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(LMFDNMSB), Institut de Mathématiques et de Sciences Physiques (IMSP), Porto-Novo, Benin

Correspondence should be addressed to Vincent Adjimon Monwanou; vincent.monwanou@imsp-uac.org

Received 8 May 2022; Accepted 29 August 2022; Published 19 September 2022

Academic Editor: Saleh Mobayen
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*is article deals with the control of chaos on the convective motion in a ferrofluid filled in a rotating porous medium and under
the helical force effect. We performed a truncated expansion of Galerkin and found the Lorenz-type model which described the
system. *e dynamical system is characterized using appropriate and subsequent criteria. We noticed that the system presents
regular and chaotic behaviors according to the parameters at present. A considerable reduction of the chaotic domain is noticed
with the increase of the intensity of the helical force and of the Darcy number, thus making it possible to delay the heat transfer in
the system. *e increase in the viscosity ratio and the Taylor number widen the chaotic domain leading to an acceleration of the
heat transfer in the system.

1. Introduction

Since its discovery in the 20th century, chaos has been one of
the most interesting for dynamic systems in areas such as
physics, mathematics, chemistry, biochemistry, economics
and finance, epidemiology, and engineering. [1–6].
Depending on the field of study, chaos is sometimes useful or
undesirable to the point where many researchers are in-
terested in its prediction and/or control. For example, in
communications engineering, chaos allows to encode in-
formation or to encrypt images (synchronization and/or
antisynchronization of chaotic systems) [7]. In the con-
struction engineering of large infrastructures (the case of
bridges for example), chaos is to be avoided. Naturally and
this in almost all domains, the dynamic systems encountered
are nonlinear. But the most important factors favoring chaos
are nonlinearity and sensitivity to initial conditions, so
nonlinear dynamic systems have a strong chance to develop
chaotic behaviors followed by strong instabilities. Due to the
complexity of these nonlinear dynamic systems, analytically
process and finding exact solutions are often difficult. For

this reason, several approximate analytical methods and
numerical simulations are used.

*e theory of ferrofluids has attracted attention of many
researchers since their appearance, because their applica-
tions are numerous in various fields. Ferrofluids are also
called magnetic fluids. *ey are composed of colloidal
suspensions of nanosized ferromagnetic particles stably
dispersed in organic or nonorganic carrier fluids which can
be water, kerosene, and hydrocarbon. Due to their use in a
variety of engineering applications, commercial production
has been of a large quantity. Also, the heat transfer with
magnetic fluids as the support has been one of the leading
area of scientific study due to its technological applications.

Chaotic convection in fluid layer is very interesting due
to its relevance in a wide range of industrial applications. In a
three-dimensional phase space, chaos was obtained for the
Lorenz system [8] arising from the truncation of the classical
Rayleigh–Bénard convection model. In a fluid layer, chaotic
behavior can be actually advantageous in various industrial
applications such as the production of crystals, oil reservoir
modeling, and catalytic packed bed filtration.
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*e study of chaos can generally be carried out in various
fields of physics. For example, a complete analytical study on
the bifurcations and chaotic phenomena raised in certain
second-order, nonautonomous, dissipative chaotic systems
is reported by the author of [9].

Singh et al. [10] studied feedback control of chaotic
convection in a porous medium under gravity modulation.
*ey obtained a nonautonomous system with three differ-
ential equations by employing the truncated Galerkin ex-
pansion method in the modulated momentum and energy
equations. *e control with the Rayleigh number demon-
strates either periodic or chaotic behavior of the system. *e
influence of the modulated amplitude is also found to ad-
vance the chaotic nature of the system whereas the feedback
control and frequency of modulation parameters delay the
chaotic behavior.

Control of chaos in a thermal convection loop by state
space linearization has been investigated by Rana et al. [11].
A laminar flow has been obtained from a chaotic flow of the
thermal convection loop by applying a technique state space
linearization converting the nonlinear system into the linear
system through a coordinate transformation, based on the
concept of Lie brackets.

