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Sequential recommendation algorithm can predict the next action of a user by modeling the user’s interaction sequence with an
item. However, most sequential recommendation models only consider the absolute positions of items in the sequence, ignoring
the time interval information between items, and cannot effectively mine user preference changes. In addition, existing models
perform poorly on sparse data sets, which make a poor prediction effect for short sequences. To address the above problems, an
improved sequential recommendation algorithm based on short-sequence enhancement and temporal self-attention mechanism
is proposed in this paper. In the proposed algorithm, a backward prediction model is trained first, to predict the prior items in the
user sequence. &en, the reverse prediction model is used to generate a batch of pseudo-historical items before the initial items of
the short sequence, to achieve the goal of enhancing the short sequence. Finally, the absolute position information and time
interval information of the user sequence are modeled, and a time-aware self-attention model is adopted to predict the user’s next
action and generate a recommendation list. Various experiments are conducted on two public data sets. &e experimental results
show that the method proposed in this paper has excellent performance on both dense and sparse data sets, and its effect is better
than that of the state of the art.

1. Introduction

With the development of Internet technology, recommender
systems have become one of the indispensable tools in
people’s daily life [1–4]. Compared with traditional methods,
the sequential recommendation model performs well on the
Top-N recommendation problem [5]. In recent years, with
the development of deep learning technology, sequential
recommendation models based on deep learning have been
widely used, such as e-commerce shopping platforms,
medical and health services [6, 7], and audiovisual platforms
[8]. &e user’s interaction behavior with items in such ap-
plication platforms can be regarded as a sequence of be-
haviors in chronological order. Based on this, researchers
have proposed various sequential recommendation models

to mine and analyze user-item interaction information. &e
purpose of these models is to provide users with a per-
sonalized recommendation list containing N items to help
users filter out valuable information.

&e recommendation model based on the Markov chain
(MC) [9] method is one of the early methods of sequential
recommendation, which assumes that the user’s next action
is determined by his historical behavior and transforms the
recommendation problem into a sequence prediction
problem. In recent years, with the continuous breakthroughs
of the deep neural networks (DNN) in the field of artificial
intelligence [10–12], researchers have tried to introduce a
series of deep neural network models into the field of rec-
ommendation and have achieved a series of results [13–15].
For example, Huang et al. [16] combined the traditional MC
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method and the recurrent neural network (RNN) to opti-
mize the recommendation model and improve the recom-
mendation accuracy. Based on long-short-term memory
(LSTM) network, Xu et al. [17] combined self-attention
network to capture users’ complex and dynamic behavioral
preferences. Inspired by the semantic understanding model,
Sun et al. [18] applied the bidirectional attention model to
sequential recommendation, combining user context in-
formation and making recommendations. &e existing se-
quential recommendation models tend to perform poorly
when there are a large number of short-sequence users in the
data set [19]. In addition, most of the existing sequential
recommendationmodels only consider the absolute position
information of the user sequence and assume that each item
has the same time interval, ignoring the impact of the time
interval between items on the recommendation results,
which cannot capture user preferences effectively [20].

To address these issues introduced above, some im-
proved sequential recommendation models are proposed.
For example, Zhao et al. [21] employed a deep bidirectional
long-short-termmemory network and attention mechanism
to capture the changes in user preferences. Liu et al. [22] first
used the method of reverse training short sequences to
expand short sequences and fine-tuned the model through
the enhanced short sequences, which can achieve certain
results on sparse data sets. Ahmadian et al. [23] adopted a
deep learning based trust- and tag-aware recommender
system, to extract potential features through sparse auto-
matic encoder, which can effectively solve the problem of
data sparsity. Li et al. [24] adopted a time-aware self-at-
tention mechanism to explore the effect of different time
intervals on the prediction results. &ese methods lay a good
foundation for the research of sequential recommendation
models, but there are still some problems that are not well
solved. For example, the pseudo-historical items generated
by direct reverse training are not accurate enough, and the
time interval information is not sufficiently mined to capture
user preferences well.

Based on previous research, we propose a sequential
recommendation model based on short-sequence en-
hancement and improved time-aware self-attentive mech-
anism to address the above-mentioned problems. In the
proposed model, the data set is first preprocessed to divide
users into long-sequence sets and short-sequence sets. &en,
by reverse training the long-sequence set, a reverse pre-
diction model is generated. Finally, the model is transferred
for the short sequence, and a batch of pseudo-historical
items is generated before the initial item of the short se-
quence, to enhance the short sequence and solve the
problem of data sparsity. At the same time, the model adopts
an improved time interval self-attention mechanism, which
not only considers the influence of absolute location in-
formation on the recommendation effect but also considers
the influence of the time interval information between any
two items on the recommendation result.

