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A new class of polynomials investigates the numerical solution of the fractional pantograph delay ordinary differential equations.
*ese polynomials are equipped with an auxiliary unknown parameter a, which is obtained using the collocation and least-squares
methods. In this study, the numerical solution of the fractional pantograph delay differential equation is displayed in the truncated
series form.*e upper bound of the solution as well as the error analysis and the rate of convergence theorem are also investigated
in this study. In five examples, the numerical results of the present method have been compared with other methods. For the first
time, a-polynomials are used in this study to numerically solve delay equations, and accurate approximations have been displayed.

1. Introduction

Since the 17th century, many problems in physics, mechanics,
economics, biology, etc., have been investigated and solved by
ordinary differential equations. Ordinary differential equa-
tions are suitable models for describing processes that occur
at the moment, meaning that the process rate of change
depends only on its current state, not in its past. However,
time delays in many processes cannot be ignored. For ex-
ample, a signal needs time to reach the desired point and a
driver to react to a possible accident. Delays are also used to
describe some aspects of infectious diseases: the initial con-
tagion, drug treatment, and immunity to the disease. In
modeling the control of blood carbon dioxide levels, the time
interval of blood oxygen recovery in the lungs and the
stimulation of the chemical receptor in the brainstem are
considered as delays in the model [1]. Delayed differential
equations have been studied for more than 200 years [2]. In
the 19th century, Euler, Lagrange, and Laplace studied
delayed differential equations. In the late 1930s and early
1940s, Voltaire introduced a number of delayed differential
equations during his studies on the hunting-hunter model
and was the first to study these equations in an organized
manner.

In recent decades, fractional delay differential equations
have had an important role in engineering and natural
sciences. Applications of these equations include hydrology,
signal processing, control theory, medical sciences, net-
works, cell biology, climate models, infectious diseases,
navigation prediction, circulating blood, population dy-
namics, oncolytic virotherapy, delayed plant disease model,
the body reaction to carbon dioxide, and many others [3–6].

Pantograph differential equations are one of the types of
delay differential equations that were first created by studying
on an electric locomotive [7]. It is difficult to find an accurate
and analytical solution to this problem, so approximate and
numerical methods should be used to solve these problems.
Different numerical methods have been used to solve frac-
tional pantograph differential equations such as Hermit
wavelets method [8], spectral method [9, 10], fractional-
order Bernoulli wavelet method [11], fractional-order Bou-
baker polynomials [12], Taylor collocation method [13, 14],
Laguerre–Gauss collocation method [15], Legendre multi-
wavelet collocation method [16], two-step Runge–Kutta of
order one method [17], one–Leg θ method [18], variational
method [19], collocation method [20], generalized differ-
ential transform scheme [21], modified the predictor-cor-
rector scheme [22], and Bernoulli wavelet method [23].
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Various polynomials have been used to solve the pan-
tograph differential equations. *e authors in [24] have used
a numerical method based on Hermit polynomials to obtain
the approximate solution of the generalized pantograph
differential equations with variable coefficients. In this study,
the solution of the pantograph equation is approximated
using the collocation method and creating matrix operators.
Rabiei and Ordokhani [12] have used fractional-order
Boubaker polynomials to approximate fractional panto-
graph differential equations in any arbitrary interval. *e
properties of these polynomials have been used to construct
pantograph operational matrices and fractional integrals.
*en, by the least-squares method, a nonlinear system is
obtained, which is solved using Newton’s iterative method.
Sedaghat et al. [25] have used the shifted Chebyshev poly-
nomials and Chebyshev pantograph operator matrix and
transformed the pantograph differential equation into a
system of equations. Also, using error analysis, the number
of polynomials used in the approximation is obtained. Isah
et al. [26] have used Genocchi polynomials to approximate
the generalized fractional pantograph equations under
boundary and initial conditions. With the help of the
properties of these polynomials, the Genocchi delay operator
matrix is produced.