Ahmed et al. [12] studied natural convection flows of an
incompressible Newtonian fluid filled in a circular cylinder
and described the heat transfer process by a generalized
fractional constitutive equation for the thermal flux-tem-
perature gradient. *ey obtained the analytical solutions to
the fluid temperature, thermal flux, fluid velocity, and
volume flow rate using Laplace transform and finite Hankel
transform.

Izadi et al. [13] treated computational analysis of thermal
gravitational convection within a porous chamber under the
impact of tilted periodic magnetic force and used Galerkin
finite element method to resolve governing equations found
from the study. *ey then have examined the impacts of the
Darcy number, Hartmann number, Rayleigh number, pe-
riodicity of the magnetic field, magnetic field inclination
angle, thermal conductivity ratio, and medium porosity on
flow and thermal patterns. *e study pointed out that pa-
rameters of the periodic magnetic field have the non-
monotonic influence of the heat transfer performance.

Convective chaos in fluids has received particular at-
tention in recent years. Many works of chaotic convection
have been done before with various additional effects in a
different type of fluid due to its importance. Indeed, it makes
it possible to highlight heat exchanges for large applications
in the laboratory and in engineering. *e case of magnetic
fluid, due to its technological applications, has attracted the
attention of several researchers. *e chaos control on
convection in fluids was carried out with the use of different
types of fluid from simple fluid to magnetic one and in
porous and nonporous media [14–23].

Laroze et al. [24] studied before theoretically and nu-
merically the thermal convection in a magnetic suspension
and modeled magnetic properties as those of electrically
nonconducting superparamagnets by performing a trun-
cated Galerkin expansion. Based on bifurcation diagrams,
and Lyapunov exponents, they found that the system

exhibits multiple transitions according to the parameters at
present.*e convection dynamics was studied in viscoelastic
fluid in a porous medium [16] where the authors applied
truncated expansion of Galerkin and obtained a generalized
four-dimensional Lorenz system. Using the appropriate
bifurcation curves and their corresponding Lyapunov ex-
ponents, they characterized the nonlinear dynamics of the
system and found within a range of moderate and high
Rayleigh numbers the proportional controller gain to en-
hance the stabilization and destabilization effects on the
thermal convection. *e system also exhibits remarkable
topological structures.

Chaotic convection was carried out in a viscoelastic fluid
with various technics and considerations as well as the
stability analysis and has given very varied and very inter-
esting results [25–37].

In a convective system, the pseudo-vector nature force
responsible for helical turbulence is helical force. Hounve-
nou and Monwanou [19], in a recent work, studied the
action of this force on chaotic convection in a magnetic fluid
and come to the conclusion that this force reduces the
chaotic domain.

Summarizing the literature, it comes that only the effect
of rotation has been studied on the chaotic convection of a
magnetic fluid in one case, then only the effect of porosity in
another case. *e combined effect of the three effects on the
chaotic convection of a magnetic fluid has not been studied
because of the difficulties that this could cause. Overcoming
all these difficulties would therefore be a major scientific
challenge. So, in our work, we have decided to study the
effect of this pseudo-vector type force on the chaotic con-
vection in a rotating porous medium filled by a magnetic
fluid. *is study can reveal useful behaviors for its appli-
cation in the field of technology and engineering.

We derive a set of nonlinear differential equations for the
magnitudes of flow rate, temperature, magnetic particle
concentration, and magnetic potential using a truncated
Galerkin expansion.*e dynamic behavior of the system has
been characterized by plotting bifurcation diagrams, Lya-
punov exponents, and phase diagrams which show chaotic
and periodic behaviors.

