTT Plot of the airplane windshield data.

Table 7: �e MLEs of the competing models with standard errors
for windshield data.

Model â b̂ ĉ α̂ d

ExEW 0.712 0.504 2.931 0.0715 —
(6.338) (5.510) (0.354) (0.637) —

W 2.375 2.863 — — —
(0.210) (0.138) — — —

EE 3.560 0.758 — — —
(0.611) (0.077) — — —

EW − 0.017 0.159 1.701 — —
(0.023) (0.041) (0.183) — —

LL 2.391 0.224 — — —
(0.137) (0.297) — — —

BW
0.271 0.783 5.911 3.770 —
(0.258) (0.784) (4.604) (1.117) —
(0.754) (401) (1.013) (0.419) —

BEW 0.262 5.182 5.208 6.212 7.063
(0.032) (1.203) (0.053) (0.054) (0.053)

MBW 0.348 11.855 0.129 4.630 4.663
(0.414) (23.226) (0.266) (4.660) (0.888)

TanLL 2.139 3.340 — — —
(0.126) (0.304) — — —

Table 8: �e analytical performance measures for comparing
distributions for windshield data.

Model AIC BIC CAIC HQIC (ℓ)
ExEW 261.310 271.033 261.816 265.218 − 126.655
W 264.107 268.968 264.255 266.061 − 130.0533
EE 283.681 288.543 283.829 285.635 − 139.841
EW 280.794 288.087 281.094 283.726 − 137.397
LL 283.163 288.024 283.311 285.117 − 139.581
BW 263.167 272.890 263.673 267.075 − 127.583
BEW 265.641 277.795 266.410 270.526 − 127.820
MBW 264.563 276.717 265.332 269.449 − 127.281
TanLL 283.89 288.752 284.038 285.844 − 139.945

Complexity 9
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Table 11: Descriptive statistics of COVID-19 fatality rate data.

μ Mid Mode Var CS CK Min Max
5.758 5.193 3 10.5893 0.98668 0.68134 1.041 16.498

Table 9: �e LRT statistic for the windshield data.

Dist. Hypothesis LRT p value
W H0: a � 0,&α � 1 vice versa H1: H0 is false 260 < 0.001
EE H0: b � 0 vice versa H1: H0 is false 253 < 0.001
EW H0: α � 1 vice versa H1: H0 is false 280 < 0.001
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Figure 12: �e �tted density shapes of the ExEW distribution and other distributions for windshield data.

Table 10: COVID-19 fatality rate data set.

8.826, 6.105, 10.383, 7.267, 13.220, 6.015, 10.855, 6.122, 10.685, 10.035, 5.242,
7.630, 14.604, 7.903, 6.327, 9.391, 14.962, 4.730, 3.215, 16.498, 11.665, 9.284,
12.878, 6.656, 3.440, 5.854, 8.813, 10.043, 7.260, 5.985, 4.424, 4.344, 5.143,
9.935, 7.840, 9.550, 6.968, 6.370, 3.537, 3.286, 10.158, 8.108, 6.697, 7.151,
6.560, 2.988, 3.336, 6.814, 8.325, 7.854, 8.551, 3.228, 3.499, 3.751, 7.486,
6.625, 6.140, 4.909, 4.661, 1.871, 2.838, 5.392, 12.042, 8.696, 6.412, 3.395,
1.815, 3.327, 5.406, 6.182, 4.949, 4.089, 3.359, 2.070, 3.298, 5.317, 5.442,
4.557, 4.292, 2.500, 6.535, 4.648, 4.697, 5.459, 4.120, 3.922, 3.219, 1.402,
2.438, 3.257, 3.632, 3.233, 3.027, 2.352, 1.205, 2.077, 3.778, 3.218, 2.926,
2.601, 2.065, 1.041, 1.800, 3.029, 2.058, 2.326, 2.506, 1.923
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Figure 13: �e TTT Plot of the COVID-19 fatality rate data.
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Table 12: MLEs of the competing models with standard errors for COVID-19 fatality rate data.

Model â b̂ ĉ α̂ d

ExEW − 2.422 2.285 1.059 1.227 —
(0.005) (0.015) (0.001) (0.020) —

W 1.897 6.521 — — —
(0.138) (0.350) — — —

EE 3.998 0.362 — — —
(0.674) (0.035) — — —

EW − 0.410 0.395 1.272 — —
(0.232) (0.206) (0.092) — —

LL 4.973 2.935 — — —
(0.288) (0.231) — — —

BW
2.531 0.158 1.544 1.698 —
(0.567) (0.017) (0.009) (0.012) —
(0.162) (2.297) (0.126) (0.122) —

BEW 4.345 8.915 2.495 0.949 33.450
(6.153) (14.228) (3.654) (0.686) (47.771)

MBW 3.323 0.451 9.698 2.038 5.103
(5.260) (0.255) (10.930) (0.950) (3.619)

TanLL 4.418 3.054 — — —
(0.258) (0.237) — — —

Table 13: �e analytical performance measures for comparing distributions for COVID-19 fatality rate data.

Model AIC BIC CAIC HQIC (ℓ)
ExEW 506.444 517.172 506.832 510.794 − 249.222
W 541.911 547.275 542.025 544.086 − 268.955
EE 536.352 541.716 536.466 538.527 − 266.176
EW 516.850 524.897 517.081 520.113 − 255.425
LL 542.164 547.527 542.279 544.339 − 269.082
BW 263.167 549.962 539.622 2543.584 − 265.617
BEW 542.686 556.096 543.274 548.123 − 266.343
MBW 539.714 553.124 540.302 545.151 − 264.857
TanLL 541.295 546.659 541.409 543.470 − 268.647

Table 14: �e LRT statistic for COVID-19 fatality rate data.

Dist Hypothesis LRT p value
W H0: a � 0,&α � 1 vs H1: H0 is false 0.920 0.631
EE H0: b � 0 vs H1: H0 is false 40.055 < 0.001
EW H0: α � 1 vs H1: H0 is false 6.479 < 0.039
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Figure 14: �e �tted density shapes of the ExEW distribution and other distributions for COVID-19 fatality rate data.
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Table 12 shows the MLEs of the parameters of the fitted
models, together with the standard errors in brackets. At the
5% significance level, all of the ExEW parameters are sig-
nificant. Table 13 provides the analytical measures of
competing distributions and shows that the ExEW provides
the best fit to the data. Table 14) shows the LRT tests for the
proposed model and its submodels.

'e fitted densities for competing models are depicted in
Figure 14, demonstrating that the ExEW distribution fits the
COVID-19 mortality rate data better.

7. Conclusion

'e mathematical and statistical properties of the ExEW are
proposed and described in this study. 'e ExEW distribu-
tion includes several known sub models as special cases.
Some mathematical features of the new model are derived.
'e ExEW parameters are estimated via the maximum
likelihood method, and the estimators’ behaviour is evalu-
ated via Monte Carlo simulations. Based on goodness-of-fit
statistics and analytical performance measurements, the
ExEW model fits two real-world data sets better than its
submodels and other typical parametric survival models. As
a consequence, we conclude that the ExEW distribution is
the most fitting model among the distributions studied and
is a good contender for modeling lifetime events.

'ere are various possible future extensions to this study.
'e presence of explanatory factors and long-term survival,
for example, is common in practice. In addition, a survival
regression model that works for both whole and incomplete
(truncation, censored) data might be useful. Hence, our
approach can be investigated more in various settings.
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