&e proposed model in this paper can fully reflect the
changes of user preferences over time and improve the
accuracy of the recommender system. In summary, the main
contributions of this paper are as follows: (1) pretrain a

reverse prediction model, use the transfer learning method
to reverse predict short sequences, and generate a batch of
pseudo-historical items before the initial items of the short
sequence, so as to achieve the purpose of enhancing short
sequences. (2) Combined with the absolute position infor-
mation and time interval information of the item, an im-
proved time-aware self-attention mechanism is used to give
the absolute position weight and time interval weight of
different items, fully exploit the change of user behavior
preferences, predict the user’s next action, and generate a list
of recommendations. (3) Extensive experiments on two real
data sets are conducted. &e results demonstrate the ef-
fectiveness of the proposed model, which can outperform
existing methods on two different metrics. In addition, the
influence of each key component in the proposed model on
the recommendation results is discussed through multiple
experiments.

&is paper is organized as follows. Section 2 introduces
the related works. Section 3 gives out the details of the
proposed model. Section 4 provides experiments and
analysis of results. Section 5 discusses the parameters and
important components of the proposed algorithm. Section 6
provides the conclusions.

2. Related Works

2.1. Sequential Recommendation Model. &e earliest se-
quential recommendation models are mainly based on the
MCmethod [25]. &ese MC-based models have a significant
improvement over other types of recommendation algo-
rithms in terms of short-term prediction. However, this type
of model cannot capture the long-term behavioral features in
the user sequence and has low accuracy and high compu-
tational complexity in long-term prediction.

As deep learning technology shines in the fields of
machine vision and natural language processing [26, 27], the
introduction of deep learning technology into recommender
systems has also become the focus of researchers. For ex-
ample, Zhang et al. [28] designed a new session-based
recommendation method based on recurrent neural net-
work, which fuses user’s general preference information and
dynamic preference information. Sun et al. [29] proposed a
method based on temporal context awareness and RNN,
which can effectively capture the correlation between items.
In addition, long-short-term memory (LSTM) and gated
recurrent unit (GRU) (two popular variants of RNNs) have
also achieved results in the field of recommendation. For
example, Yuan et al. [30] computed the global state tran-
sitions of user sequences to model user interest preference
changes, based on an improved GRU model. Zhao et al. [31]
proposed a content-aware movie recommendation model
based on LSTM, which effectively utilizes the long-term and
short-term information of the sequence for content per-
ception andmovie recommendation. However, most models
assume that user behavior sequences are simple time-se-
quential sequences, without considering the time interval
information between items. At the same time, existing
models perform poorly on sparse data sets and short-se-
quence users.
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2.2. Transformer-Based Model. Attention mechanism has
achieved great results in a large number of works, such as
image processing [32, 33] and natural language processing
[34]. &e essence of the attention mechanism can be un-
derstood as selecting some important information from a
large amount of information and giving themweights, where
the size of the weights represents the importance of the
information. In recent years, transformer, a neural network
architecture based on pure attention mechanism, has
achieved excellent performance and effects in the field of
machine translation [35]. Inspired by this, researchers in-
troduced the transformer model into the recommender
system [36] and achieved good results. &e transformer-
based model uses scaled dot-product attention, which is
presented as follows:

Attention(Q, K, V) � Softmax
QK

T

��
d

√􏼠 􏼡V, (1)

where Q, K, V are three matrices representing queries, keys,
and values, respectively;

��
d

√
is the scaling factor, which is

used to avoid the inner product value being too large; and
Softmax is the normalized function [33].

&e attention function can be described as mapping a
query and a set of key-value pairs to an output, where the
queries, keys, values, and output are all vectors. &e output
is computed as a weighted sum of the values. &e trans-
former model adopts the multihead attention mechanism,
which executes the attention function in parallel, and
connects each output value with item linearly again to
obtain the final result. &e multihead attention mechanism
enables the model to focus on the information of different
subspaces from different locations at the same time. &e
architecture of the transformer-based model is shown in
Figure 1.

3. Proposed Sequential
Recommendation Model

In this paper, a sequential recommendationmodel (SeTsRec)
based on short-sequence enhancement and temporal self-
attention mechanism is proposed, which is shown in Fig-
ure 2. First, the original data are preprocessed, where users
are divided into long-sequence user sets and short-sequence
user sets; and then the long-sequence sets are reversely input
into the transformer network to train a reverse prediction
model. Subsequently, inspired by the transfer learning
method [37], this reverse prediction model is transferred to
short-sequence users to generate a batch of pseudo-historical
items before the initial item of the short-sequence user
behavior list. By combining pseudo-historical items and
short-sequence user behavior lists, an augmented sequence
of short sequences is generated to enhance short sequences.
Finally, the long sequences and enhanced short sequences
are used as input to train a time-aware self-attention rec-
ommendation model and predict the user’s next action. &e
model proposed in this paper will be described in detail as
follows.