*en, by converting this equation into a system of
equations, the approximate solution is obtained.*e authors
in [27] chose Bernstein polynomials to solve the pantograph
differential equations numerically and also studied the
stability of the method. Using the spectral Galerkin method
and shifted Legendre polynomial properties, Al-Suyuti et al.
[28] transformed the multiorder fractional pantograph
equations into a system of linear equations and solved this
system with appropriate methods. Cakmak and Alkan [29]
have used Fibonacci polynomials and collocation method to
solve the system of nonlinear pantograph equations under
initial conditions. In this method, solving the generated
system of equations approximates the given differential
equation. Yüzbaşı et al. [30] use the residual correction of
Hermit polynomial solutions to solve the generalized pan-
tograph differential equations. Hermit polynomials solutions
are obtained by collocation method and transform the
problem into a system of equations and obtain unknown
coefficients. Javadi et al. [31] have first produced shifted
orthonormal Bernstein polynomials and integral and
delayed operator matrices of these polynomials. Using the
properties of these polynomials, they have converted the
generalized pantograph equations into a system of linear
equations and proved the stability of this method. Wang
et al. [32] has used shifted Chebyshev polynomials to solve
generalized fractional pantograph equations with variable
coefficients. By producing the generalized pantograph op-
erational matrix using the properties of these polynomials
and creating a system of equations and solving this system,
the numerical solution of the pantograph equation is ob-
tained. Akkaya et al. [33] have used first Boubaker poly-
nomials to approximate the solution of the pantograph
equations with variable coefficients. In this study, the authors
have obtained the numerical solution of differential equa-
tions by using matrix operators and converting pantograph

equations into a system of equations. Ezz–Eldien et al. [34]
have approximated the numerical solution of multiorder
fractional neutral pantograph equations with the help of
Chebyshev polynomials and spectral tau and collocation
methods. In this study, the linear and nonlinear pantograph
equations and the system of fractional multipantograph
equations have been investigated.

We consider a new method for the numerical solution of
the following fractional pantograph delay differential
equation problem:

D
α
u(x) � c(x)u(x) + 

l

r�1
dr(x)D

αr u qrx( ( , m − 1< α≤m,

u
(i)

(0) � ]i, i � 0, 1, . . . , m − 1,

(1)

where 0< qr < 1, 0≤ αr < α≤m, u is the unknown function,
and the functions c and dr are the known functions defined
in x ∈ [0, T]. Indeed, Dα is the Caputo fractional derivative
of order α.

2. Basic Concepts

*ere are many types of fractional derivatives and integrals
which are suggested by Riemann, Liouville, Riesz, Letnikov,
Grünwald, Weyl, Marchaud, and Caputo. In this study, we
will consider the fractional pantograph delay differential
equation problem in the Caputo sense.

Definition 1. *e Caputo fractional derivative of order αth,
for a function g ∈ Cm− 1[a, x] and g(m) is integrable on
[a, x], is written as follows:

D
α
(g) �

1
Γ(m − α)


x

a

g
(m)

(ξ)

(x − ξ)
α+1−m

dξ, (2)

where Γ is Euler’s Gamma function (or Euler’s integral of the
second kind) and m − 1< α≤m, m ∈ Z+.

Definition 2. *e Riemann–Liouville fractional integral of
order αth is defined as follows:

J
α
xg(x) �

1
Γ(α)


x

a
(x − ξ)

α− 1
g(ξ)dξ. (3)

For α, β> 0, we know that

J
α
x D

α
u(x)(  � u(x) − 

m−1

i�0
u

(i)
(0)

x
i

i!
,m −1<α≤m, x>0,

J
α
x D

β
u(x)  � J

α−β
x u(x)

− 

⌈β⌉−1

i�0
u

(i)
(0)

x
i+α−β

Γ(i +α−β+1)
,0<β<α,

D
α
(u(qx)) � q

α
D

α
u(qx),α>0, q≠0.

(4)

As we know, using the polynomials is very useful for
finding the solutions to the differential equation problems,
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especially in engineering applications. It is due to the simple
application of them. Recently, a new class of polynomials
equipped with an auxiliary parameter has been introduced
by the first author in [35] and some applications of it have
been shown in [36–39]. *is class is introduced as follows.