*e paper is organized as follows: in section 2, the basic
equations for the convection in a rotating porous medium
filled by a magnetic fluid and subject to the helical force are
presented. Section 3 deals with the deriving of Lorenz-type
equations using a truncated expansion of Galerkin. In
section 4, the analysis of the stability of the solutions is made.
Numerical simulations are performed, and the results are
explained and discussed concerning the chaotic behavior in
section 5. Finally, a conclusion is presented in the last
section.

2. Basic Equations

We consider a porous rotating horizontal layer of thickness
d of incompressible binary magnetic fluid subject to the
effect of helical force. *e configuration of the problem is
illustrated in Figure 1.
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With the Boussinesq approximation, the equations de-
scribing the evolution of the binary ferrofluid under effect of
helical force within the rotating porous medium in di-
mensionless form are written [38, 39] as

∇ · u � 0, (1)

ε− 1
P

− 1
zt + ε− 1

(u.∇) u � − ∇Peff + Λ∇2u + RaΣ + sf

+ Ta1/2 u∧ez(  − Da− 1u,

(2)

dt θ − M4zzϕ(  � 1 − M4( w + ∇2θ

+ F∇2 C − M2zzϕ( ,
(3)

dtC � L∇2 C + θ − M2zzϕ( , (4)

z
2
z + M3∇

2
⊥ ϕ � zz θ − ψmC( , (5)

∇2ϕext
� 0, (6)

where u, θ, ϕ  are, respectively, the dimensionless pertur-
bations of velocity, temperature, magnetic particle con-
centration, and magnetic potential.

dtf � ztf + u · ∇f is the particular derivative. Peff is the
effective pressure. Also, Σ � Π1(θ, C, ϕ)z − M1(θ − ψmC)∇

(zzϕ) with Π1(θ, C, ϕ) � (1 + M1)θ − (ψ + M1ψm)C and
∇2⊥ � z2x + z2y.

*e following dimensionless numbers appear in the
equations (1)–(5):

Rayleigh number: Ra � αTρogβd4/κμ
Prandtl number: P � μ/ρoκ,

Darcy number: Da � kp/d2,

Brinkman number: Λ � μe/μ,

Intensity s of the helical force f: s � aϖε− 1d2/μ.
Magnetic numbers are as follows:

M1 �
βχ2TH

2
o

ρogαT(1 + χ) 
,

M2 �
DχcχTH

2
o

ρoDT(1 + χ) 
,

M3 �
1 + χo + χHH

2
o 

(1 + χ)
,

M4 �
χTH

2
oTo

CH(1 + χ)
,

M5 �
αHχTH

2
o

αT(1 + χ)
,

(7)

and ψm � − χcDs/χTDc.

Lewis number: L � Dc/κ,

Separation report: ψ � ρoDTαc/αT
DcH, Dufour number:

F � D
2
T/ Dκ.

And, Taylor number: Ta � (2ρoε− 1ϖd2/μ)2 with Dc �
DcH/ρ2o and Ds � DT/ρo.

*e magnetic numbers used have the following orders of
magnitude: M1 � 10− 4 − 10, M3≃1.1, M4≃M5≃10− 6[24].

*e values of the numbers M4, M5, and F are very small.
*is is why they will be neglected in the following
calculations.

We express the velocity field as (the analysis is limited to
a flow in dimension 2):

u � − zzΨ, 0, zxΨ . Eliminating the pressure and the
vorticity in equations (2)–(5), we obtain

ε− 1
P

− 1
zt − Λ∇2+ + Da

− 1
 

2
∇2+ − s

2
z
2
x − z

2
z z

2
z + Taz

2
z + Ta

1/2
s z

3
z − z

2
x − z

2
z zz  zzΨ

� Ra ε− 1
P

− 1
zt − Λ∇2+ + Da

− 1
 z

2
xΞ,

(8)

dtθ � zxΨ + ∇2+θ, (9)

dtC � L∇2+ C + θ − M2zzϕ( , (10)

z
2
z + M3z

2
x ϕ � zz θ − ψmC( , (11)

dtf � ztf + zxΨ  zzf  − zzΨ  zxf , (12)

H

∆T

g

z

d

x
T = T0 + ∆T

T = T0

Figure 1: Problem configuration.
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Ξ � (1 + M1)θ − (ψ + M1ψm)C � M1zzϕ and.
∇2+f � z2xf + z2zf.