3.1. ProblemDescription. In the sequential recommendation
problem, we assume that U � u1, u2, . . . , un􏼈 􏼉 is the user set
of the system, where n is the number of the users in the data
set, and I � i1, i2, . . . , im􏼈 􏼉 is the item set of the system, where
m is the number of the items in the data set. For a certain
user u, Su � i1, i2, . . . , iw􏼈 􏼉 and Tu � ti1

, ti2
, . . . , tiw

􏽮 􏽯 are the
user behavior sequence and time series, respectively, indi-
cating that the length of the behavior sequence of the user u

is w. Each item in the behavior sequence Su is arranged in the
chronological order of the user’s interaction with it, and each
element in the time sequence Tu represents the actual in-
teraction time between the user u and the item i. At a certain
moment, given the user’s behavior sequence Su and time
series Tu, the goal of the model is to predict the next item
that the user u is most likely to interact with, which is
expressed as

p iw+1( 􏼁 � f i1, . . . , iw, ti1
, . . . , tiw

􏼐 􏼑, (2)

where p(·) is the output probability of a certain item and
f(·) is the nonlinear function that needs to be learned.

Recommendation systems usually provide users with
multiple recommendation results and finally generate a
recommendation list containing N items. Set
Yu � yu

1 , yu
2 , . . . , yu

N􏼈 􏼉 as the output possibility of all the
candidates, according to the output probability of the
candidates, select the previousN items for recommendation,
which is the famous Top-N recommendation problem in the
recommendation system.

3.2. Short-Sequence Enhancement. &e sequential recom-
mendation algorithm is a recommendation method that
predicts the user’s next action by mining the information
contained in the user’s behavior sequence. &erefore, the
validity of user behavior sequence information is crucial.
Existing sequential recommendationmethods have achieved
good results. However, most of the existing methods do not
solve the short-sequence prediction problem well and often
perform poorly on sparse data sets. To deal with the limi-
tation problem of the sequential recommendation model on
sparse data sets, the proposed method in this paper utilizes
the transfer learning to enhance short sequences on the basis
of existing research, which will be introduced in detail as
follows.

3.2.1. Reverse Prediction Model. Ideally, in the field of
machine learning, it is always expected that the data sets used
for model training are dense and efficient. However, in the
actual research process, the data sets often have a large
amount of data sparse phenomenon. In sparse data sets,
there are often a large number of missing or zero data, which
makes the data availability very poor, and brings many
difficulties to establish the recommendation models.

In this paper, the user set U is first divided into a long-
sequence user set UL and a short-sequence user set US

according to the length of the user sequence. &e long-se-
quence user set UL is a dense datas et, and the short-se-
quence user set US is a sparse data set. For the long-sequence
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user setUL, the behavior sequence SuL can be obtained. In this
paper, the long sequence is 
rst reversed to obtain the re-
verse sequence Sr, and then the reverse sequence Sr is input
into the transformer layer for training, to obtain a reverse
prediction model. For the user u, the purpose of this reverse
prediction model is to predict the previous item of the se-
quence SuL � i1, i2, . . . , in{ }:

yuLi0 � f SuL: i( ), (3)

where yuLi0 represents the previous item of the item i1 in the
sequence SuL. Although the model is reverse-trained, the
transformer network is also able to mine interitem corre-
lations, which has been demonstrated in previous work [22].

3.2.2. Pseudo-Historical Item Generation. �e existing
methods often regard the data set as a whole for recom-
mendation tasks, which ignore the di­erent data quality of
di­erent users in the same data set. Speci
cally, some users
have interacted more with the item, and the data of these
users is relatively rich and reliable; while some users have
little interaction data with the item, so the data of these users
are sparse and can be poor usability. In order to solve this

problem, this paper uses the transfer learning method to
transfer the reverse prediction model of long-sequence users
obtained above to short-sequence users [38]. �e long-se-
quence reverse prediction task is taken as the source task,
and the short-sequence reverse prediction task is taken as the
target task. By fully mining the rich data information
provided by the long-sequence users, the data sparsity
problem of the short-sequence users is alleviated, which can
improve the overall recommendation quality. Taking the
short-sequence set as input, the reverse prediction model is
used to generate pseudo-history items of short-sequence
users, namely:

yuSi0 � f SuS : i( ), (4)

where SuS represents the behavior sequence of the short-
sequence user set US and y

uS
i0
represents the previous item of

the item i1 in the sequence SuS .
For a data set, we de
ne the length L to represent the

threshold for the short-sequence user set. Namely, if the
length of a sequence (denoted by |Su|) is less than L, this
sequence is regarded as a short sequence; otherwise, the
sequence is regarded as a long sequence.

In this paper, we denote the generated set of pseudo-
historical items as iu−q+1, . . . , i

u
−1, i

u
0{ } and place this set before

the initial items iu1 of the original short sequence to form an
augmented short sequence, where q is the total number of
pseudo-historical items generated by short sequences. Fig-
ure 3 shows the enhanced short-sequence set, in which the
yellow part represents the generated pseudo-historical item,
and the green part represents the original short sequence. In
Figure 3, it is assumed that q � 3, L � 4. �e generated
enhanced short sequence is denoted by

Sunew � y−q+1, . . . , y−1, y0, i1, i2, . . . , in{ }. (5)

3.3. Time-Aware Self-Attention Model. �e existing se-
quential recommendation model simply regards the user’s
behavior list as a sequential sequence according to the in-
teraction time between the user and the item. In addition,
the items are regarded as having the same time interval.
Speci
cally, as shown in Figure 4(a), if the user A and the
user B have been exposed to the same item, the traditional
method will regard the time interval between the items in the
two sequences as a 
xed value of N days, which will lead to
the same result for the two di­erent users. However, such a
result is unreasonable because the actual time that the user A
and the user B have access to these items is di­erent.