Definition 3 (see [35]). *e a-polynomial functions is de-
fined as follows:

A0(x) � 1,

An(x) � axUn−1(x) + Un(x),

n≥ 1,

(5)

where Un(.) is the second kind of Chebyshev polynomial
and a is an auxiliary real parameter.

*e following equations are also established as follows:

An+1(x) � 2xAn(x) − An−1(x), n≥ 1,

An(x) � 1 +
a

2
 Un(x) +

a

2
Un−2(x), n≥ 2.

(6)

See [35–37], for more properties.

3. The Implementation and Error Analysis

In this method, the solution of (1) is approximated by the
following truncated series form:

u(x) ≈ uN(x) � 

N

k�0
ckAk(x), (7)

where ck are the unknown coefficients. *e collocation
points of the present method on the interval [0, T] are
defined as xj � jh such that h � (T/N). *erefore, the
unknown coefficients ck and the unknown auxiliary pa-
rameter, a, are obtained by using the collocation method on
(1) and hence solving the following nonlinear system of
equations:

Res xj  � D
α
u xj  − c xj u xj 

− 
l

r�1
dr xj D

αr u qrxj  � 0,
(8)

for j � 0, 1, . . . , N. Above residual and initial conditions
produce a nonlinear system of equations. To solve this
nonlinear system of equations, we used the Mathematica
software version 12.0 and the FindMinimum command.

Now, we want to specify a bound for norm solution u(x)

using Gronwall’s inequality. Consider the fractional pan-
tograph delay differential (1); by integration by Jαx of the two
sides of (1) and using properties (4), (5), and (6), we will have

u(x) � J
α
x(c(x)u(x)) + 

l

r�1

1
q
αr

r

J
α−αr

x dr(x)( u qrx( 

+ J
α
xf(x) − F(x),

(9)

where

F(x) � 
m−1

i�0
u

(i)
(0)

x
i

i!
+ 

l

r�1

1
q
αr

r



⌈αr⌉−1

i�0

dr(x)u qrx( ( 
(i)

(0)
qrx( 

i+α− αr

Γ i + α − αr + 1( 
.

(10)

Now, we calculate the absolute value (10):

|u(x)|≤ |C| 
x

a
|u(s)|ds+ 

l

r�1

Dr




q
αr

r


x

a
u qrs( 


ds +|G(x)|,

(11)

where

|C| � Max
0≤x≤T

c(x)(b − x)
α− 1

Γ(α)




,

Dr


 � Max

0≤x≤T

dr(x)(b − x)
α− αr− 1

Γ α − αr( 




,

|G(x)| � J
α
xf(x) − F(x)


.

(12)

With a simple change of variables, we have

|u(x)|≤ |C| 
x

a
|u(s)|ds+ 

l

r�1

Dr




q
1+αr

r


qrx

qra
|u(s)|ds +|G(x)|.

(13)

According to 0< qr < 1, we have

|u(x)|≤ |C| 
x

a
|u(s)|ds+ 

l

r�1

Dr




q
1+αr

r


x

a
|u(s)|ds +|G(x)|.

(14)

So, from the above inequality, we have

‖u(x)‖≤ ‖G(x)‖ +|C| 
x

a
‖u(s)‖ds+ 

l

r�1

Dr




q
1+αr

r


x

a
‖u(s)‖ds,

(15)

and hence, Gronwall’s inequality [40] concludes that

‖u(x)‖≤ ‖G(x)‖e
|C|+

l

r�1
Dr| |/q

1+αr
r(  x

.
(16)

3.1. *e Rate of Convergence *eorem. In this section, we
want to analyze the convergence rate of the present method.
For this purpose, first, we express the rate of convergence of
Chebyshev polynomials of the second kind.