We impose ideal boundary conditions
θ � C � Ψ � z2zΨ � zzϕ � 0 at z � (0, 1) for temperature,
magnetic particle concentration, and scalar magnetic po-
tential stream function in order to solve equations (8)–(11)
using the Galerkin method.

3. Galerkin Truncated Extension

We will restrict ourselves to the fundamental mode for the
numerical simulations in the lateral direction since we consider
a large container. In the z-direction across the layer, a mul-
timode description will be used where necessary. Higher
harmonics describe deviations of the variables from the linear
regime [24]. According to the boundary conditions, we can
represent the stream function, the temperature, and the con-
centration of the magnetic particles and the magnetic potential
on the form below in order to obtain the solution of (8)–(11):

kΨ(t, z, x) � a1(t)sin(πz)sin(kx), (13)

θ(t, z, x) � a2(t)sin(πz)cos(kx) + a3(t)sin(2πz), (14)

C(t, z, x) � a4(t)sin(πz)cos(kx) + a5(t)sin(2πz), (15)

ϕ(t, z, x) � a6(t)cos(πz)cos(kx) + a7(t)cos(2πz), (16)

with

a6(t) � −
πa2(t)

π2 + k
2
M3

and a7(t) � −
a3(t)

2π
. (17)

As in the Lorenz model, we only consider the temper-
ature, the concentration, and consequently the scalar
magnetic potential, the effect of the second harmonics. We
have neglected the second harmonic of the current function
due to the assumption of small convective motions [8].

Calculating the terms of the equations (8)–(11) with the
Galerkin functions defined from (12)–(15), then multiplying
the equations by the orthogonal eigenfunctions, and inte-
grating them in space over the wavelength of a convection
cell, 

π/k
− π/k 

1
0 

1
0 dxdz, a set of ordinary differential equations

is obtained for the temporal evolution of the amplitudes:

€a1(t) � − 2εP Λq2 + Da
− 1

  _a1 + rεPq
4

− ε2P2 Λ2q4 + Da
− 2

+ ΛDa
− 1 1 + q

2
   −

π2ε2P2

q
2 Ta + k

2
− π2

 s
2

  a1(t)

+ πrεPq
4
a1(t)a3(t) −

πRak
2
P

q
2 ψ + M1ψm( a1(t)a5(t)

+ rPq
6

− rε2P2 Λq2 + Da
− 1

 q
4

+ σRak
2
P ψ + M1ψm(  a1(t)

+
ε2P2

k
2
Ra

q
2 ψ + M1ψm(  Λq2 + Da

− 1
− ε− 1

P
− 1

q
2
L a4(t),

_a2(t) � − a1(t) − q
2
a2(t) − πa1(t)a3(t),

_a3(t) � −
π
2

a1(t)a2(t) − 4π2a3(t),

_a4(t) � − πa1(t)a5(t) − Lq
2
a4(t) + σq

2
a2(t),

a5(t) �
π
2

a1(t)a4(t) − 4π2La5(t) − 4π2L 1 − M2( a3(t).

(18)

q2 � (k2 + π2), r � Ra/Ras and

σ �
LM2π

2
− L π2 + k

2
M3 

π2
+ k

2
M3

. (19)

r is the reduced number of Rayleigh [24]; Ras is the
stationary Rayleigh number in the case of linear stability
when ψ � 0 and ψm � 0 (Finlayson [40]).

