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Establishing a rapid-response mechanism tomanage customer orders is very important inmanaging demand surges. In this study,
combined with predicting order requests, we established a multiobjective optimization model to solve the warehouse space
allocation problem. First, we developed a model based on the NAR neural network to predict order requests. Subsequently, we
used the improved NSGA-III based on good point set theory to construct a multiobjective optimization model to minimize
resource loss, maximize efficiency in goods selection, andmaximize goods accumulation./e following threemodes were tested to
allocate warehouse storage space: random, ABC, and prediction-oriented. Finally, using actual order data, we conducted a
comparative analysis of the three modes regarding their efficiency in goods selection. /e method proposed by this study
improved goods selection efficiency by a sizable margin (23.8%).

1. Introduction

As an essential part of logistics activities, warehousing and
warehouse management play a vital role in manufacturing
companies, third-party logistics companies, and distribution
centers [1]. Moreover, with the advent of the big data era and
the development of technologies such as the Internet of
/ings, business interconnection, and artificial intelligence,
the flow of data for individual goods in a warehouse provides
a massive source of data to predict future trends in the flow
of goods and to take decisions about warehouse manage-
ment [2, 3]. At the same time, improving operational effi-
ciency through the effective optimization of cargo space in
warehouse operations results in increased savings. Effec-
tively improving warehouse operations’ efficiency has,
therefore, become an industry-wide goal [4].

Storage space allocation is an essential part of the
manufacturing industry’s storage and transportation activ-
ities. In the manufacturing industry, storage space allocation
and transportation play a decisive role in the level of effi-
ciency with which goods enter and leave the warehouse.
/erefore, a reasonable method of cargo space allocation can

effectively shorten working time, improve efficiency, extend
the shelf life, and reduce operating costs and is inseparable
from the overall benefits of more efficient enterprises [5, 6].
However, with the expansion of enterprise business scale
and high responsive demand from customers, traditional
space allocation methods such as the ABC classification
method, random allocation, and storage strategy based on
goods level fail to meet the current operational needs [7–9].

/e logistics function is an important part of any
business operations. From material procurement, organi-
zation of production, and customer sales to the hands of
customers until to after-sales service, the flow of goods and
services is indispensable. /e accurate processing of big data
can improve the accurate forecasting of market demand, flag
when commodity inventories need replenishing, and even
reduce equipment maintenance costs [10].

Accurate order prediction can provide a significant basis
for future business growth by responding quickly to cus-
tomer demand and coping with the changing market en-
vironment. Passive order management is not highly
responsive toward this aspect, and it is challenging to meet
the highly responsive needs of customers [11]. /e massive
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time-series flow information generated by logistics and
warehousing operations can support the decision for the
management of demand in future periods. /e warehouse
space allocation combined with demand forecasting has
more practical applications, value and research significance
for enterprises.

Given that the current study focuses on goods demand
prediction or goods allocation alone, the proposed models
are based mostly on strict assumptions and lack the support
of a large amount of data. /is study combines the two
problems and proposes the innovative use of NAR neural
networks to predict time-series goods demand and then
improves the NSGA-III algorithm by combining it with
good point set theory to construct a highly responsive space
allocation model.

2. Literature Review

/e optimal storage space allocation involves multiple ob-
jectives, such as maximizing picking efficiency and mini-
mizing machine travel distance [12, 13], while the storage
depot contains most of the operational aspects of the lo-
gistics business process./us, it means that a variety of other
factors such as the design of the storage area, the physical
characteristics of the product, and the picking method need
to be considered when performing storage space optimi-
zation [14, 15], so the storage space optimization problem is
a multiobjective high-dimensional optimization problem.

Because of the complexity of the storage space allocation
problem, the exact methods proposed bymany scholars have
not been executed to yield optimal solutions. /e methods
used contain mixed-integer programming [9, 16, 17], robust
optimization [18], binary programming [19], etc. Mixed-
integer programming is the most used model by scholars,
while robust optimization is the least implemented. Larco
et al. [20] used a mixed-integer programming model with
the optimization objective set to minimize order preparation
time and employee discomfort. Bodnar and Lysgaard [21]
used a dynamic planning algorithm to reduce the total
amount of shelf replenishment in each period. Exact solution
models have also been developed for specific types of
warehouses. Ene et al. [22] used a class-based storage
strategy to solve the warehouse stock allocation problem,
obtained the optimal solution through an integer pro-
gramming model, and developed an improved genetic al-
gorithm to form optimal batches and routes for order
picking.

