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In this paper, we study the dynamics of COVID-19 in the UAE with an extended SEIR epidemic model with vaccination, time-
delays, and random noise. 'e stationary ergodic distribution of positive solutions is examined, in which the solution fluctuates
around the equilibrium of the deterministic case, causing the disease to persist stochastically. It is possible to attain infection-free
status (extinction) in some situations, in which diseases die out exponentially and with a probability of one. 'e numerical
simulations and fit to real observations prove the effectiveness of the theoretical results. Combining stochastic perturbations with
time-delays enhances the dynamics of the model, and white noise intensity is an important part of the treatment of
infectious diseases.

1. Introduction

COVID-19 is a disease caused by SARS-CoV-2 that can
trigger a respiratory tract infection. It spreads likewise other
coronaviruses do, basically through person-to-person con-
tact. Infections range from mild to deadly [1, 2]. To combat
the spreading of all infectious diseases, vaccination is one of
the most important procedures [3, 4]. Vaccines generally
expose the immune system to harmless parts of the pathogen
so that the immune system learns to recognize it and may be
able to tamp down the infection before any symptoms appear
[5, 6]. COVID-19 vaccines, such as Pfizer, AstraZeneca, and
Sinopharm, are now widely available for people aged five
years and older, and all the currently authorized COVID-19
vaccines are effective and reduce the risk of severe illness [7].
It is normal for a virus to mutate as it infects people, and
SARS-CoV-2 has mutated so [8–10]. 'ere are various var-
iants which are now spreading, such as Alpha, Beta, Gamma,
Delta, and Omicron. An initial study showed Omicron
variant reduced the antibody protection by some vaccines, but
a booster shot is likely to protect people from severe disease,
and research works are still in proceedings in this field [11].

Up to date, more than 4.41 billion people worldwide have
received a dose of the COVID-19 vaccine, equal to about
57.4 percent of the world population [12]. A vaccinated
person refers to someone who has received at least one dose
of a vaccine, and a fully vaccinated person has completed
receiving the vaccine, whether that is one dose or two, and
two weeks have passed. A COVID-19 booster shot is an
additional dose of a vaccine given after the protection
provided by the original shot(s) has begun to decline [13].
'e booster is recommended to help people keep up their
level of immunity for longer. In the UAE, more than 99
percent of the population at least have one dose of the
vaccine, 91 percent of the population are fully vaccinated,
and 32.3 percent of the population are booster given [14];
therefore, the number of confirmed cases of COVID-19 in
the UAE has decreased significantly.

Modeling infectious diseases provides a controlled en-
vironment in which complex relationships between envi-
ronmental and biological factors can be examined. In public
health science, mathematical models of infectious diseases
can be used to analyze various scenarios, and the results can
inform policy, programs, and practices [15, 16].
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Researchers are working to develop mathematical
models that can be used to predict vaccination strategies for
controlling epidemic diseases [3, 4, 17, 18].

Human virus diseases are highly affected by stochastic
perturbations. Because human contact can change from one
person to another, epidemic growth and spread in human
disease are normally random, and the population is subject to
factors that are either not fully understood or difficult to
model precisely. A model that ignores these phenomena will
negatively affect the analysis of the studied biological systems.
Stochastic differential equation models (SDEs) are more
suitable for modeling epidemic dynamics under certain
conditions [19–21]. Increasingly, deterministic models need
to be extended to stochastic models that can account for more
complex variations in dynamics [22]. Furthermore, delay
differential equations (DDEs) are extensively used to describe
the dynamics of infectious diseases. Due to the fact that time-
delay is relevant to hiddenmechanisms such as the incubation
period and the recovery of infected individuals [23–25].

In this paper, we study the dynamics of the COVID-19
epidemic in the UAE, using a modified stochastic delayed
SEIRV (Susceptible-Exposed-Infected-Recovered-Vacci-
nated) model.'emodel incorporates white noise and time-
delays. 'is model assumes that individuals can become
infected during vaccination, but then become healthy af-
terwards. A stochastic Lyapunov function and Ito’s formula
are used to determine the existing results of stationary
distribution and extinction of the disease. Combining sto-
chastic perturbations and time-delays can provide a more
realistic view of disease dynamics. 'e rest of this paper is
organized as follows: Section 2 presents the model formu-
lation. In Sections 3 and 4, this model derives the stationary
distribution and extinction results. In Section 5, numerical
simulations are presented to verify the theory. In Section 6,
conclusions are provided.

2. The Model

For the dynamics of COVID-19 in the UAE, we propose an
extended SEIR epidemic model with vaccination, time-

delays, and random noise [26, 27]. 'e basic model cate-
gorized people into four classes: susceptible (S): individuals
not yet infected; exposed (E): individuals experiencing in-
cubation duration; infectious (I): confirmed cases; and re-
moved (R): recovered individuals. We assume that the
recovered individuals will remain in the class R(t). 'ere-
fore, the SEIR model has the following equations system:

dS

dt
� Λ − β1SE − αS,

dE

dt
� β1SE − β2EI − (κ + α)E,

dI

dt
� β2EI − (d + r + α)I,

dR

dt
� rI + κE − αR.