Ras �
q
6 π2

+ k
2
M3 

k
2 π2

+ k
2 1 + M1( M3 

. (20)

4. Stability Analysis of the System

We use [19] and we set
τ � q2t and new variables X(τ) � π/q2

�
2

√
a1(τ),

Y(τ) � πr/
�
2

√
− a2(τ), Z(τ) � − πra3(τ),

R(τ) � − πr/
�
2

√
a4(τ), and S(τ) � − πra5(τ).

We get
_X(τ) � W(τ), (21)

_Y(τ) � rX(τ) − Y(τ) − X(τ)Z(τ), (22)
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_Z(τ) � X(τ)Y(τ) − ηZ(τ), (23)

_R(τ) � − LR(τ) + σY(τ) − X(τ)S(τ), (24)

_S(τ) � − ηLS(τ) + X(τ)R(τ) − ηL 1 − M2( Z(τ), (25)

_W(τ) � − 2εP Λ +
2
3π2

Da
− 1

 W(τ) − εPX(τ)Z(τ)

+ εP εP Λ +
2
3π2

Da
− 1

  − 1 Y(τ)

+ εP r − εP
4
9π2

+
2
3π2

 ΛDa
− 1

+ Λ2 +
4

27π4
Ta −

4
27π2

s
2

+
4
9π2

Da
− 2

  X(τ).

(26)

with η � 4π2/q2 and _f(τ) � df(τ)/dτ.

We recover existing results in literature from the above
formula. When C⟶ 0, M1 � 0 or M3 � 0(Q13 � 0), and
q2⟶ 3π2/2, we retrieve Lorenz’s system [8]. When
C � 0, Ta � 0, and s � 0, the Lorenz system obtained by
Laroze [24] is recovered.

If s⟶ 0, Da− 1 ≈ 0,Λ⟶ 1, and ε⟶ 1, we recover
the system studied in [28].

4.1. Dissipation Effect

∇V �
z _X

zX
+

z _Y

zY
+

z _Z

zZ
+

z _R

zR
+

z _S

zS
+

z _W

zW
� − η(1 + L) − 1 + L + 2εP Λ +

2
3π2

Da
− 1

  < 0. (27)

*e system (21)–(26) is then dissipative. *erefore, the
endpoints of the trajectories of a set of initial points in phase
space, which occupies the region V(0) at time t � 0, will
decrease in volume after some time t such that

V(t) � V(0)exp − η(1 + L) − 1 + L + 2εP Λ +
2
3π2

Da
− 1

  t . (28)

*e volume then decreases exponentially over time.

4.2. Study of the Equilibrium Points. *e system (21)–(26)
has the form _X � f(X), and the fixed points XS are given by
f(XS). *e trivial equilibrium point E1 is

X1, Y1, Z1, R1, S1, W1(  � (0, 0, 0, 0, 0, 0). (29)

4.3. Analysis of the System Stability at the Trivial Equilibrium
Points. *e matrix associated with the dynamic system
studied is as follows due to the stability conditions:

J E1(  �

0 0 0 0 0 1

r − 1 0 0 0 0

0 0 − η 0 0 0

0 σ 0 − L 0 0

0 0 − ηmL 0 − ηL 0

Y ζ 0 0 0 − β

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(30)

with

Υ � εP r − εP
4
9π2

+
2
3π2

 ΛDa
− 1

+ Λ2 +
4

27π4
Ta −

4
27π2

s
2

+
4
9π2

Da
− 2

  ,

ζ � εP εP Λ +
2
3π2

Da
− 1

  − 1 ,

β � − 2εP Λ +
2
3π2

Da
− 1

 .

(31)
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*e trivial fixed point polynomial characteristic equation is

P(λ) ≡ b0λ
6

+ b1λ
5

+ b2λ
4

+ b3λ
3

+ b4λ
2

+ b5λ + b6, (32)

with

b0 � 1,

b1 � (η + L + ηL) +(1 + β),

b2 � η 1 + L
2

  +(1 + η)[L(1 + η + β(1 + L)] − Y,

b3 � (1 + η)(ηLβ + βη)L + ηL(1 + η + βL) + βη − [(1 + η)(1 + L) + η]Y,

b4 � η2L2
+ βηL(1 + η)(1 + L) − [(1 + η)(1 + L) + η]Y,

b5 � βη2L2
− ηL + ηL

2
(1 + η) Y,

b6 � − η2L2
Y.