In the actual application scenarios, the time interval
between items will be di­erent even if the user’s behavior list
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Figure 1: �e architecture of the transformer-based model, where Q, K, V are three matrices representing queries, keys, and values,
respectively.
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Figure 2: �e framework of the proposed model, where SuL rep-
resents the behavior sequence of the long-sequence user set UL; SuS
represents the behavior sequence of the short-sequence user setUS;
yuLi0 represents the previous item of the item i1 in the sequence SuL;
yuSi0 represents the previous item of the item i1 in the sequence SuS ;
and Sunew is the generated enhanced short sequence.
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is exactly the same due to the di­erent actual interaction
time between users and items. As shown in Figure 4(b),
although the user A and the user B have been exposed to the
same items, the time interval between items is di­erent. In
this case, if the model can combine the di­erent time interval
information between the items, it is possible to make more
accurate recommendation results. To solve the above
problems, this paper adopts an improved time-aware self-
attention model. �e overall framework of the proposed
model is shown in Figure 5, which will be introduced in
detail as follows.

3.3.1. Time Interval Matrix. After getting the augmented
sequence of user behavior Sunew, it is used as model input
together with the long-sequence SuL. First, the two di­erent
types of behavior sequences are converted into a 
xed-length
sequence S:

Sunew ∪ S
u
L⟶ S � s1, s2, . . . , sm( ), (6)

where m represents the maximum sequence length of the
input model. If the length of the sequence Sunew or SuL is
greater than m, only the latest m items are considered;
otherwise, padding items are added to the left of the se-
quence S until its length reaches m.

Similarly, for the time series Tunew and TuL, they can be
converted to a 
xed sequence t:

Tunew ∪T
u
L⟶ t � t1, t2, . . . , tm( ). (7)

If the length of the sequence Tunew or TuL is greater thanm,
only the latest m items are considered; otherwise, the time
corresponding to the 
rst item t1 is used on the left side of
the sequence t, and padding it until its length reachm. In this
study, for the time of the pseudo-historical items generated
in Section 3.2.2, the average time interval tavg �
∑i�1m ∑j�1m ruij/2 is used to de
ne them in turn, which are
calculated as follows:

ty0 � t1 − tavg,
ty−1 � ty0 − tavg,
⋮

ty−q+1 � ty−q+2 − tavg.




(8)

After obtaining the user’s 
xed time series
t � (t1, t2, . . . , tm), de
ne the time interval between any
items as △t � |ti − tj|. Due to the di­erent frequency of
interaction between di­erent users and items, this paper
adopts the relative length of the time interval between items,
which is de
ned as follows [24]:

ruij �
Δt
rminu

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣,

rminu � min(Δt).

(9)
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Figure 3: �e example of the short-sequence enhancement process.
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Figure 4: �e e­ect of di­erent time intervals on recommendation results. (a) Traditional sequential recommendation. (b) Our proposed
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Finally, the time interval matrix Ru of the user u can be
obtained:

R
u

�

r
u
11 r

u
12 · · · r

u
1m

r
u
21 r

u
22 · · · r

u
2m

⋮ ⋮ ⋱ ⋮

r
u
m1 r

u
m2 · · · r

u
mm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

3.3.2. Time-Aware Self-Attention Module. (1) Time-Aware
Self-Attention Layer. For each input sequence, an embedding
layer is applied to convert the user behavior sequence into
item embedding matrix EI ∈ Rm×d, absolute position in-
formation into position embedding matrix EP

K, EP
V ∈ R

m×d,
and time interval information into time interval embedding
matrix ER

K , ER
V ∈ R

m×m×d (d is the latent dimension):

E
I

� ms1, ms2, . . . , msm􏼂 􏼃
T
,

E
P
K � p

k
1, p

k
2, . . . , p

k
m􏽨 􏽩

T
,

E
P
V � p

v
1, p

v
2, . . . , p

v
m􏼂 􏼃

T
,

E
R
K �

r
k
11 r

k
12 · · · r

k
1m

r
k
21 r

k
22 · · · r

k
2m

⋮ ⋮ ⋱ ⋮

r
k
m1 r

k
m2 . . . r

k
mm

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

E
R
V �

r
v
11 r

v
12 · · · r

v
1m

r
v
21 r

v
22 · · · r

v
2m

⋮ ⋮ ⋱ ⋮

r
v
m1 r

v
m2 . . . r

v
mm

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(11)

&en a new sequence Z ∈ Rm×d is calculated:

Z � z1, z2, . . . , zm􏼂 􏼃
T
, (12)

where zi ∈ R
d is obtained by the input item embedding,

absolute position embedding, and time interval embedding,
namely

Zi � 􏽘

j

m

αij msjW
V

+ r
V
ij + p

V
j + bi􏼐 􏼑,

αij �
exp eij􏼐 􏼑

􏽐
k�1
m exp eik( 􏼁

,

eij �
msjW

Q
msjW

K
+ r

k
ij + p

k
j􏼐 􏼑

T

��
d

√ ,

(13)

where WV, WQ, WK ∈ Rd×d, respectively, represent the
input itemmatrix of the value, query and key;

��
d

√
is the scale

factor, which is used to prevent the inner product from being
too large; and bi is the bias term.