(1)

Here, Λ is the recruitment rate; β1 is the transmission
rate of susceptible into exposed class; β2 is the rate of
transmission of exposed into infected class; α and d are
natural and disease death rates; κ is the transmission rate of
exposed into recovered class; and r is the transmission rate of
infected into recovered class. Many researchers develop the
above model to include vaccination strategies to control
epidemic diseases realistically [17, 18]. 'ere is evidence that
individuals can become infected during vaccination and go
on to be healthy afterward [28]. Incorporating time lags in
epidemic models makes the systemsmuchmore realistic and
enriches the dynamics of the model. 'erefore, we include
time-delays τ1 and τ2 to represent the incubation period;
while τ3 stands for the time required for the infected in-
dividuals to become recovered. Hence, the deterministic
SEIR model with vaccination and time-delays takes the form
(see Figure 1).

dS

dt
� Λ − β1SE − β3 + α( 􏼁S,

dE

dt
� β4VE + β1SE − β2EI t − τ1( 􏼁 − (κ + α)E,

dI

dt
� β5VI(0) + β2EI t − τ1( 􏼁 − (d + r + α)I,

dR

dt
� β6V + rI t − τ3( 􏼁 + κE − αR,

dV

dt
� β3S − β6 + α( 􏼁V − β4VE − β5VI t − τ2( 􏼁.

(2)
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β3, β4, β5, and β6 are the transmission rates of susceptible
into vaccinated class; vaccinated into exposed class; vacci-
nated into infected class; and β6 vaccinated into recovered
class, respectively.

'e basic reproduction number,

R0 �
β1Λ

β3 + α( 􏼁(κ + α)
+

Λβ3β4
β3 + α( 􏼁(κ + α) β6 + α( 􏼁

, (3)

of model (2), has a significant impact in epidemiology since it
decides whether an epidemic occurs or the disease dies out
[29]. If R0 < 1, then model (2) has only a disease-free
equilibrium E0 � (S+, 0, 0, R+, V+) � (Λ/β3 + α, 0, 0,Λβ3

β6/α(β6 + α)(β3 + α),Λβ3/(β6 + α)(β3 + α)) and it is glob-
ally asymptotically stable; while ifR0 > 1, then,E0 is unstable
and there is a unique endemic equilibrium E∗ � (S∗,

E∗, I∗, R∗, V∗) which is globally asymptotically stable [28].
Because some factors cannot be measured precisely,

stochastic models always provide an estimate of these un-
certainties based on approximate estimates [1, 30–32].
'erefore, we introduce randomness into model (2) by
adding white noise to the state of the SEIR model with
vaccination and time-delays. 'e modified model takes the
form:

dS � Λ − β1SE − β3 + α( 􏼁S􏼂 􏼃dt + ]1S dW1,

dE � β4VE + β1SE − β2EI t − τ1( 􏼁 − (κ + α)E􏼂 􏼃dt + ]2E dW2,

dI � β5VI t − τ2( 􏼁 + β2EI t − τ1( 􏼁 − (d + r + α)I􏼂 􏼃dt + ]3I dW3,

dR � β6V + rI t − τ3( 􏼁 + κE − αR􏼂 􏼃dt + ]4R dW4,

dV � β3S − β6 + α( 􏼁V − β4VE − β5VI t − τ2( 􏼁􏼂 􏼃dt + ]5V dW5,

(4)

with

S(θ) � ϕ1(θ), E(θ) � ϕ2(θ), I(θ) � ϕ3(θ), R(θ)

� ϕ4(θ), V(θ) � ϕ5(θ),

θ ∈ [− τ, 0], τ � max τ1, τ2, τ3􏼈 􏼉,

(5)

ϕi(0)> 0 and ϕi(θ), i � 1, . . . , 5, are non-negative con-
tinuous initial functions on [− τ, 0]. Wi(t), i � 1, . . . , 5,

represent the independent Brownian motions defined on a
complete probability space (Ω,U, U{ }t≥0, P) with a filtration
Ut􏼈 􏼉t≥0 satisfying the usual conditions (it is right continuous
and U0 contains all P− null sets), where ]i, i � 1, . . . , 5 are
the intensities of white noise.

3. Stationary Distribution and Ergodicity

Among the most important and significant characteristics of
the stochastic epidemic model (4) is its ergodic property.
Under some conditions of white noise, the stochastic model
fluctuates in the neighborhood of the infected equilibrium of
the corresponding deterministic model for all time re-
gardless of the starting conditions. First, we need to show

that there is a global non-negative solution of model (4),
which is as follows:

Theorem 1. For any given initial value (5), system (4) has a
unique solution (S(t), E(t), I(t), R(t), V(t)) on t≥ − τ, and
the solution will remain in R5

+ with probability one.

Proof. Since the system coefficients (4) satisfy linear growth
and Lipschitzian conditions and based Khasminskii Lya-
punov functional approach, we can show that system (4) has
a global positive solution.'emain challenge is to establish a
Lyapunov function, so we define

G(S, E, I, R, V) � G(.) � (S − 1 − lnS) +(E − 1 − lnE)

+(I − 1 − lnI) +(R − 1 − lnR)

+(V − 1 − lnV) + β2 􏽚
t+τ1

t
I s − τ1( 􏼁ds

+ β5 􏽚
t+τ2

t
I s − τ2( 􏼁ds

+ r 􏽚
t+τ3

t
I s − τ3( 􏼁ds.