Theorem 1 (see [41]). Suppose g(x) � 
∞
k�0 dkUk(x) is a

continuous function of bounded variation on [−1, 1], that
Uk(x) 

∞
k�0 are Chebyshev polynomials of the second kind,

and Vx
−1(g) is total variation of g on [−1, 1] that satisfies the

following Lipschitz condition:

V
x
−1(g) − V

y
−1(g)


≤ σ|x − y|, σ ∈ (0, 1). (17)
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*en, we have, for x ∈ (−1, 1) and n≥ 3,

g(x) − gn(x)


 � O
1

n
σ 1 − x

2
 

(3/2)− σ
⎛⎜⎝ ⎞⎟⎠, (18)

where gn(x) � 
n
k�0 dkUk(x).

Theorem 2. If g(x) � 
∞
k�0 dkAk(x) satisfies the conditions

of *eorem 1, then we have, for x ∈ (−1, 1) and n≥ 3,

g(x) − gn(x)


≤ 2aO
1

(n − 2)
σ 1 − x

2
 

(3/2)− σ
⎛⎜⎝ ⎞⎟⎠, (19)

for some real constant a.

Proof. According to (8) and *eorem 1, we have

g(x) − gn(x)


 � 

∞

k�n+1
dkAk(x)





� 1 +
a

2
  

∞

k�n+1
dkUk(x) +

a

2


∞

k�n+1
dkUk−2(x)





≤ 2a 
∞

k�n+1
dkUk−2(x)





� 2aO
1

(n − 2)
σ 1 − x

2
 

(3/2)− σ
⎛⎜⎝ ⎞⎟⎠,

(20)

where a � max |1 + (a/2)|, |(a/2)|{ }. □

Theorem 3. If u(x) is the exact solution to the fractional
pantograph delay differential equation (1) and satisfies the
conditions of *eorem 2, then we have, for x ∈ (−1, 1) and
n≥ 3,

En(x) � u(x) − un(x)


≤ 2aO
1

(n − 2)
σ 1 − x

2
 

(3/2)− σ
⎛⎜⎝ ⎞⎟⎠,

(21)

for some real constant a.

Proof. According to (10), for the numerical solution of
equation (1), we have

un(x) � J
α
x c(x)un(x)(  + 

l

r�1

1
q
αr

r

J
α−αr

x dr(x)( un qrx( 

+ J
α
xf(x) − F(x).

(22)

Subtracting (12) from (10) gives

u(x) − un(x)


≤ J
α
x(c(x)u(x)) − J

α
x c(x)un(x)( 




+ 
l

r�1

1
q
αr

r

J
α−αr

x dr(x)u qrx( (  − J
α−αr

x dr(x)( un qrx( 


.

(23)

Using *eorem 2, we have

J
α
x(c(x)u(x)) − J

α
x c(x)un(x)( 


≤ 2aO

1

(n − 2)
σ 1 − x

2
 

(3/2)− σ
⎛⎜⎝ ⎞⎟⎠,



l

r�1

1
q
αr

r

J
α−αr

x dr(x)u qrx( (  − J
α−αr

x dr(x)( un qrx( 


≤

2aO
1

(n − 2)
σ 1 − x

2
 

(3/2)− σ
⎛⎜⎝ ⎞⎟⎠.

(24)
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As a result,

En(x) � u(x) − un(x)




≤ 2aO
1

(n − 2)
σ 1 − x

2
 

(3/2)− σ
⎛⎜⎝ ⎞⎟⎠.

(25)

Since the exact solution of (1) is often unknown for
noninteger values α, the following error can help us to get a
more accurate numerical solution:

E(x) � D
α
u(x) − c(x)u(x) − 

l

r�1
dr(x)D

αr u qrx( ( 




. (26)

□

4. Numerical Examples

In this section, we show the advantage and high accuracy of
the present method by presenting and analyzing five ex-
amples. Let N be the number of collocation points, we use
maximum absolute error εN � Maxx∈[0,T]|uN(x) − u(x)| to
verify and validate the results where the following example
codes are written by Mathematics software version 12.0.

4.1. Example 1. Assume the linear fractional pantograph
delay differential equation problem (1) is as follows:

D
α
u(x) �

3
4

u(x) + u
x

2
  + f(x), 1< α≤ 2,

u(0) � u′(0) � 0,

(27)

where z(x) � x2 is the exact solution and the function f is
obtained by the exact solution at α � 2.