(2) Point-Wise Feed-Forward Network.&e self-attention
layer of the model is mainly based on linear combination to
realize the combination of absolute position information
and relative time interval information of items. In order to
make the model have nonlinear characteristics and consider
the interaction between different latent dimensions, we
apply a point-wise feed-forward network to each output of
the self-attention layer:

FFN zi( 􏼁 � G ziW1 + b1( 􏼁W2( 􏼁 + b2, (14)

where G(·) is an activation function, which is ELU in this
paper. &e main reason of using ELU function is that it can
solve the Dead Relu problem, while reducing the influence of
the bias term offset, and the learning rate is faster.
W1, W2 ∈ R

d×d represents the weight matrix and
b1, b2 ∈ R

d represents the bias term.
(3) Stacking Self-Attention Blocks. With the continuous

stacking of self-attention layers and point-wise feed-forward
networks, problems such as overfitting and long training
time will occur. In order to solve these problems, this paper
adopts the residual connection, dropout, and layer nor-
malization processing methods [36]:

Zi � zi + Dropout FFN LN zi( 􏼁( 􏼁( 􏼁,

LN(x) �
x − μ
�����
σ2 + ε

􏽰 ⊙ c + β,
(15)

where ⊙ is the element-level product; μ, σ represents the
mean and variance of x; and c, β represents the learned scale
factors and bias terms.

&e specific workflow is as follows: for each self-atten-
tion block, layer normalization is first applied to each input
zi, which is beneficial to stabilize and speed up the training
process of the neural network. &en, the output of the self-
attention layer is applied to the point-wise feed-forward
network, to give the model nonlinearization features. Fi-
nally, a dropout regularization technique is applied to the

Prediction Layer

 Time-aware Self-attention
Model 

Embedding Layer

uS

uT

S

uR

u
ijr

Input Output

Input Input

Figure 5: &e framework of the proposed model, where Tu rep-
resents the time series of user u; Ru is the time interval matrix of
user u; ru

ij is the element in the time interval matrix Ru; Su rep-
resents the behavior sequence of user u; and S is the absolute
position information sequence of the item.
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output of the position feed-forward network, to alleviate the
overfitting problem that occurs in deep neural networks.&e
main reason for using the dropout regularization technology
is that it can control overfitting by artificially destroying
data, which has been proven to be effective in various neural
network architectures [39, 40].

3.3.3. Prediction Layer. After the prediction layer obtaining
the final representation of the absolute position of the item
and the time interval, in order to predict the possible next
action of the users, we use a Softmax function to calculate the
user’s interaction probability with the candidate item yi,t,
namely:

p yi,t􏼐 􏼑 � Softmax ZtM
I
i􏼐 􏼑, (16)

where MI
i represents the embedding vector of items i and Zt

represents the first given sequence (i1, i2, . . . , it) containing t

items and their time interval (r1(t+1), r2(t+1), . . . , rt(t+1))

between the t + 1th item.

3.3.4. Model Inference. &is paper uses user implicit inter-
action data. In implicit feedback, the interaction between the
user and the item can be regarded as a binary classification
problem, where 1 means that the user likes an item and 0
means that the user does not like or has not touched the
item. &erefore, the items in the user behavior sequence can
be regarded as positive samples. At the same time, all the
items that the user has not touched are regarded as negative
feedback, which is sampled as negative samples. In this
paper, the sampling is carried out according to the ratio of
1: 1.When negative sampling is performed for each user, the
principle is to select those items with higher popularity,
which are more representative.&e loss function is as follows
[30]:

Loss � 􏽘
(u,i,j)∈S

log 1 + e
− p yu

i( )− p yu
j􏼐 􏼑􏼐 􏼑

􏼠 􏼡 + λ‖⊖‖2F, (17)

where i represents the predicted candidate items; j repre-
sents the negative sample; ⊖ � EI, EP

K, EP
V, ER

K , ER
V􏼈 􏼉 is the

set, which represents the embedding matrix; and λ is the
regularization parameter, which is used to prevent the model
from overfitting. In the training process, the Adam opti-
mizer is used to optimize the model, which is a variant of the
stochastic gradient descent (SGD) algorithm [41]. As an
adaptive learning rate optimization algorithm, the Adam
optimizer is usually used for tasks in sparse data scenarios,
and its convergence speed is fast [42].