(6)

I (t) R (t)E (t)

V (t)

S (t)

β3S

β1SE

β4VE

β2EI rI αR

αI

αV

αEαS dI

β5VI

β6V

κ E

Figure 1: Flow chart of the model (2).
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By It􏽢o’s formula on G,

dG(.) � LGdt + ]1(S − 1)dW1(t) + ]2(E − 1)dW2(t)

+ ]3(I − 1)dW3(t)

+ ]4(R − 1)dW4(t) + ]5(V − 1)dW5(t),

(7)

where

LG � Λ − αS −
Λ
S

+ β1E + β3 + α( 􏼁 − (κ + α)E − β4V − β1S + β2I +(κ + α)

− (d + r + α)I −
β5VI t − τ2( 􏼁

I
−
β2EI t − τ2( 􏼁

I
+(d + r + α) + β6V + rI + κE − αR

−
β6V
R

−
rI t − τ3( 􏼁

R
−
κE

R
+ α − β6 + α( 􏼁V −

β3S
V

+ β6 + α( 􏼁 + β4E + β5I

+
]21 + ]22 + ]23 + ]24 + ]25

2

≤Λ + β3 + κ + d + r + β6 + 5α − α + β1( 􏼁S + β1 + β4 − α( 􏼁E + β2 + β5 − d − α( 􏼁I

− αR − β4 + α( 􏼁V +
]21 + ]22 + ]23 + ]24 + ]25

2

≤A,

(8)

where A is a positive constant. It follows that LG is
bounded. Hence, the rest of the proof is standard [33], so it is
omitted. □

Theorem 2. Define

􏽢R0 �
β1Λ
􏽢]1􏽢]2

+
Λβ3β4
􏽢]1􏽢]2􏽢]5

, (9)

where 􏽢]1 � β3 + α + ]21/2, 􏽢]2 � κ + α + ]22/2, 􏽢]3 � d + r+

α + ]23/2, 􏽢]4 � α + ]24/2, and 􏽢]5 � β6 + α + ]25/2. If 􏽢R0 > 1,
then, system (4) has a unique stationary distribution π(.) and
it admits the ergodic property.

Proof. Let Y(t) is a regular time-homogenous Markov
process in Rn, defined by the stochastic delay differential
equation:

dY(t) � f(Y(t), Y(t − τ), t)dt + 􏽘
n

r�1
gr(Y(t), t)dWr(t). (10)

'e diffusion matrix of the process Y(t) is

Π(y) � ςij(y)􏼐 􏼑,

ςij(y) � 􏽘
n

r�1
g

i
r(y)g

j
r(y).

(11)

□

Lemma 1 ([see 34]). /e Markov process Y(t) has a unique
ergodic stationary distribution π(.) if there exists a bounded
domain B ⊂ Rn with regular boundary Δ and

(i) there is a positive number X such that
􏽐

n
i,j�1 ςij(y)ξiξj ≥X|ξ|2, 5y ∈B, ξ ∈ Rn.

(ii) there exists a non-negative C2-function V such that
LV is negative for any Rn∖B.

With a view to prove 'eorem 2, we need to guarantee
the validity of conditions (i) and (ii) of Lemma 1. Clearly,
condition (i) satisfies; we need to check condition (ii). Define
F5 � F3 + F4, where

F1 � − lnE − ω1lnS + β2 􏽚
t+τ1

t
I s − τ1( 􏼁ds,

F2 � F1 − ω2lnS − ω3lnV + ω3β5 􏽚
t+τ3

t
I s − τ3( 􏼁ds,

F3 � NF2 +(− 2lnS − lnR − lnI),

F4 �
1

η + 1
(S + E + I + R + V)

η+1
.

(12)

ω1 � β1Λ/􏽢]
2
1, ω2 � β3β4Λ/􏽢]

2
1􏽢]5, and ω3 � β3β4Λ/􏽢]1􏽢]

2
5,

0< η< 4α/]21∨]22∨]23∨]24∨]25, where N is a positive constant
so that
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− N􏽢]2 􏽢R0 − 1􏼐 􏼑 + D≤ − 2, (13) where D � max D1, D2􏼈 􏼉 such that

D0 � sup
(S,E,I,R,V)∈R5

+

Λ(S + E + I + R + V)
η

−
􏽢α
2

(S + E + I + R + V)
η+1

􏼨 􏼩,

D1 � sup
(S,E,I,R,V)∈R5

+

N β2 + ω3β5( 􏼁I + 2β1E + 2􏽢]1 + 􏽢]3 + 􏽢] −
􏽢α
4

E
η+1

+ D0􏼨 􏼩,

D2 � sup
(S,E,I,R,V)∈R5

+

N ω1β1 + ω2β1 + ω3β4( 􏼁E + 2β1E + 2􏽢]1 + 􏽢]3 + 􏽢] −
􏽢α
4

I
η+1

+ D0􏼨 􏼩,

D3 � sup
(S,E,I,R,V)∈R5

+

N ω1β1 + ω2β1 + ω3β4( 􏼁E + N β2 + ω3β5( 􏼁I + 2β1E + 2􏽢]1 + 􏽢]3 + 􏽢] −
􏽢α
4

E
η+1

+ I
η+1

􏼐 􏼑 + D0􏼨 􏼩.