*e error obtained from the present method is compared
with the fractional-order Boubaker polynomials method
[12] in Table 1. In continuation, the fractional-order Ber-
noulli wavelet method [11] and the present method are
compared in Table 2. By observing these tables, the high
accuracy of the present method is confirmed in comparison
with the other two methods. In Figures 1 and 2, graphs of
numerical and exact solutions are plotted for different values
α and at T � 1, N � 15, a � −3.23987 × 10− 8, and at T � 5,
N � 20, a � 0.13461, respectively. In these figures, it can be
seen that as the value of α to 2 approaches, the approximate
solutions converge to the exact solution.

4.2. Example 2. Assume the neutral fractional pantograph
delay differential equation problem (1) is as follows:

D
α
u(x) � −u(x) + 0.1u

4x

5
 

+ 0.5D
α
u

4x

5
  + f(x), 0< α≤ 1,

u(0) � 0,

(28)

where u(x) � xe− x is the exact solution and the functionf is
obtained as before at α � 1.

In Table 3, the results of this method are compared with
the following methods. Two-step Runge–Kutta of order one
method [17], one-leg θ method (h � 0.01, θ � 0.8) [18],
variational iteration method (m� 6) [19], fractional-order
Boubaker polynomials method (m � 6) [12], Bernoulli
wavelets method (k � 2, M � 6) [23], spectral method based
on modification of the hat functions (n � 64) [10], Taylor
wavelets method (k � 2, M � 6) [14], and fractional-order
Bernoulli wavelet method (k � 2, M � 6) [11].

*e results of this table show the tangible advantage of
the proposed method in comparison with other methods. In
Table 4, by increasing the number of collocation points, the
maximum error decreases, which also confirms the con-
vergence theorem. In Figure 3, numerical solutions converge

Table 1: *e absolute errors in example 1 at T � 1, α � 2, and
a � −3.23987 × 10− 8.

x [12] Our method (N � 15)

0 7.20e-18 5.81699e-18
0.2 1.60e-17 2.34981e-18
0.4 4.27e-17 4.31820e-19
0.6 8.71e-17 5.32169e-17
0.8 1.49e-16 4.07432e-17
1 2.29e-16 8.26400e-17

Table 2: *e absolute errors in example 1 at T � 2, α � 2, and
a � 1.11350 × 10− 9.

x [11] Our method (N � 10)

0 2.71e-17 5.80358e-19
0.4 2.78e-17 2.40380e-17
0.8 0 1.78719e-16
1.2 2.22e-16 3.69657e-16
1.6 3.10e-15 1.58153e-16
2 5.33e-15 3.64813e-16

2.0

1.5

1.0

0.5

0.0 0.2 0.4 0.6 0.8 1.0

u

x

α = 1.2
α = 1.4
α = 1.6

α = 1.8
α = 2
Exact

Figure 1: Graphs of numerical and exact solution at different
values of α for example 1 at T � 1, N � 15, and
a � −3.23987 × 10− 8.
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to the exact solution of the problem as the value of α to 1
approaches.

4.3. Example 3. Assume the nonlinear fractional pantograph
delay differential equation problem (1) is as follows:

D
α
u(x) � 1 − 2u

2 x

2
 , 1< α≤ 2,

u(0) � 1, u′(0) � 0,

(29)

where u(x) � cos(x) is the exact solution at α � 2. In
Table 5, the results of the proposed method are compared to
the following methods: fractional-order Boubaker polyno-
mials method (m � 6) [12], Bernoulli wavelet method (k �

2, M � 3) [11], spectral method (n � 40) [10], Bernoulli
wavelets method (k � 2, M � 9) [23], and Taylor wavelets
method (k � 2, M � 9) [14].