In summary, the process of the proposed algorithm is
shown in Algorithm 1.

4. Experiments

4.1. Setting of Experiments

4.1.1. Data set. In order to verify the effectiveness of the
proposed algorithm in this paper, experiments were carried out
on two public data sets, namelyMovielens-1Mdata set (denoted

by ML-1M, see https://files.grouplens.org/datasets/movielens/
ml-1m.zip) and Amazon Beauty data set (denoted by AM-BE,
see https://snap.stanford.edu/data/amazon/productGraph/
categoryFiles/reviews_Beauty_5.json.gz). Among them, the
ML-1M data set is a dense data set, and the AM-BE data set is a
sparse data set. &e dense data set ML-1M in this paper is used
to evaluate the effectiveness of the time self-attention im-
provement in the proposed model, while the sparse data set
AM-BE is used to evaluate the effectiveness of the improved
short-sequence enhancement method of the proposed model.
&e statistics of the two data sets are listed in Table 1, which
contains the information such as users, items, and timestamps.

Before the experiments, the two data sets are pre-
processed [17]. For all data sets, we treat the rating behaviors
as implicit feedback, where “1” means that there is an in-
teraction between the user and the item, on the contrary, “0”
means that there is no interaction between the user and the
item. &en, the behaviors are sorted according to the
chronological order of the actual interaction between users
and items to generate the historical behavior sequence of
users.

In this paper, the leave-one-out method is used to train
and test the model [43]. Namely, the user’s last behavior-
producing item is taken as the true value, which is used as the
test set. &e last second-behavior-producing item is taken as
the validation set, and all other remaining items are used as
the training set. &e advantage of the leave-one-out method
is that it is not affected by the random sample division
method and can use as large a sample as possible for training.
It is suitable for sparse data sets.

4.1.2. Evaluation Metrics. &is paper adopts two commonly
used metrics in Top-N recommendation problem, namely
hit rate (HR) and normalized discounted cumulative gain
(NDCG) [29] to evaluate the recommendation performance
of the model.

Hit rate (HR) is a common indicator for measuring recall
rate, which can intuitively measure whether the predicted
item exists in the first k items of the real list. &e larger the
hit rate (HR), the more accurate the recommendation. &e
calculation of HR is as follows:

HR@k �
Number of Hits@k

|GT|
, (18)

where |GT| represents all items in the test set,
Number of Hits@k represents in the user’s recommenda-
tion list, and the number of the top k items belonging to the
test set.

NDCG is often used to evaluate the accuracy of ranking
of recommendation results [44]. NDCG introduces a lo-
cation influence factor to discount lower ranked recom-
mendations. &e calculation of NDCG is as follows:

NDCG@k � zk 􏽘

k

i�1

2ri − 1
log2(i + 1)

, (19)

where zk is the normalization factor, which is used to
make the value of NDCG between 0 and 1 and ri
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represents the predicted correlation of the item at position
i in the sequence. If the item is in the test set, ri � 1
otherwise, ri � 0.

&e above two indicators can well reflect the perfor-
mance of the recommendation list. &is paper intercepts the
top 10 of the recommendation list, namely k � 10, and uses
HR@10 and NDCG@10 to evaluate the performance of the
recommendation model.

Remark 1. &e proposed method in this paper is based on
the deep neural network and transfer learning technology,
which needs more time in the process of the model training.
However, the proposed model is trained offline and the
computational time of the prediction is very fast. &us, the
computational complexity is not used as the evaluation
metric in this study, which is a common way in the literature
about the recommendation problem [19, 44].

4.1.3. Comparison Methods. To show the efficiency of the
proposed methods (denoted by SeTsRec), various methods
are used for comparison in this paper, including the rec-
ommendation method without considering the order, the
classic order recommendation method, and the latest order
recommendationmethod. In the experiments, the settings of
these comparison methods are made by their optimal

parameters according to the respective paper declarations.
&e comparison methods are listed as follows:

(a) POP [28]: POP is a simple baseline method that
generates recommendation lists based on item
popularity rankings, namely more popular items
rank higher.

(b) BPR [45]: Bayesian personalized ranking method,
which is a classic nonsequential recommendation
method using matrix factorization.

(c) FPMC [46]: A sequential recommendation method
that combines matrix factorization and Markov
chains method.

(d) GRU4Rec+ [47]: An RNN-based deep sequential
recommendation model for user sessions.

(e) Caser [48]: A CNN-based sequential recommenda-
tion method that captures higher order Markov
chains by applying a convolution operation to the
embedding matrix of the nearest term.

(f ) SASRec [36]: One of the state-of-the-art sequential
recommendation methods, which is the first method
using a self-attention-based sequential recommen-
dation model.