(14)

In addition, F5 is continuous and tends to +∞ as
(S, E, I, R, V) approaches the boundary of R5

+ and
‖(S, E, I, R, V)‖⟶∞. Hence, F5 must have a minimum
point in the interior of R5

+.
We define a C2-function F(.): R5

+⟶ R+ as

F(S, E, I, R, V) � F5(S, E, I, R, V)

− F5(S(0), E(0), I(0), R(0), V(0)).
(15)

By It􏽢o’s formula, we obtain

LF1 � − β4V − β1S + β2I + 􏽢]2 + ω1 −
Λ
S

+ β1E + 􏽢]1􏼒 􏼓

≤ −
β1Λ
􏽢]1

+ 􏽢]2 − β4V + β2I + ω1β1E,

LF2 ≤ −
β1Λ
􏽢]1

+ 􏽢]2 − β4V + β2I + ω1β1E + ω2 −
Λ
S

+ β1E + 􏽢]1􏼒 􏼓 + ω3 −
β3S
V

+ 􏽢]5 + β4E + β5I􏼠 􏼡

≤ −
β1Λ
􏽢]1

+ 􏽢]2 + ω1β1 + ω2β1 + ω3β4( 􏼁E + β2 + ω3β5( 􏼁I + ω2􏽢]1 + ω3􏽢]5 − 3
����������

Λβ3β4ω2ω3
3

􏽱

≤ − 􏽢]2
β1Λ
􏽢]1􏽢]2

+
Λβ3β4
􏽢]1􏽢]2􏽢]3

− 1􏼠 􏼡 + ω1β1 + ω2β1 + ω3β4( 􏼁E + β2 + ω3β5( 􏼁I

≔ − 􏽢]2 􏽢R0 − 1􏼐 􏼑 + ω1β1 + ω2β1 + ω3β4( 􏼁E + β2 + ω3β5( 􏼁I

LF3 ≤ − N􏽢]2 􏽢R0 − 1􏼐 􏼑 + N ω1β1 + ω2β1 + ω3β4( 􏼁E + N β2 + ω3β5( 􏼁I −
2Λ
S

+ 2β1E + 2􏽢]1

−
β5VI t − τ2( 􏼁

I
−
β2EI t − τ1( 􏼁

I
+ 􏽢]3 −

β6V
R

−
rI t − τ3( 􏼁

R
−
κE

R
+ 􏽢]4,

LF4 � (S + E + I + R + V)
η
[Λ − αS − αE − (d + α)I − αR − αV]

+
η
2
(S + E + I + R + V)

η− 1 1
2
]21S

2
+
1
2
]22E

2
+
1
2
]23I

2
+
1
2
]24R

2
+
1
2
]25V

2
􏼒 􏼓

≤Λ(S + E + I + R + V)
η

− α(S + E + I + R + V)
η+1

+
η
4

]21∨]
2
2∨]

2
3∨]

2
4∨]

2
5􏼐 􏼑(S + E + I + R + V)

η+1

� Λ(S + E + I + R + V)
η

− α −
η
4

]21∨]
2
2∨]

2
3∨]

2
4∨]

2
5􏼐 􏼑􏼔 􏼕(S + E + I + R + V)

η+1

≔ Λ(S + E + I + R + V)
η

− 􏽢α(S + E + I + R + V)
η+1

,

(16)
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such that 􏽢α � α − η/4(]21∨]22∨]23∨]24∨]25). Hence,

LF � LF5 ≤ − N􏽢]2 􏽢R0 − 1􏼐 􏼑 + N ω1β1 + ω2β1 + ω3β4( 􏼁E + N β2 + ω3β5( 􏼁I −
2Λ
S

+ 2β1E + 2􏽢]1

+ 􏽢]3 −
β6V
R

−
rI

R
−
κE

R
+ 􏽢]4 + Λ(S + E + I + R + V)

η
− 􏽢α(S + E + I + R + V)

η+1
.

(17)

Define a closed bounded set.

B � (S, E, I, R, V) ∈ R5
+: ϵ ≤ S≤

1
ϵ
, ϵ ≤E≤

1
ϵ
, ϵ ≤ I≤

1
ϵ
, ϵ2 ≤R≤

1
ϵ2

, ϵ ≤V≤
1
ϵ

􏼨 􏼩. (18)

By Lemma 1, we need to show that LF≤ − 1 for
(S, E, I, R, V) ∈ R5

+∖Bϵ. such that R5
+∖Bϵ � ∪ 9i�1Bi, where

B1 � (S, E, I, R, V) ∈ R5
+: 0<E< ϵ􏽮 􏽯, B2 � (S, E, I, R, V) ∈ R5

+: 0< I< ϵ􏽮 􏽯,

B3 � (S, E, I, R, V) ∈ R5
+: 0< S<ϵ}􏽮 􏽯, B4 � (S, E, I, R, V) ∈ R5

+: 0<V< ϵ, R> ϵ2􏽮 􏽯,

B5 � (S, E, I, R, V) ∈ R5
+: 0<R< ϵ2, V≤

1
ϵ

􏼚 􏼛, B6 � (S, E, I, R, V) ∈ R5
+: R>

1
ϵ2

􏼨 􏼩,

B7 � (S, E, I, R, V) ∈ R5
+: I>

1
ϵ

􏼚 􏼛, B8 � (S, E, I, R, V) ∈ R5
+: S>

1
ϵ

􏼚 􏼛,

B9 � (S, E, I, R, V) ∈ R5
+: V>

1
ϵ

􏼚 􏼛, B10 � (S, E, I, R, V) ∈ R5
+: E>

1
ϵ

􏼚 􏼛.