To solve the constructed space allocation model, many
scholars have studied, compared, and validated it using
metaheuristic algorithms and their improved versions.
Among them, genetic algorithms are the most widely used
[22–24]. For example, Li et al. [8] defined a new dynamic
storage space allocation problem based on ABC classifica-
tion and association between products, using genetic algo-
rithms to deal with computational complexity and
developing an integrated mechanism for optimization.
Cruz-Dominguez and Santos-Mayorga [25] used a combi-
nation of genetic algorithms and artificial neural networks to
minimize the order preparation for a given input condition

considering the physical characteristics of the products and
their sales patterns. Kim and Smith [26] used an improved
simulated annealing algorithm to derive the algorithm’s
effectiveness to solve the space allocation problem based on
data arithmetic examples of large distribution systems.

/e current study rarely considers the demand fore-
casting of goods, and, at the same time, the assumptions of
the constructed space allocation model do not meet the
actual operational requirements of the enterprise. In the new
management context of the big data era, enterprises’
management decisions and optimization ideas must be
future-oriented [27, 28]. Mezzogori and Zammori [29]
discussed the application of deep learning two-layer ar-
chitecture in fashion product demand forecasting, which
after ten years of sales analysis has been proved; the fore-
casting method has advantages over the existing marketing
strategies of fashion companies. Huber and Stuckenschmidt
[30] focused on chain store order demand on particular
dates, transforming the forecasting problem into supervised
machine learning and evaluating multiple methods to
conclude that the machine learning model has superior
performance. Xu and Chan [31] used big data and machine
learning methods to implement forecasting of medical de-
vice demand to establish a univariate device demand fore-
casting method, concluding that model prediction accuracy
can be further improved by introducing big data into the
forecasting model. Tarallo et al. [32] presented an explor-
atory study of machine learning methods for forecasting
demand for products with a short shelf life and concluded
that demand forecasting for FMCG products can improve
the supply chain inventory balance and increase corporate
profits.

A significant problem with the existing research is that
the mathematical models developed relied on analytical
models based on strict assumptions. However, some of these
assumptions are not accurate and are not supported by
massive data inputs [33, 34]. Current well-documented
theoretical studies have shown that data generated from
various industry sectors, when fully applied, will signifi-
cantly improve management effectiveness and economic
performance [35, 36]. NAR artificial neural networks, with
easily adjustable parameters, can provide demand fore-
casting with high accuracy and with improved NSGA-III
based on the good points set theory, resulting in a highly
responsive space allocation strategy. Using the improved
NSGA-III and NAR demand forecasting can effectively solve
warehouse space allocation problems, combined with de-
mand prediction, providing the essential reference value for
companies to improve operational efficiency and meet
customers’ growing needs.

3. Research Method

3.1. NAR Neural Network. An artificially generated neural
network, which is established by simulating the human
nervous system, can achieve specific functions. /e network
is constructed based on the structure connecting various
neurons in the brain [37]. /e NAR neural network uses
itself as the regression variable and describes the random
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variable at a particular time in the future using a linear
combination of variables from several moments identified
during the observation period. /e model’s basic structure
can be expressed by the following equation, where e(n)

represents the white noise that occurs during the data
collection process. Further, this equation can be used to
determine whether the observed value y(n + 1) at a par-
ticular moment has a certain correlation with the previous n

number of values [38].

y(t) � a0 + a1y(t − 1) + a2y(t − 2) + a3y(t − 3)

+ · · · + any(t − n) + e(n).
(1)

Figure 1 depicts the structure of a NAR neural network.
/e network’s input and output layers are determined by the
background of the problem under study. /e adjustment of
the hidden layer and the number of neurons in the layer
depends on the prediction results’ accuracy [39]. During
data learning and training, the NAR neural network dis-
covers potential patterns and minimizes the difference be-
tween the final predicted outputs and actual records through
a continuous and iterative fitting process [40].