*is table displays the high accuracy and efficiency of the
present method compared to other methods. In Table 6, by

increasing the number of collocation points, the maximum
error decreases, which confirms the convergence theorem.
In Figure 4, the graphs of numerical and exact solutions of
the problem are plotted in different values of α at T � 2,
N � 15, and a � 0.63078. It can be observed that, as the value
of α to 2 approaches, numerical solutions converge to the
exact solution. Also, in this figure, the absolute error graph is
plotted in α � 2.

40

30

20

10

1 2 3 4 5

u

x

α = 1.3
α = 1.5
α = 1.7

α = 1.9
α = 2
Exact

Figure 2: Graphs of numerical and exact solution at different values of α for example 1 at T � 5, N � 20, and a � 0.13461.

Table 3: *e absolute errors in example 2 at T � 1, α � 1, and a � 3.8274 × 10− 8.

x [17] [18] [19] [12] [23] [10] [14] [11] Our method (N � 15)

0.1 8.68e-04 4.65e-03 1.30e-03 3.80e-05 1.98e-08 4.69e-07 9.76e-09 1.98e-08 1.47764e-16
0.3 1.90e-03 2.57e-02 2.63e-03 2.81e-05 7.78e-09 5.39e-07 5.67e-09 7.78e-09 1.07469e-16
0.5 2.28e-03 4.43e-02 2.83e-03 2.79e-06 6.34e-05 1.15e-07 7.75e-09 6.34e-05 5.12793e-17
0.7 2.27e-03 5.37e-02 2.39e-03 2.39e-05 4.36e-05 2.27e-07 6.91e-09 4.36e-05 6.41964e-17
0.9 2.03e-03 6.35e-02 1.64e-03 3.52e-05 2.80e-05 3.37e-07 5.57e-09 2.80e-05 1.12318e-16

Table 4: Results of εN error of u(x) in example 2 at different values
N at T � 1, α � 1, and a � 3.8274 × 10− 8.

N εN

5 1.65537e-05
10 1.60136e-12
15 4.44089e-16

0.4

0.3

0.2

0.1

2 4 6 8 10

u

x

α = 0.3
α = 0.5
α = 0.7

α = 0.9
α = 1
Exact

Figure 3: Graphs of numerical and exact solution at different
values of α for example 2 at T � 10, N � 30, and a � 1694.22.
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4.4. Example 4. Assume the neutral fractional delay differ-
ential equation problem (1) is as follows:

D
α
u(x) � cu(x) + du(τx) + f(x), 0< α≤ 1, 0≤x≤ 1,

u(0) � 0,

(30)

where 0< τ < 1, arbitrary c, d ∈ R, u(x) � sin(x) is the exact
solution, and the function f is obtained as before at α � 1. In
Table 7, the results of the proposed method are compared to
the following methods: fractional-order Boubaker polyno-
mials method (m � 7) [12], spectral method (n � 40) [10],
Bernoulli wavelets method (k � 2, M � 6) [23], and Taylor
wavelets method (k � 2, M � 8) [14].

In Table 8, the maximum error results of the proposed
method are compared with discontinuous Galerkin method
[42], Taylor wavelets method [14], and Bernoulli wavelets
method [23]. In this table, the results of maximum error
decrease by increasing the number of collocation points.
Observing these two tables shows the high accuracy of the
present method compared to other methods. In Figure 5, the

graphs of numerical and exact solutions of the problem are
plotted in different values of α at c � −1, d � τ � 0.5, T � 1,
N � 15, and a � 4.77550. It can be observed that, as the value
of α to 1 approaches, numerical solutions converge to the
exact solution. Also, in this figure, the absolute error graph is
plotted in α � 1.