(19)

Case 1. If (S, E, I, R, V) ∈B1, then
LF≤ − N􏽢]2 􏽢R0 − 1􏼐 􏼑 + N ω1β1 + ω2β1 + ω3β4( 􏼁E

+ N β2 + ω3β5( 􏼁I + 2β1E + 2􏽢]1

+ 􏽢]3 + 􏽢]4 −
􏽢α
4

E
η+1

+ D0

≤ − N􏽢]2 􏽢R0 − 1􏼐 􏼑 + N ω1β1 + ω2β1 + ω3β4( 􏼁E + D1

≤ − N􏽢]2 􏽢R0 − 1􏼐 􏼑 + N ω1β1 + ω2β1 + ω3β4( 􏼁ϵ + D1 ≤ − 1,

(20)

from condition (10) and − N􏽢]2( 􏽢R0 − 1) +

N(ω1β1 + ω2β1 + ω3β4)ϵ + D1 ≤ − 1, we obtain LF≤ − 1.

Case 2. If (S, E, I, R, V) ∈B2, we have

LF≤ − N􏽢]2 􏽢R0 − 1􏼐 􏼑 + N ω1β1 + ω2β1 + ω3β4( 􏼁E

+ N β2 + ω3β5( 􏼁I + 2β1E + 2􏽢]1

+ 􏽢]3 + 􏽢]4 −
􏽢α
4

I
η+1

+ D0

≤ − N􏽢]2 􏽢R0 − 1􏼐 􏼑 + N β2 + ω3β5( 􏼁I + D2

≤ − N􏽢]2 􏽢R0 − 1􏼐 􏼑 + N β2 + ω3β5( 􏼁ϵ + D2 ≤ − 1,

(21)
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which is obtained from (13) and
− N􏽢]2( 􏽢R0 − 1) + N(β2 + ω3β5)ϵ + D2 ≤ − 1.

Case 3. If (S, E, I, R, V) ∈B3, we get

LF≤N ω1β1 + ω2β1 + ω3β4( 􏼁E + N β2 + ω3β5( 􏼁I −
2Λ
S

+ 2β1E + 2􏽢]1

+ 􏽢]3 + 􏽢]4 + D0 −
􏽢α
4

I
η+1

+ E
η+1

􏼐 􏼑

≤ −
2Λ
S

+ D3

≤ −
2Λ
ϵ

+ D3 ≤ − 1,

(22)

such that 0< ϵ≤ 2Λ/D3 + 1.

Case 4. Let (S, E, I, R, V) ∈B4, one may obtain

LF≤ −
β6V
R

+ N ω1β1 + ω2β1 + ω3β4( 􏼁E

+ N β2 + ω3β5( 􏼁I + 2β1E + 2􏽢]1

+ 􏽢]3 + 􏽢]4 + D0 −
􏽢α
4

I
η+1

+ E
η+1

􏼐 􏼑

≤D3 −
β6
ϵ
≤ − 1,

(23)

where 0< ϵ≤ β6/D3 + 1.

Case 5. If (S, E, I, R, V) ∈B5, we have

LF≤ −
β6V
R

+ N ω1β1 + ω2β1 + ω3β4( 􏼁E

+ N β2 + ω3β5( 􏼁I + 2β1E + 2􏽢]1

+ 􏽢]3 + 􏽢]4 + D0 −
􏽢α
4

I
η+1

+ E
η+1

􏼐 􏼑

≤D3 −
β6
ϵ3
≤ − 1,

(24)

where 0< ϵ≤
��������
β6/D3 + 13

􏽰
.

Case 6. If (S, E, I, R, V) ∈B6, we have

LF≤ −
􏽢α
4

R
η+1

+ D3

≤D3 −
􏽢α
4
ϵ− 2(η+1) ≤ − 1,

(25)

where 0< ϵ≤ [􏽢α/4(D3 + 1)]1/2(1+η).

Case 7. If (S, E, I, R, V) ∈B7, one may obtain

LF≤ −
􏽢α
4

I
η+1

+ D3

≤D3 −
􏽢α
4
ϵ− (η+1) ≤ − 1.

(26)

where 0< ϵ≤ [􏽢α/4(D3 + 1)]1/(1+η).
Cases 8, 9, and 10 are the same as Case 7.
'us, condition (ii) of Lemma 1 holds; hence, system (4)

identifies a unique stationary distribution π(.).

4. Extinction of the Disease

In this section, we discuss conditions that predict the ex-
tinction of the disease. From the formula of the reproduction
number, we can conclude that 􏽣R0 <R0. First, we go through
the following Lemmas [21, 32]

Lemma 2. Let (S(t), E(t), I(t), R(t), V(t)) be the solution of
(4) with initial conditions (5), then

lim
t⟶∞

S(t)

t
� 0,

lim
t⟶∞

E(t)

t
� 0,

lim
t⟶∞

I(t)

t
� 0,

lim
t⟶∞

R(t)

t
� 0,

lim
t⟶∞

V(t)

t
� 0.

(27)

Lemma 3. Assume that α> 1/2(]21∨]22∨]23∨]24∨]25). Let
(S(t), E(t), I(t), R(t), V(t)) be the solution of (4) with initial
conditions (4), we have

lim
t⟶∞

􏽒
t

0 S(r)dW1(r)

t
� 0, lim

t⟶∞

􏽒
t

0 E(r)dW2(r)

t
� 0, lim

t⟶∞

􏽒
t

0 I(r)dW3(r)

t
� 0,

lim
t⟶∞

􏽒
t

0 R(r)dW4(r)

t
� 0, lim

t⟶∞

􏽒
t

0 V(r)dW5(r)

t
� 0.