3.2. Good Point Set 'eory (GPS). GPS theory, proposed by
Hua Luogeng, has superior properties: it can provide a
theoretical basis for approximation calculations in higher
dimensions, and the points selected by GPS have muchmore
minor deviations than those randomly selected by the
original NSGA-III algorithm.

Definition 1. Let Gs be the unit cube in the s-dimension
Euclidean space; we have〈x〉 � (x1, x2, . . . , xs),
where0⩽xi⩽1(i � 1, 2, . . . , s).

Definition 2. /e sample points 〈r〉 � (r1, r2, . . . , rs) � r1
r2 · · · rs are compared with the target set Pn(i) one by one,
and 0⩽xi⩽1(i � 1, 2, . . . , s), Φ(n) � Sup |Nn(r)/n − |〈r〉‖;
then the point set Pn(i) is said to have deviationΦ(n), where
Pn(i) � (x

(n)
1 (i), x

(n)
2 (i), . . . , x(n)

s (i)), 1≤ i≤ n,
x

(n)
i (i) � c(ej × i)(1< j< s). ckis the fractional part of k, and

Nn(〈r〉) � Nn(r1, r2, . . . , rs) is the number of points in
Pn(i) that satisfy the condition 0≤ x

(n)
i (i)< rj.

Definition 3. If Φ(n) satisfiesΦ(n) � C(〈r〉, ε)n− 1+ε, where
C(〈r〉, ε) is a constant related only to 〈r〉 and ε (ε is an
arbitrarily small positive number), then Pn(i) is said to be a
good point set (GPS) and 〈r〉 is called a good point. In
addition, takerk � 2 cos 2 πk/p, 1≤ k≤ s , and p is the
smallest prime number satisfying (p − s)/2≥ s; then 〈r〉 is
also a good point.

Theorem 1. Given that Pn(i)(1≤ i≤ n) has deviation
Φ(n), f ∈ Bt (t-dimensional catch-all function class), then
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then, using any weighting constituted by the value of the
function given at n points and using this approximation to
calculate the integral of the function f(x) over Gs, the error is
not greater than O(n− 1).

Theorem 3. Assuming that x1, x2, . . . , xn is uniformly dis-
tributed onDt, that is, Pn � x1, x2, . . . , xn􏼈 􏼉, then the devi-
ation of Pn is D(n, Pn) � O(n− 1/2(log logn)1/2).

From 'eorems 1 and 2, it can be seen that the error of
using GPS for approximation calculation is only related to
n and not to the dimensionality of the sample. 'erefore, a
suitable algorithm can be provided for the high-dimen-
sional approximation calculation. Furthermore, from
'eorem 3, the deviation of using GPS isO(n− 1+n), while the
deviation of using random method isO(n− 1+n). 'erefore,
using GPS to generate points is better than the random
method.

3.3. Algorithm for NSGA-III Multiobjective Optimization.
Most of the multiobjective evolutionary algorithms are ef-
fective in solving problems with low objective dimensions.
When the number of objectives is equal to or greater than 3,
which indicates the involvement of high-dimensional ob-
jective optimization problems, the increase in dimensions
causes a decrease in selection pressure and results in un-
satisfactory effects. In general, the frameworks of the elitist
NSGA-III and NSGA-II algorithms are similar, and the only
difference between them is the selection mechanism of in-
dividuals that are the offspring [41–44]. /e NSGA-II al-
gorithm selects individuals of the same nondominated level
based on the calculated crowding distance, whereas the
NSGA-III does so using a reference point-based method
[45–47].

In the population initialization problem, although ran-
dom initialization simplifies the complexity of the intelli-
gence algorithm, it may make the initial distribution of the
population uneven, leading the algorithm to fall into local
optimum and affecting the convergence of the algorithm
[48–50]. In order to solve this shortcoming, this paper
adopts the GPS theory to initialize the population so that the
population is uniformly distributed in the solution space to
increase the diversity of the population and improve the
algorithm’s performance [51–53].

