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(is document describes the implementation of a conical tank control system using an adaptive neurofuzzy system. For
implementation, an indirect approach is used where the controller is optimized using the model obtained during the plant
identification carried out using data obtained during the system operation. Furthermore, implementation includes training of
neuro fuzzy-systems and application to control a conical tank. Regarding plant identification, preliminary training takes place
using data obtained for different input values. (e controller configuration is established considering the analogy with a discrete-
time linear system. (e simulation shows that the control system manages to approach the desired response given by the
considered reference model.

1. Introduction

Adaptive control is framed in the field of control systems to
face uncertainties. According to [1], adaptive control sys-
tems are suitable for monitoring performance using varied
and unknown parameters [1]. (e main difference between
adaptive and linear controllers lies in the adjustment ca-
pacity of the controller to manage unknown uncertainties in
the model [2].

With regard to developments of adaptive control, con-
troller technique designs are proposed to manage nonlinear
and time-varying uncertainties. Such developments can
cover larger systems with higher nonlinear uncertainties.
Adaptive control has real-world actual applications such as
developments in nonlinear systems with variable control
gain in time, as observed in [3].

Simultaneously, adaptive dynamic programming (ADP)
has proven its efficiency as an effective method for the
optimum control of nonlinear systems. Nevertheless, since
the structure of the ADP requires a control input to satisfy
the condition of initial permissible control, then control
performance may be deteriorated due to abrupt parameter

changes or a failure in the system. According to [4], for this
reason, a multiple model adaptive control (MMAC) is
proposed employing multiple ADP models where combined
sub-controllers are run in parallel offering multiple initial
conditions in different settings, including the configuration
of a commutation rate to determine suitable initial condi-
tions for the current system.

As stated in [5], parameter convergence in the adaptive
control produces improvements in the system performance,
including accurate online identification, exponential mon-
itoring, and robust adaptation without parameter deviation.
Nevertheless, parameter convergence must fulfill the strong
persistent-excitation (PE) or sufficient-excitement (SE) as a
guarantee of parameter convergence in the classic adaptive
control.

According to [6], techniques based on gradient calcu-
lations offer efficient and practical methods to adjust the
parameters in the adaptive control system. An alternative to
enhance the performance of the adaptive control system
employing gradient-based algorithms consists of an ade-
quate preliminary configuration of the systems used for
plant identification, and the controller. In this regard, a fuzzy
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system allows the establishment of a structure and a system
preliminary configuration employed to identify the plant
and the controller optimization [7]. Additionally, only data
training is required when implementing the adaptive control
system for the plant model adjustment, which is useful in
highly complex systems with uncertainty and variance [1].

1.1. Adaptive Control Systems. Regarding adaptive control
application developments, [8] presents an extension of
model reference adaptive control (MRAC) to systems based
on the fractional calculus theory employed for adaptive
control. (e authors designed two laws: one of control and
one of incommensurable fractional adaptation for both the
fractional plant and the fractional reference model. (e
stability and convergence are analyzed including the frac-
tional integrator model in frequency and the theory of
Lyapunov.

Meanwhile, [9] proposes a scheme for nonlinear plants
that gain variable control in time and plant coefficients with
variability in time, which requires a Brunovsky-type plant
model with approximating polynomials. (e authors added
a scheme of robust control to the plant. A combination of
entries is used to achieve sturdiness with dead zone updating
laws.

Considering [10], the cabin pressure control system
(CPCS) is an essential part that guarantees the aircraft
structure and the crew’s safety; however, the CPCS shows
potential flaws in sensors and actuators. Consequently,
authors in [10] suggest a reconfiguration method based on
simple adaptive control in compensation for these adverse
effects.

According to [11], nonlinear systems can be modeled as
linear systems in parts of multiple operative points. Each
operative point is modeled as a switch among constituent
linear systems. Regarding [11], an adaptive linear switch
controller by parts is proposed to enhance the response time
and tracking performance of a control system for a hydraulic
actuator, which is essentially linear by parts. (e controller,
which consists of proportional, integral, and derivative
controllers (PID) and MRAC chooses adaptatively the
proportion of both components to achieve faster time re-
sponse and improved tracking performance.