(28)
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Theorem 3. Assume α> 1/2(]21∨]22∨]23∨]24∨]25). Let
(S(t), E(t), I(t), R(t), V(t)) be the solution of (4) with initial
conditions (5). If R0 < 1, then

lim
t⟶∞

log E(t)

t
+ β2〈I(t)〉􏼢 􏼣≤ (κ + α) R0 − 1( 􏼁< 0 a.s., (29)

which means E(t) and I(t) tend to zero exponentially almost
surely. In other words the disease dies out with probability
one. Moreover,

lim
t⟶∞

(S(t) + R(t) + V(t)) �
Λ
α

� S
+

+ R
+

+ V
+
. (30)

Proof. Taking integration of the first and fifth equations of
(4), we obtain

S(t) − S(0)

t
� Λ − β1〈S(t)E(t)〉 − β3 + α( 􏼁〈S(t)〉

+ ]1
􏽒

t

0 S(r)dW1(r)

t
,

V(t) − V(0)

t
� β3〈S(t)〉 − β6 + α( 􏼁〈V(t)〉 − β4〈V(t)E(t)〉

− β5〈V(t)I(t)〉 + ]5
􏽒

t

0 V(r)dW5(r)

t
.

(31)

'erefore,

〈S(t)〉 �
1

β3 + α( 􏼁
Λ − β1〈S(t)E(t)〉 + ]1

􏽒
t

0 S(r)dW1(r)

t
−

S(t) − S(0)

t
⎡⎢⎣ ⎤⎥⎦

≤
Λ

β3 + α( 􏼁
+

1
β3 + α( 􏼁

]1
􏽒

t

0 S(r)dW1(r)

t
−

S(t) − S(0)

t
⎛⎝ ⎞⎠ ≔

Λ
β3 + α( 􏼁

+ φ1(t),

(32)

so that limt⟶∞φ1(t) � 0. Additionally, we have

〈V(t)〉 �
1

β6 + α( 􏼁
β3〈S(t)〉 − β4〈V(t)E(t)〉 − β5〈V(t)I(t)〉 + ]5

􏽒
t

0 V(r)dW5(r)

t
−

V(t) − V(0)

t
⎡⎢⎣ ⎤⎥⎦

≤
β3〈S(t)〉

β6 + α( 􏼁
+

1
β6 + α( 􏼁

]5
􏽒

t

0 V(r)dW5(r)

t
−

V(t) − V(0)

t
⎛⎝ ⎞⎠

≤
β3Λ

β6 + α( 􏼁 β3 + α( 􏼁
+

β3
β6 + α( 􏼁

φ1(t) +
1

β6 + α( 􏼁
]5

􏽒
t

0 V(r)dW5(r)

t
−

V(t) − V(0)

t
⎛⎝ ⎞⎠

≔
β3Λ

β6 + α( 􏼁 β3 + α( 􏼁
+

β3
β6 + α( 􏼁

φ1(t) + φ2(t),

(33)

where limt⟶∞φ2(t) � 0. Applying It􏽢o’s formula to the
second equation of system (4) yields

dlog(E(t)) � β4V(t) + β1S(t) − β2I(t) − κ + α +
]22
2

􏼠 􏼡􏼠 􏼡dt

+ ]2dW2(t).

(34)

Integrating equation (34) from 0 to t results in

log E(t) − log E(0)

t
� β4〈V(t)〉 + β1〈S(t)〉 − β2〈I(t)〉 − κ + α +

]22
2

􏼠 􏼡 +
]2dW2(t)

t
. (35)
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'en, from (32) and (33), we have

log E(t)

t
+ β2〈I(t)〉≤ β4

β3Λ
β6 + α( 􏼁 β3 + α( 􏼁

+
β3

β6 + α( 􏼁
φ1(t) + φ2(t)􏼢 􏼣

+ β1
Λ

β3 + α( 􏼁
+ φ1(t)􏼢 􏼣 − (κ + α) +

]2dW2(t)

t
+
log E(0)

t

�
β4β3Λ

β6 + α( 􏼁 β3 + α( 􏼁
+

β1Λ
β3 + α( 􏼁

− (κ + α)

+
β3β4
β6 + α

+ β1􏼠 􏼡φ1(t) + β4φ2(t) +
]2dW2(t)

t
+
log E(0)

t

≔
β4β3Λ

β6 + α( 􏼁 β3 + α( 􏼁
+

β1Λ
β3 + α( 􏼁

− (κ + α) + φ3(t),

(36)

and limt⟶∞φ3(t) � 0 a.s. If R0 < 1, from (36),

lim
t⟶∞

log E(t)

t
+ β2〈I(t)〉􏼢 􏼣≤

β4β3Λ
β6 + α( 􏼁 β3 + α( 􏼁

+
β1Λ
β3 + α( 􏼁

− (κ + α) � (κ + α) R0 − 1( 􏼁< 0. (37)

'erefore, limt⟶∞E(t) � limt⟶∞I(t) � 0. From
model (4), we get

d(S(t) + E(t) + I(t) + R(t) + V(t)) � [Λ − α(S(t) + E(t) + I(t) + R(t) + V(t)) − dI(t)]dt

+ ]1S(t)dW1(t) + ]2E(t)dW2(t) + ]3I(t)dW3(t) + ]4R(t)dW4(t) + ]5V(t)dW5(t).
(38)

Taking integration of (38) from 0 to t, one obtains

〈S(t) + E(t) + I(t) + R(t) + V(t)〉 �
Λ
α

+ φ4(t), (39)

where

φ4(t) �
1
α

1
t

(S(0) + E(0) + I(0) + R(0) + V(0)) −
1
t

(S(t) + E(t) + I(t) + R(t) + V(t))􏼔

− d〈I(t)〉 +
]1 􏽒

t

0 S(r)dW1(r)

t
+
]2 􏽒

t

0 E(r)dW2(r)

t

+
]3 􏽒

t

0 I(r)dW3(r)

t
+
]4 􏽒

t

0 R(r)dW4(r)

t
+
]5 􏽒

t

0 V(r)dW5(r)

t
⎤⎥⎦.