/e GPS method and the random method are used to
generate the two-dimensional initial population for com-
parison, as shown in Figures 2 and 3. With the same
number of 600 points taken, the GPS method takes points
more uniformly than the random method, and the pop-
ulation diversity is richer. /erefore, mapping the good
points to the target solution space makes the initial pop-
ulation more ergodic, which can better achieve global
optimization.
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4. Model Construction and Algorithm Design

Storage space optimization involves multiple management
decision-making objectives. A review of the literature by
various scholars [54, 55] and the consideration of the re-
quirements of business operations helped identify the ob-
jective functions of optimization as minimizing resource
loss, maximizing goods accumulation, and minimizing
goods selection time. /ey aimed to realize the rational use
of resources and improve overall business performance.

4.1. Model Construction

4.1.1. Minimizing Resource Loss. /e numbers of goods
categories and storage spaces are similarly set to n; the
different levels of order quantity are represented by t; Ti

represents the ith type of order (i � 1, 2, . . . , t); fi is the
requested amount in the ith order; and dis(Ti) represents the
distance of the selection path for the ith order, where the start
and end points of the forklift’s selection path in the ware-
house are the same. Further, a decision variable,xjk, is added:
product j is on the goods shelf k when xjk � 1 but not on k

when xjk � 0. /is results in the objective function equation
as follows:

F1 � min􏽘
m

i�1
fi dis Ti( 􏼁 � 􏽘

m

i�1
fi dis xjk􏼐 j ∈ Ti, k � 1, 2, . . . , n􏼁,

s.t. 􏽘

n

k�1
xjk � 1, j � 1, 2, . . . , n, 􏽘

m

j�1
xjk � 1, k � 1, 2, . . . , n, xjk ∈ 0, 1{ },∀j, k.

⎧⎪⎨

⎪⎩

(4)

Output Layer

Hidden LayerHidden Layer

Input Layer

Figure 1: Structure of a NAR artificial neural network.
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4.1.2. Maximizing Goods Accumulation. /e accumulation
level of different goods can be measured indirectly using
the distance between goods. /e storage location of the
goods in a warehouse is indicated by(xij, yij), the accu-
mulation level of the same goods category isdi sj, and the
total accumulation level of goods in the warehouse isDi s.
/e equivalent coordinates of the same category of goods
are(xij, yij), in whichxij � (1/nj) 􏽐

nj

i�1(xij − 1), yij � (1/nj)

􏽐
nj

i�1(yij − 1); the equivalent coordinates of all the goods
are(x, y), in whichx � (1/n) 􏽐

n
i�1 xij, y � (1/n) 􏽐

n
i�1 yij.

/is resulted in the objective function equation as follows
[56]:
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􏽲

.

(5)

4.1.3. Minimizing Goods Selection Time. /e time taken to
complete the selection of one batch of goods was used to
measure efficiency. /e length and width of the goods shelf
were set to L and H, respectively, and the forklift’s speed of
lifting in the horizontal and vertical directions was vx and vy,
respectively. /e time required for the forklift to select a
single item from the goods shelf and reach the exit was
represented by txy. /erefore, the objective function can be
expressed as the following equation:

F3(x, y) � min 􏽘
m

x�1
􏽘

n

y�1
txy,

txy � max (x − 1) ×
L

vx

, (y − 1) ×
H

vy

􏼨 􏼩.

(6)

4.2. Steps of the Algorithm. It is necessary to predict future
demand to realize highly responsive warehousing opera-
tions, and, in general, the required resources and equipment
are reasonably allocated before the arrival of order requests.
Reasonable predictions of order requests can be used as an
effective data source for subsequent warehouse storage space
allocation as well. By inputting predicted demand into a
multiobjective optimization model, one can determine the
location of goods expected to be included in customers’
future requests. Figure 4 depicts the steps of the storage
space algorithm.

/e algorithm was executed in three stages. /e pro-
cessing mechanism of each stage is described here. Stage 1
involved data preprocessing and demand prediction. /e
first step was to examine data regularity. Ideally, the data
satisfy the criterion; that is, the records are complete, and
format requirements are satisfied. In this case, the dataset
was directly segregated and input into the NAR neural
network for prediction [57]. If the requirements were not
satisfied, the data were transferred to the data preprocessing
phase, in which the algorithm activated data processing
methods, such as missing data supplementation, outlier
processing, and data noise reduction [58]. When the pre-
processed data satisfied the neural network’s requirements,
the data were input into the network to make predictions.