(g) TiSASRec [24]: A state-of-the-art sequential rec-
ommendation model that applies a multiorder

Input: &e behavior sequence Su of user u

Output: &e recommendation list result of user u, denoted as Yu

(1) for u in length(|U|)do
(2) iflength(|Su|)>Lthen
(3) Su � Su

L

(4) else
(5) Su � Su

S %Date preprocessing
(6) end if
(7) end for
(8) for u in Su

Ldo
(9) y

uL

i0
� f(Su

L: i) %Reverse prediction model training
(10) end for
(11) for u in Su

Sdo
(12) y

uS

i0
� f(Su

S : i) %Short sequence enhancement
(13) end for
(14) for u in Su

new ∪ Su
Ldo

(15) Generate time interval matrix;
(16) Calculate time-aware self-attention model;
(17) Apply the point-wise feed-forward network and further processed;
(18) Calculate prediction and loss;
(19) end for
(20) return Y;

ALGORITHM 1: &e sequential recommendation algorithm proposed in this paper.

Table 1: &e information of the two data sets.

Data set
Number of

Users Items Actions Average actions
ML-1M 6,040 3,900 1,000,209 165.6
AM-BE 51,369 19,369 225,509 4.4
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attention mechanism to capture personal and item
relatedness.

4.1.4. Other Settings. &e experiments are conducted on a
computer with Windows 10 system and the programming
language used in the experiment is Python3.6. In this study,
the model uses two self-attention blocks. Because different
data sets have different sparsity, some parameters are dif-
ferent, such as the maximum sequence length (m) and the
latent dimension (d). &e setting of these parameters will be
discussed in Section 5 for details. &e parameters of the
proposed deep network and the experimental environment
are listed in Table 2.

4.2. Experimental Results and Analysis. Table 3 shows the
experimental results of the proposed algorithm and all
baseline methods on two different data sets with different
indicators. &e results in Table 3 show that the best rec-
ommendation effect is achieved by the proposed method in
this paper, which prove the superiority of the model in this
paper. &e results are analyzed in details as follows:

(1) In most cases, the sequential recommendation
methods FPMC, GRU4Rec+, and Caser outperform
the nonsequential recommendation methods POP
and BPR. &is indicates the necessity of considering
the order of user behavior lists in recommender
systems. &e user’s behavior sequence order infor-
mation can effectively characterize the user’s pref-
erence change to a certain extent and can effectively
improve the performance of the recommendation
system.

(2) Compared with the three classical sequential rec-
ommendation methods, the latest attention-based
SASRec and TiSASRec methods outperform all other
baseline methods on the two different types of data
sets, which indicates that the attention mechanism

can effectively improve the performance of recom-
mender systems.

(3) &e algorithm SeTsRec proposed in this paper is
improved on the basis of the existing algorithm.
&rough short-sequence enhancement and the use of
an improved time-aware self-attention mechanism,
it not only works well on dense data sets but also has
the best results on sparse data sets. On the dense data
set ML-1M, the HR@10 and NDCG@10 of the
proposed method are improved by 1.1 % and 1.7 %,
respectively, compared with the second best method
TiSASRec. On the sparse data set AM-BE, the per-
formance of the proposed method is improved by 9.4
% and 7.7 %, respectively, compared with TiSASRec.
Compared with the baseline method, our model
adopts an improved time-aware self-attention
mechanism, which can adaptively adjust the item
absolute position information and time-interval
information to assign different weights in two dif-
ferent types of data sets.

5. Discussions

&e results of the experiments in Section 4 show that the
proposedmodel has better performance than that of the state
of the art. &e influence of the key parameters is discussed in

Table 2: &e parameters of the proposed model and the experimental environment.

Model

Learning rate 0.001
Momentum 0.9
Dropout rate 0.2
Batch size 128

Maximum iterations 200
Validation interval 20
Regularization 0.00005

Short-sequence threshold 20
Maximum sequence length for ML-1M 70
Maximum sequence length for AM-BE 30

Latent dimension for ML-1M 50
Latent dimension for AM-BE 20

Pseudo-historical item for ML-1M 5
Pseudo-historical item for AM-BE 15

Environment

Programming software Python3.6
Deep learning framework Pytorch

Computer system Windows 10
Cpu E5-2620 v4
RAM 32.0GB
Gpu GeForce RTX 2080

Table 3: &e experimental results.

Models
ML-1M AM-BE

HR@10 NDCG@10 HR@10 NDCG@10
POP 0.4386 0.2389 0.3215 0.1758
BPR 0.5952 0.3421 0.2554 0.1523
FPMC 0.6182 0.3917 0.3771 0.2477
GRU4Rec+ 0.6522 0.4334 0.3949 0.2556
Caser 0.7517 0.5011 0.4064 0.2547
SASRec 0.7929 0.5524 0.4185 0.2722
TiSASRec 0.8038 0.5706 0.4345 0.2818
Ours (SeTsRec) 0.8127 0.5805 0.4754 0.3036
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this section. In addition, the ablation experiments are
conducted in this section to further discuss the e­ectiveness
of the improvement in the proposed model.