(40)
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One can easily obtain that limt⟶∞φ4(t) � 0, and since
limt⟶∞E(t) � limt⟶∞I(t) � 0, we have

limsup
t⟶∞

〈S(t) + E(t) + I(t) + R(t) + V(t)〉 �
Λ
α

, (41)

which implies that limt⟶∞(S(t) + R(t) + V(t))

� Λ/α � S+ + R+ + V+, as required; hence, the proof is
completed. □

5. Numerical Simulations

In this section, we numerically simulate the solution of the
stochastic system (4) using Milstein’s higher-order method
[35]. 'e discretization transformation takes the form:

Sj+1 � Sj + Λ − β1SjEj − β3 + α( 􏼁Sj􏽨 􏽩h + ]1Sjξ1,j

��
h

√
+
]21
2

Sj ξ21,j − 1􏽨 􏽩h,

Ej+1 � Ej + β4VjEj + β1SjEj − β2EjI j− n1( ) − (κ + α)Ej􏼔 􏼕h + ]2Ejξ2,j

��
h

√
+
]22
2

Ej ξ22,j − 1􏽨 􏽩h,

Ij+1 � Ij + β5VjI j− n2( ) + β2EjI j− n1( ) − (d + r + α)Ij􏼔 􏼕h + ]3Ijξ3,j

��
h

√
+
]23
2

Ij ξ23,j − 1􏽨 􏽩h,

Rj+1 � Rj + β6Vj + rI j− n3( ) + κEj − αRj􏼔 􏼕h + ]4Rjξ4,j

��
h

√
+
]24
2

Rj ξ24,j − 1􏽨 􏽩h,

Vj+1 � Vj + β3Sj − β6 + α( 􏼁Vj − β4VjEj − β5VjI j− n2( )􏼔 􏼕h + ]5Vjξ5,j

��
h

√
+
]25
2

Vj ξ25,j − 1􏽨 􏽩h,

(42)

where ξi,j, i � 1, . . . , 5 are mutually independent N(0, 1)

random variables, n1, n2, and n3 are integers such that the
time-delays can be expressed in terms of the step-size as
τ1 � n1h, τ2 � n2h, and τ3 � n3h. We choose a set of pa-
rameters Λ � 0.5, β1 � 0.9905, β2 � 1.9, β3 � 0.6, β4 � 0.928,
β5 � 1.93, β6 � 0.9092, α � 0.5, κ � 0.003, d � 0.01, and
r � 0.001, with τ1 � τ2 � 3 and τ3 � 4.

Figure 2 indicates that the system has a unique sta-
tionary distribution and the disease is persistent by
'eorem 2, such that the intensities of white noise are
relatively small where 􏽢R0 > 1 with ]i � 0.01, i � 1, . . . , 5. In
Figure 3, we increase slightly the intensities of white noise
to ]1 � 0.09, ]2 � 0.05, ]3 � 0.08, ]4 � 0.09, and ]5 � 0.1
with the the same set of parameters as in Figure 2, that is
the positive equilibrium is globally asymptotically stable
such that the stochastic solution fluctuates around the
deterministic steady state value and the disease still
persistent. However, we increase the intensities of white
noise ]1 � 0.1, ]2 � 0.5, and ]3 � ]4 � ]5 � 0.2 such that
􏽢R0 < 1. Figure 4 implies that the disease will ultimately
tend to extinction under the relatively strong white noises
]1 � 0.1, ]2 � 0.5, ]3 � 0.3, ]4 � 0.4, and ]5 � 0.2 confirmed
by'eorem 3. In Figure 5, we investigate the impact of the
transition rate from susceptible into vaccinated class with
different values of β3, which indicates that the number of
susceptible, exposed, and infected individuals decrease as
β3 increases, while the recovered individuals increase as β3
increases, other parameter values are the same as in
Figure 2.

Remark 1. Under certain criteria with a large magnitude of
white noises, the disease can be eradicated, whereas the small
intensity of white noises can preserve a stationary distribution.

5.1. Fitting the DDEs Model to Real Data. To investigate the
reality of the deterministic model (2), we fit real data for the
number of the confirmed cases of COVID-19 in the UAE
during June 22, 2021, to August 11, 2021 [36] with model (2)
using least-square approach [37, 38].

Given a set of real data in Table 1 and a mathematical
model (2), the objective function (weighted least squares
function) is as follows:

ΦH(p) � 􏽘
5

i�1
􏽘

M

j�1
x

i
tj, p􏼐 􏼑 − X

i
j􏽨 􏽩

2
hij. (43)

Here, xi, i � 1, . . . , 5 represents the variables S, E, I, R, V;
p is the model parameter to be estimated. 'us, we then try
to attain the optimum parameter 􏽢p that satisfies
Φ(􏽢p)≤minpΦ(p) ≡ maxpL(p), where L(p) is the likeli-
hood function [37, 38]. However, the estimation of the
parameters that appear in the undisturbed model (2) is
considered as an optimization problem. Herein, the data are
scaled in ten thousands.