4.5. Example 5. Assume the fractional pantograph delay
differential equation problem (1) is as follows:

D
α
u(x) � −u(x) + 0.1u

x

5
  + f(x), 0< α≤ 1,

u(0) � 1,

(31)

where u(x) � e− x is the exact solution and the function f is
obtained by the exact solution at α � 1. In Table 9, the results
of this method are reported in comparison with the fol-
lowing methods: collocation method [20], fractional-order
Boubaker polynomials method (m � 5) [12], Bernoulli
wavelets method (k � 2, M � 5) [23], and spectral method

Table 5: *e absolute errors in example 3 at T � 1, α � 2, and a � 0.53837.

x [12] [23] [10] [14] [11] Our method (N � 15)

0 2.50e-08 1.62e-11 0 0 5.78e-11 0
0.2 8.45e-09 3.30e-13 6.13e-10 3.12e-16 6.25e-11 0
0.4 7.60e-09 4.17e-12 2.41e-09 5.69e-16 4.90e-11 3.33067e-16
0.6 8.20e-09 1.08e-08 5.29e-09 1.11e-15 3.01e-11 1.11022e-16
0.8 9.72e-09 1.62e-08 9.05e-09 1.89e-15 2.62e-07 1.11022e-16
1 3.28e-08 — — — 3.46e-07 2.22045e-16

Table 6: Results of εN error of u(x) in example 3 at different values N at T � 2, α � 2, and a � 0.63078.

N εN

5 2.70962e-03
10 3.36929e-08
15 2.52741e-15

1.0

0.8

0.6

0.4

0.2

–0.2

–0.4

0.5 1.0 1.5 2.0

u

x

α = 1.3
α = 1.5
α = 1.7

α = 1.9
α = 2
Exact

(a)

Er
ro

r

x

2. × 10–15

1.5 × 10–15

1. × 10–15

.5 × 10–15

0.5 1.0 1.5 2.0

2.5 × 10–15

(b)

Figure 4: Graphs of numerical and exact solution at different values of α (a) and graphs of absolute error at α � 2 (b), for example 3, atT � 2,
N � 15, and a � 0.63078.
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(n � 64) [10]. *is table displays the high accuracy and
efficiency of the present method compared to other
methods. In Table 10, the maximum error decreases by
increasing the number of collocation points. In Figure 6, the
graphs of numerical and exact solutions of the problem are
plotted in different values of α at T � 1, N � 15, and
a � 3.69727 × 10− 8. It can be observed that, as the value of α

Table 7: *e absolute errors in example 4 at c � −1, d � τ � 0.5, T � 1, α � 1, and a � 4.77550.

x [12] [23] [10] [14] Our method (N � 15)

0 7.03e-08 5.93e-09 0 0 2.65201e-21
0.2 1.07e-08 2.27e-10 1.97e-10 3.42e-13 2.77550e-17
0.4 5.49e-09 1.22e-09 5.36e-11 3.41e-13 0
0.6 6.00e-09 5.57e-06 3.29e-10 9.17e-13 0
0.8 1.45e-08 4.56e-06 9.01e-10 8.07e-13 1.11022e-16
1 — — — — 0

Table 8: *e absolute errors in example 4 at c � −1, d � τ � 0.5, T � 1, α � 1, and a � 4.77550.

[42] [23] [14] Our method
N� 64 k � 2, M � 6 k � 2, M � 6 N � 5 N � 10 N � 15

*e maximum error 2.1429e-05 6.1725e-06 2.3022e-09 1.41173e-06 1.39125e-13 2.22045e-16

0.8

0.6

0.4

0.2

u

x
0.2 0.4 0.6 0.8 1.0

α = 0.3
α = 0.5
α = 0.7

α = 0.9
α = 1
Exact

(a)

Er
ro

r

x

2. × 10–16

1.5 × 10–16

1. × 10–16

.5 × 10–16

0.2 0.4 0.6 0.8 1.0

(b)

Figure 5: Graphs of numerical and exact solution at different values of α (a) and graphs of absolute error at α � 1 (b), for example 4, at
c � −1, d � τ � 0.5, T � 1, N � 15, and a � 4.77550.