Stage 2 involved the error testing of predicted results.
/e algorithm evaluated the prediction effect using the
RMSE, MSE, and coefficients of autocorrelated errors
[59–61]. If the error in prediction was within the acceptable
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Figure 2: Two-dimensional initial populations generated by the
good point set method (N� 600).
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Figure 3: Two-dimensional initial populations generated by the
random method (N� 600).
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range, the predicted results of the data were used as inputs
for the next stage of storage space allocation. Otherwise, the
algorithm’s feedback mechanism was activated, and the
predicted effects were continuously relayed into the network
until the prediction error became lower than the error
threshold.

Stage 3 facilitated the allocation of storage space, which
was oriented toward the predicted demand. When the error
in predicted results was within the acceptable range, the next
phase ensured the allocation of storage space. /en, the
mathematical objectives and function models that needed to
be optimized were self-defined, the data were checked, and
the iterative process to find a solution was initiated. /e
NSGA-III continued seeking solutions until the results of the
allocation of storage space for goods satisfied the predefined
solution plane and realized the Pareto optimal value [62].
Finally, the algorithm output the results of the solution,
which could serve as a reference for decision-makers.

5. Data Calculation Example

5.1. Data Preprocessing. /e case study data used in this
study were obtained from Kaggle, a renowned data science
competition platform. /e dataset contained the historical
product demand of a manufacturing company with foot-
prints worldwide and included 2,172 product stock keeping
units in 33 product categories distributed in four ware-
houses. Following data preprocessing, the time-series de-
mand data of each product were sorted, and a case study
examination was conducted on each product’s time-series
demand data. One product was used as an example to
predict an order request. Subsequently, the same process was
applied to build the algorithm for the orders of other
products.

First, the data were downsampled, and the data
resampling technique was used to convert the data from the
original to another frequency. /e process of data conver-
sion from a high to a low frequency is defined as down-
sampling [63]. /e original demand data of warehouse
goods were recorded according to the daily demand for
e-commerce goods. However, during actual warehouse
operations, warehouse management personnel usually use
nonrecording methods for goods with a multiday demand of
0. /ese unrecorded data affect data quality during data
processing. Hence, for the purpose of processing, down-
sampling was used to convert the data based on the fre-
quency of weekly statistics.

Figure 5 indicates that the records in the original dataset
were dense. /e data for weekly demand were aggregated
after downsampling, which effectively eliminated the effect
of missing values that were not recorded when the goods
demand data were 0, as shown in Figure 6. /e processes of
preparing data and exploring fitting models are easier in the
case of smaller datasets. For warehousing operations, one
week is a reasonable and complete operational cycle. /e
original data contained substantial noise, which was caused
by the use of inefficient recording and measurement
methods and the impact of mutation factors. Such noise in
the data made the model fitting difficult or increased the

costs associated with fitting. In this study, the logarithm for
the original data, ts′ � log(ts), was calculated and input into
the model for training. As shown in Figure 7, after the
logarithmic transformation process, the data series con-
gregated within a certain range and fluctuated steadily,
whereas the original data had substantial fluctuations.

/e next step was to train, verify, and test the accuracy of
the prediction model from Stage 1 onward. For this purpose,
the algorithm segmented the data of goods demand into the
training, verification, and test sets in the ratio of 70%:25%:
5%. In Figure 8, the blue, orange, and green lines represent
the data of the training, verification, and test sets, respec-
tively. /ese datasets contained a total of 183 samples, 65
statistical data records, and 13 segments. /e green line is
applicable to a later stage and measures prediction accuracy.

5.2. Multiobjective Optimization of Storage Space Allocation.
/e 183 time-series data records were used as the training set;
65 data records were used as the verification set; and remaining
13 goods circulation data records were input into the algorithm
as the test set for data fitting, verification, and prediction. /e
cyan line in Figure 9 represents the model’s value for predicted
demand based on the existing feature values, whereas the blue
line represents the actual demand in the test set./emodel had
a prediction accuracy rate of 98.79%.