(33)

To determine the eigenvalues λi, we use the
Routh–Hurwitz criterion [19, 41, 42].

Whatever r> 0, all the coefficients of the polynomial
P(λ) are positive. For < 1.1, the Hurwitz determinants verify
Δn− 1 > 0,Δn− 3 > 0 forΛ � 1, Da− 1 ≈ 0, s � 0, and Ta � 0.*e
trivial fixed point is then stable for r< 1.1 when
Λ � 1, Da− 1 ≈ 0, s � 0, and Ta � 0, and unstable otherwise.
*e fixed point E1 is linearly unstable when the critical value
of r is rc � 1.1.

4.4. Regular and Chaotic Behavior Analysis. Numerical
simulations are carried out in order to examine the effects of
viscosity ratio Λ, the number of Darcy Da characteristic of
the porosity of the medium, the helical force s, and the
Taylor number Ta on the chaotic convection of the magnetic
fluid. *e fourth-order Runge-Kutta method is employed to
solve numerically (21)–(26). We set the values P � 10,
η � 8/3, L � 1, M2 � 1, and σ � − 1/3. *e initial conditions
are X(0) � Y(0) � R(0) � W(0) � 0.8 and
Z(0) � S(0) � 0.92195.

We controlled the system formed by equations (21)–(26)
with the reduced Rayleigh number r and the parameters
above in presence.

In order to appreciate the effects of the parameters in
presence on the system, we realize the bifurcation diagrams
and their corresponding Lyapunov exponents, the phase
portraits, and time stories.

*e system has the possibility of having regular and
chaotic behaviors according to the range of values to reduce
Rayleigh number r (Figures 2–19).

Figures 2 and 3 show that at a certain increase in the
viscosity ratio, with the fixed reduced Rayleigh number, the
system is completely chaotic after a linear, an oscillatory, and
two small periodic sequences, i.e., the heat transfer is

progressively accelerated. *e increase in the viscosity ratio
makes the system completely chaotic.

Figure 4 shows that the system is linearly stable for
r � 1.56, oscillatory for 46.95≤ r≤ 58.125, chaotic for
58.237764359≤ r≤ 549.828, 556.575≤ r≤ 559.375, and
r≥ 668, 754, and periodic for 551.978≤ r≤ 555.979 and
661.505≤ r≤ 668.251.

Figures 5 and 6 show a reduction in the chaotic domain
with the helical force. For a certain fixed value of r

(Figure 6), for example, for r � 670 when the other pa-
rameters are kept fixed, the system is chaotic for s � 0 and
s � 2 then periodic thereafter. We then conclude that for a
value of the reduced number of Rayleigh r fixed, the system
changes state, and the chaos slowly disappears when s

increases, leaving the system in a periodic state of de-
creasing period. It can therefore be deduced that the in-
crease in the helical force leads to a reduction of the chaotic
domain of the system, corresponding to a delay of the heat
transfer.

*e system is linearly stable for r � 1.447, oscillatory for
25.899≤ r≤ 35.6994, chaotic for 37.83909≤ r≤ 384.086 and
429.00251≤ r≤ 680.86, and then periodic for
386.237≤ r≤ 424, 946 and r≥ 683, 6 (Figure 7).

Figures 8 and 9 show a reduction in the chaotic domain
with the Darcy number leaving the system in a periodic state.
Considering Figure 9, we notice that for a certain fixed value
of r, for example, for r � 362, when the other parameters are
kept fixed, the system is chaotic for Da � 0.09 then periodic:
of period 2 for Da � 0.5 and of period 1 for Da � 1. It can be
therefore concluded that the Darcy number Da reduces the
chaotic domain of the system; i.e., the heat transfer is
gradually retarded.