Table 9: *e absolute error in example 5 at c � −1, d � τ � 0.5T � 1, α � 1, and a � 3.69727 × 10− 8.

x [20] [12] [23] [10] Our method (N � 15)

2− 2 1.08e-05 1.11e-08 1.19e-08 1.18e-09 2.22045e-16
2− 3 3.81e-05 2.38e-08 8.70e-08 5.39e-10 1.11022e-16
2− 4 1.26e-05 1.07e-08 3.32e-07 1.17e-09 2.22045e-16
2− 5 4.09e-05 2.56e-08 1.52e-07 5.34e-10 2.22045e-16
2− 6 1.20e-05 2.72e-08 1.97e-07 2.27e-09 0

Table 10: Results of εN error of u(x) in example 5 at different
values N at T � 1, α � 1, and a � 3.69727 × 10− 8.

N εN

5 1.05718e-06
10 1.11910e-13
15 4.44089e-16
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to 1 approaches, numerical solutions converge to the exact
solution. Also, in this figure, the absolute error graph is
plotted in α � 1.

5. Conclusion

As you can see in this study, the present method has more
accurate results than the other method. A much smaller
number of collocation points are used in the present method.
*e maximum absolute error in this method is much less
than the other method. As shown in this study, the con-
vergence of the present method is guaranteed. *is method
is easily implemented to solve the linear and nonlinear
fractional pantograph delay differential equations. *e
simplicity of using a-polynomials in fractional derivatives
can be one of the advantage points of the present method,
which creates less complexity to solve. In future studies, the
use of these a-polynomials to numerically solve the frac-
tional nonlinear multipantograph and partial delay differ-
ential equations will be analyzed. According to the accurate
results obtained from these polynomials in this study, we
hope to observe the same accuracy in our future studies [43].
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[33] T. Akkaya, S. Yalçinbaş, and M. Sezer, “Numeric solutions for
the pantograph type delay differential equation using first
Boubaker polynomials,” Applied Mathematics and Compu-
tation, vol. 219, no. 17, pp. 9484–9492, 2013.

[34] S. S. Ezz–Eldien, Y. Wang, M. A. Abdelkawy, M. A. Zaky,
A. A. Aldraiweesh, and J. T. Machado, “Chebyshev spectral
methods for multi-order fractional neutral pantograph
equations,” Nonlinear Dynamics, vol. 100, no. 4,
pp. 3785–3797, 2020.

[35] S. Abbasbandy, “A new class of polynomial functions
equipped with a parameter,” *e Mathematical Scientist,
vol. 11, no. 2, pp. 127–130, 2017.

[36] J. Hajishafieiha and S. Abbasbandy, “A new method based on
polynomials equipped with a parameter to solve two parabolic
inverse problems with a nonlocal boundary condition,” In-
verse Problems in Science and Engineering, vol. 28, no. 5,
pp. 739–753, 2019.

[37] J. Hajishafieiha and S. Abbasbandy, “A new class of poly-
nomial functions for approximate solution of generalized
Benjamin-Bona-Mahony-Burgers (gBBMB) equations,” Ap-
plied Mathematics and Computation, vol. 367, Article ID
124765, 2020.

[38] S. Abbasbandy and J. Hajishafieiha, “Numerical solution to
the Falkner–Skan equation: a novel numerical approach
through the new rational a–polynomials,” Applied Mathe-
matics and Mechanics, vol. 42, no. 10, pp. 1449–1460, 2021.

[39] S. Abbasbandy and J. Hajishafieiha, “Numerical solution of
the time–space fractional diffusion equation with Caputo
derivative in time by a–polynomial method, Applications and
Applied Mathematics,” International Journal, vol. 16, no. 2,
pp. 881–893, 2021.

[40] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang,
Spectral Methods: Fundamentals in Single Domains, Springer
Science & Business Media, 2007.

[41] K. Al, “–Khaled, on the Rate of convergence for the Chebyshev
series,” Missouri Journal of Mathematical Sciences, vol. 14,
no. 1, pp. 4–10, 2002.

[42] H. Brunner, Q. Huang, and H. Xie, “Discontinuous Galerkin
methods for delay differential equations of pantograph type,”
SIAM Journal on Numerical Analysis, vol. 48, no. 5,
pp. 1944–1967, 2010.

[43] G. W. Hanson and A. B. Yakovlev, Operator *eory for
Electromagnetics, Springer-Verlag, New York, 2002.

10 Complexity