Parameters estimates are 􏽢β2 � 1.99854, 􏽢β5 � 1.9813,
􏽢β6 � 0.219092, 􏽢κ � 0.01099, and 􏽢r � 0.047; therefore,
􏽥R0 � 1.54> 1, see Figure 6; while Figure 7 illustrates the
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Figure 2: Numerical simulations of model (4), which shows that model (4) has a unique ergodic stationary distribution where the disease is
persistent and 􏽢R0 > 1 with ]i � 0.01, i � 1, . . . , 5.
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Figure 3: 'e solutions of the stochastic system (4) and the undisturbed system (2) left banners such that 􏽢R0 > 1. While right banners show
the density function diagram of S(t), R(t), and V(t).
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Figure 4: Numerical simulations of model (4) shows that the disease dies out when the white noise is relatively large such that 􏽢R0 < 1.
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Figure 5:'e impact of the transition rate from susceptible into vaccinated class with different values of β3, which indicates that the number
of susceptible, exposed, and infected individuals decrease as β3 increases, while the recovered individuals increase as β3 increases.
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response of the stochastic model (4) with the estimated
parameters; therefore, the stochastic fluctuations enhance
the consistency of the model with the real data.

'e steps of parameter estimations are summarized as
follows:

(1) Guess an initial parameter estimate p0;
(2) We then solve the system using a deterministic

model (2) using the current parameters;
(3) A minimization routine, such as OPTIMTOOL in

Matlab, is then used to adjust the parameter values;
(4) When the valueΦ(p) cannot be further reduced, the

best fit parameter values have been determined;
(5) Determine if the chosen set of parameters is ac-

ceptable or not.

6. Concluding Remarks

In this paper, we extended the classical SEIR epidemic model
to include vaccination and time-delays that incorporate
randomness into the equations by including white noise
perturbations on some parameters. 'e model has been
examined by fitting to real observations in UAE, during June
22, 2021, to August 11, 2021. 'e study found that disease
extinction is more likely if the noise intensity is high, and this

Table 1: Number of recorded COVID-19 cases in the UAE, from June 21, 2021, to August 11, 2021 [36].

Time (days) June 21 June 22 June 23 June 24 June 25 June 26 June 27
Infected cases 1,850 1,964 2,167 1,988 2,161 2,223 2,282
Time (days) June 28 June 29 June 30 July 1 July 2 July 3 July 4
Infected cases 2,122 1,747 1,675 1,663 1,632 1,599 1,573
Time (days) July 5 July 6 July 7 July 8 July 9 July 10 July 11
Infected cases 1,552 1,513 2,04 2,184 1,539 1,529 1,52
Time (days) July 12 July 13 July 14 July 15 July 16 July 17 July 18
Infected cases 1,518 1,542 1,522 1,529 1,508 1,541 1,506
Time (days) July 19 July 20 July 21 July 22 July 23 July 24 July 25
Infected cases 1,547 1,521 1,507 1,529 1,549 1,539 1,55
Time (days) July 26 July 27 July 28 July 29 July 30 July 31 August 1
Infected cases 1,52 1,537 1,519 1,537 1,548 1,52 1,537
Time (days) August 2 August 3 August 4 August 5 August 6 August 7 August 8
Infected cases 1,519 1,537 1,548 1,519 1,508 1,52 1,545
Time (days) August 9 August 10 August 11
Infected cases 1,41 1,321 1,334
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Figure 6: 'e fitted curve of DDEs model (2) and the confirmed COVID-19 cases in the UAE from June 22, 2021 to August 11, 2021. 'e
estimated parameters are 􏽢β2 � 1.99854, 􏽢β5 � 1.9813, 􏽢β6 � 0.219092, 􏽢κ � 0.01099, and 􏽢r � 0.047.
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Figure 7: 'e response of the stochastic model (4) with the es-
timated parameters 􏽢β2 � 1.99854, 􏽢β5 � 1.9813, 􏽢β6 � 0.219092,
􏽢κ � 0.01099, and 􏽢r � 0.047, such that the intensities of white noises
are ]1 � 0.03, ]2 � 0.02, ]3 � 0.02, ]4 � 0.04, and ]5 � 0.04.
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can be used to develop some effective control strategies.
Biological systemsmodels should include random influences
as they deal with real-life subsystems, which cannot be
adequately isolated from factors outside the system. 'e
addition of white noise and time-delays adds complexity to
the model and enriches its dynamics.

Our conclusions are as follows.

(i) When the intensity of white noise is relatively low,
the disease will persist as long as 􏽢R0 > 1 (see Fig-
ures 2 and 3) and will die out with greater white
noise; see Figure 4.

(ii) 'e stochastic fluctuations improve the consistency
of the model with the real data; see Figure 7.

(iii) It is shown that the disease can be controlled effi-
ciently if the level of vaccination is increased.
'erefore, as β3 is increased, the solution of model
(4) fluctuates around the disease-free equilibrium.

(iv) If the stochastic perturbations ]i � 0, i � 1, . . . , 5,
then, the threshold of the stochastic model (4) can
be reduced to that of the deterministic counterpart.
'erefore, 􏽢R0 > 1 is a generalized result indicating
the persistence of the disease.

(v) Using mathematical models to develop, manufac-
ture, and deliver vaccines is more efficient and
results in safer and more efficient vaccines.

Future research will focus on stochastic epidemic models
with Markovian switching and time-delays.
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