*e system is linearly stable for r � 1.45, oscillatory for
25.59≤ r≤ 35.6994, chaotic for 36.9094≤ r≤ 362.581 and
403.441≤ r≤ 637.849, and then periodic for
364.731≤ r≤ 399.14 and r≥ 640 (Figure 10).
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Figure 2: Diagrams of bifurcations of Z as a function of r representing the maxima and minima of the posttransient solution of Z(τ)

showing the effect of the viscosity ratio Λ on the chaos of the system for Da � 1, s � 0, and Ta � 0 with P � 10, L � M2 � 1,η � 8/3,
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Figure 3: Phase portraits and time diagrams of the system for a fixed reduced Rayleigh number r � 765 and different values of Λ with the
parameter values of Figure 2.
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We notice that for a low value of the Darcy number Da,

the system presents a surprising and advantageous behavior
for the convection (Figure 14). *e system is linearly stable
for r � 7.8, oscillatory for 374.142≤ r≤ 376.961, chaotic for
377.00892639168≤ r≤ 468.873 and 494.608≤ r≤ 530.147,

and then periodic for 470.098≤ r≤ 492.157 and r≥ 531.377
(Figure 15).

Figures 11 and 12 show that the Taylor number Tamakes
the system progressively chaotic and the heat transfer
gradually increases. Considering the Figure 11, for r � 464,
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the system is periodic: of period 1 for Ta � 0, of period 2 for
Ta � 200 then of period 4 for Ta � 500 and chaotic for
Ta � 1000. *e Taylor number then enlarges the chaotic
domain of the system.

*e system with Figure 13 is linearly stable for r � 1.449,
oscillatory for 22.15≤ r≤ 27.0973, chaotic for
28.55984405≤ r≤ 231.398 and 252.903≤ r≤ 328.823, and
then periodic for 237.85≤ r≤ 250. 753 and r≥ 330
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5. Conclusions

In this work, we studied the effects of the viscosity ratio Λ, the
helical force intensity s, the Darcy number Da, and the Taylor

number Ta on the regular and chaotic behavior of the con-
vection in a rotating magnetic fluid in a porous medium under
the helical force effect.*e classical nonlinear stability theory is
used. Lorenz-type model is obtained by derived from the
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magnetohydrodynamics equations using the lowest Fourier
modes a set of first-order ordinary differential equations.

In the absence of a magnetic field and helical in a
nonrotating and a nonporous medium, the classical Lorenz
model is recovered. *e stability of the trivial equilibrium
point has been studied with the Routh–Hurwitz criterion.
*e parameter regions where stationary states can occur
have been identified as well as those of regular and chaotic
behaviors by plotting successively bifurcation diagrams,
Lyapunov exponent, and phase portraits. *roughout this
study, the following results have been obtained:

(i) Increasing the ratio of viscosities Λ increases the
chaotic domain, so serves to advance the heat
transfer in the magnetic fluid.

(ii) Increasing the intensity s of the helical force
gradually contributes to reduce the chaotic domain
of the system leaving it in a periodic state. *is
favors the heat transfer to decrease in the fluid.

(iii) Increasing the Darcy number Da considerably re-
duces the domain of chaos leaving the system in a
periodic state, hence serves to delay the heat transfer
in the magnetic fluid.

(iv) Increasing the Taylor number Ta increases the
chaotic domain, so serves to accelerate the heat
transfer in the system.

We then conclude that the ratio of viscosities and the
rotation enlarge the domain where chaos occurs and ac-
celerate the heat transfer whereas the helical force and the
porosity of the medium reduce the chaotic domain and delay
the heat transfer. *e ratio of viscosities, the porosity, the
rotation, and the helical force, therefore, make it possible to
control the convective chaos in the magnetic fluid.
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