5.1.About theLatentDimension. First, the in�uence of latent
dimension d on the performance of the recommendation
results of our model is discussed, and some experiments are
conducted, where other hyperparameters are kept un-
changed while the latent dimension d is changed within the
range [10, 60]. �e experimental results are shown in Fig-
ures 6 and 7.

It can be observed from Figure 6 (on the dense data set
ML-1M) that the overall performance of the model improves
with increasing potential dimensionality and tends to
converge gradually, as the latent dimension increases.

However, on the sparse data set AM-BE, the larger latent
dimensions do not lead to better performance. �e reason is
that too many latent dimensions will lead to over
tting and
thus degrade the model performance in a sparse data set. On
the ML-1M data set, the algorithm in this paper tends to
converge when d≥ 50. Considering the performance and
time cost of the model, this paper sets the potential di-
mension d � 50 on the ML-1M data set and sets d � 20 on
the AM-BE data set.

5.2. About the Maximum Sequence Length. Another im-
portant parameter of the proposed model is the maximum
sequence lengthm. To discuss the in�uence of the maximum
sequence lengthm of the input model on the performance of
recommendation results, some experiments are conducted,
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where the maximum sequence length m is changed in the
range [10,80], while keeping other hyperparameters un-
changed. �e experimental results are shown in Figures 8
and 9.

It can be observed from Figure 8 (on the dense data set
ML-1M) that the model achieves satisfactory performance
when the sequence length is m≥ 70. �erefore, under the
consideration of balancing model performance and time
cost, we set the maximum sequence length m � 70 on the
ML-1M data set. On the sparse data set AM-BE, it can be
observed that the model performance does not change much
whenm changes, this is because the average sequence length
of the AM-BE data set is 4.4 (see Table 1), even after a certain
degree of short-sequence enhancement, the longer sequence
input does not provide more useful information, but will
increase the time cost of the model.�erefore, the maximum
sequence length is set as m � 30 on the data set AM-BE.

5.3. Ablation Experiments. �is section discusses the impact
of two major improvements in the proposed model, namely
the short-sequence enhancement and time-aware self-at-
tention mechanism. In these ablation experiments, the
method based only on short-sequence enhancement is de-

ned as SeTsRec-Se, and the method based only on time-
aware self-attention is de
ned as SeTsRec-Ts, and they are
compared with the existing SASRec method and our pro-
posed algorithm SeTsRec. �e experimental results are
shown in Table 4, Figures 10 and 11.�e results are analyzed
in details as follows.

(1) On the dense data set ML-1M, the SeTsRec-Ts
method outperforms the SeTsRec-Se method and the
SASRec method. �e experimental results show that
the improvement of the model by the short-sequence
enhancement method is limited. In this case, the
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Table 4: Results of ablation experiment.

Methods
ML-1M AM-BE

HR@10 NDCG@10 HR@10 NDCG@10
SASRec 0.7929 0.5524 0.4185 0.2722
SeTsRec-Se 0.7648 0.5297 0.4503 0.2907
SeTsRec-Ts 0.8038 0.5706 0.4345 0.2818
Ours (SeTsRec) 0.8127 0.5805 0.4754 0.3036
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SeTsRec-Ts method can achieve good results, and its
performance is improved by 1.4 %and 3.3 %, re-
spectively, on the HR@10 and NDCG@10, compared
with SASRec, which is close to the improved algo-
rithm SeTsRec in this paper.

(2) On the sparse data set AM-BE, the SeTsRec-Se
method is better than the SeTsRec-Ts method and the
SASRec method, and its performance is improved by
3.6 % and 3.2 %, respectively, on the HR@10 and
NDCG@10, compared with SeTsRec-Ts. &e experi-
mental results show that it is necessary to use the
method of enhancing short sequences on sparse data
sets. In addition, the model effect would not improve
much if only the time-aware self-attentive mechanism
approach is used.&is is due to the large proportion of
short-sequence users in the sparse data set, which
limits the overall recommendation effect of themodel.

(3) In summary, the proposed algorithm SeTsRec in this
paper not only considers short-sequence enhance-
ment to alleviate the problem of data sparsity but also
combines the time-aware self-attention mechanism
to fully consider the change of user preferences over
time. &us, it outperforms existing methods on both
dense and sparse data sets.

6. Conclusions

&is paper proposes a sequential recommendation algo-
rithm based on improved short-sequence enhancement and
temporal self-attention mechanism.&e proposed algorithm
first trains a reverse prediction model through the long-
sequence users in the data set, to predict the reverse rec-
ommendation in the user sequence. &en, the model is
transferred to short-sequence users, and pseudo-historical
items of short-sequence users are generated to enhance short
sequence. After enhancing short sequences, an improved
time-aware self-attention model is adopted, which adap-
tively assigns different weights by combining the time in-
terval information and absolute position information
between items. It can deeply mine the changes of user
preferences over time. Experimental results show that our
method outperforms the existing sequential recommenda-
tion methods on different data sets. In the future, it can be
considered to generate more accurate pseudo-historical
items by improving the reverse prediction model to improve
the recommendation effect further.
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