/e data pertaining to future demand were input into the
multiobjective storage space optimization model to obtain
storage space allocation results. /e maximum number of
evolutions that we set in our study was 400, and the evolution
operator was simulated binary crossover with polynomial
mutation./e crossover rate was set to 0.9, and the variance is
the inverse of the dimensionality of the decision variables./e
set in the solution plane of the elitist NSGA was a noninferior
solution that satisfied the Pareto optimal law [64], and we
examined all of the solution sets in the solution plane.

5.3. Comparison and Verification of Methods. /e results of
three prediction models—NAR, the prophet time-series
prediction framework [65–67], and linear regression—were
compared, and the prediction effect of the algorithm’s Stage
1 was evaluated. Figure 10 depicts the results. Among the
tested methods, the NAR prediction results were the closest
to the actual goods demand, and its prediction accuracy rate
was the highest.

Subsequently, the following methods were used to verify
the effectiveness of the NAR–NSGA-III storage space al-
location algorithm: random allocation, ABC classification,
and the simulation of the multiobjective storage space al-
location algorithm based on demand prediction [68]. Spe-
cifically, the goods selection efficiencies of the various
schemes were verified using the goods selection time during
operations [69]. Among them, the random allocation
scheme did not comply with the optimization principle and
caused the random placement of goods on storage shelves.
On the other hand, the ABC classification method first
classified the importance of goods according to their his-
torical demand data and then randomly allocated goods in
the same category.
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Figure 4: Steps of the storage space allocation algorithm based on nonlinear autoregressive neural network and nondominated sorting
genetic algorithm III.
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/e three storage space allocation schemes were run 20
times each, and the final goods selection efficiency was de-
termined by calculating the average efficiency of the 20 se-
lection times. /e simulation results, as shown in Figure 11,
indicate that the allocation scheme based onNAR andNSGA-
III improved goods selection efficiency. /e completion time
for 20 runs of the NAR-NSGA-III allocation scheme was less

than the times of the other two allocation schemes, and the
goods selection time was reduced by as much as 23.8%. After
considering the optimization objectives such as accumulation
of goods and resource loss, NAR-NSGA-III’s cargo space
allocation strategy facilitates the fast response of picking
process in the simulation environment, thus achieving su-
perior picking efficiency.

6. Discussion

/e algorithm not only provided a mechanism for efficient
data processing but also identified the optimal decision point
under multiple complex objectives. It compensated for the
shortcomings of current theoretical research, which lacks
comprehensiveness. /e proposed algorithm can be inte-
grated into management practice as well: the task of pre-
dicting future product demand can be completed by
connecting to the enterprise’s database, then reading a large
amount of data before conducting a series of data analyses and
running the algorithm’s internal processing mechanism
[70, 71]. When changes in product demand are updated and
synchronized in real time, the effect of real-time prediction
and allocation of goods can be achieved as well.
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/is study was the first to combine the problems of order
demand forecasting and multiobjective space allocation,
giving reference to both order management and space allo-
cation for warehouses. Nevertheless, the methods used in this
study are not diverse enough, and there are few accuracy
measures for the prediction results [72, 73]. Future research
will analyze the initial reference point size setting and expand
the reference point screening strategy to make the retained
reference points with better distribution./e next step should
also discuss the determination of evolutionary stages and
adopt more reasonable thresholds to make the stage classi-
fication more accurate [74–76].

7. Conclusions

/e findings of this study provided theoretical support for
e-commerce distribution centers to develop storage space

allocation strategies in big data processing contexts. /e
NAR artificial neural network and NSGA-III multiobjective
optimization algorithm were used to construct a data-driven
model algorithm to optimize storage space allocation.
Simulations were used for verification and, compared to
other methods, the storage space allocation method pro-
posed by this study enabled the reduction of selection time
for the same batch of goods by up to 23.8%.

/e study’s conclusion can serve as an important ref-
erence for e-commerce warehouses to predict order requests
and allocate storage space./e logistics industry has suffered
numerous losses due to unreasonable demand management
and storage space allocation, and this study meets the needs
of the logistics industry and society as a whole. By reducing
the unreasonable use of resources by logistics enterprises, the
industry’s overall operational efficiency will be improved,
and society will thus achieve sustainable development.
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