Related work with adaptive control is seen in [12] where
the objective is the proper diagnostic and flaw estimations in
an automotive magnetorheological damper; in addition, the
authors suggest a robust linear parameter-varying (LPV)
estimate the lack of power caused by a leak in the damper of
one side of the vehicle. An adaptive system of vibration
control or adaptive vibration control system (AVCS) is also
suggested after identifying the faulty damper to diminish the
effect of the failure by using compensation forces from the
operational dampers.

1.2. Control Systems with Neural Networks. In terms of
control development systems employing neural networks,
[13] proposes a control strategy of nonlinear systems with

unknown dynamics through a set of local linear models from
a gas neural network under supervision. (e direct model of
the plant comprises a linear approximation by parts of the
nonlinear system, and each neuron represents a local linear
model for which a linear controller is designed. (e neural
gas model works simultaneously as an observer and con-
troller. A control of feedback status is used through the
estimation of status variables of the local transfer function
emanating from the local linear model.

According to [14], the control of a ship’s rudder during a
mission on the sea reveals complexity. In this regard, [14]
proposes a quantum neural network (QNN) to make use of
the learning capacity and learning speed to work as the
feedback control hierarchy model for planning strategy and
intelligent control of the ship.

Another work is observed in [15] considering the ad-
vantages of a radial basis function (RBF) and a traditional
PID which is suggested as a controller based on the su-
pervision control method of neural network RBF (PID-
RBF); this method performs the adaptive adjustment of the
stable tracking signal of the system. (e authors also display
a PID controller rooted in the supervision control strategy of
neural networks; this control strategy adopts the supervision
control method feed-forward and feedback.

Meanwhile, in [16] the design of an adaptive switch
controller (ASC) for a multiple input multiple output
(MIMO) system is proposed. (e suggested method per-
forms the change online between the neural adaptive PID
controller (APID) and the neural indirect adaptive con-
troller (IAC). Considering the scheme IAC based on a neural
network, the law of adaptation is established by the method
of gradient descent (GD). (e adaptive controller PID is
built based on the neural network that combines the PID
control and the explicit neural structure. (e training
strategy consists of the adjustment of the neural controller
line weights employing the backpropagation algorithm to
choose the suitable PID gains so that the error between the
reference signal and the actual output of the system con-
verges to zero.

In reference to other adaptive controls with neural
network approaches, in [17] an adaptive dynamic surface
control scheme based on a neural network is proposed, and a
transformed function of error tracking for a system of
control excitation of the generator equipped with a static
VAR compensator (SVC) and unknown parameters. (e
predetermined efficiency of the error tracking is guaranteed
by combining the transformed function of the error
tracking.

About recent and noteworthy developments, a neural
network-based adaptive control approach for stabilizing the
air gap in a non-linear maglev vehicle is proposed by [18].
(e system is designed considering the asymptotic stability
associated with the control law. (e controller includes a
radial neural network connected inside the controller to deal
with uncertainty. Lyapunov stability analysis is used to
demonstrate the stability of the maglev control system.
Simulation outcomes show that the control scheme obtains
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more suitable levitation performance, achieving accurate
estimation of disturbances.

1.3. Fuzzy Adaptive Control Systems. Regarding adaptive
control applications with fuzzy logic, in [19] a fuzzy adaptive
controller for robotic manipulators is designed, considering
external disturbances and modeling errors. (e dynamics of
the robotic manipulator refers to multiple input and mul-
tiple output system. A scheme of adaptive fuzzy logic control
is studied employing the sliding control theory, which
adopts adaptive fuzzy logic systems to assess uncertainties
employing a filtered error to compensate for the approxi-
mation errors. By employing Lyapunov’s stability theory, it
is demonstrated that errors asymptotically converge to zero.

According to [20], for the design of controllers for
wheeled mobile robots (WMR) the exact position of the
mass center is challenging to measure since WMR is an
uncertain non-linear typical system. In this regard, in [20] an
adaptive fuzzy control scheme for tracking pathways
(routes) for mobile robots is proposed. (e fuzzy system is
used to approximate the unknown pathways, and a robust
controller is built to compensate for the approximation
error.

On the other hand, [21] presents an adaptive controller
for chaotic systems MIMO with system uncertainties. (e
matrix decomposition theory is utilized by decomposing the
control gain matrix into a positive matrix, a diagonal matrix,
and a unitary upper triangular matrix. Moreover, an ad-
aptation law proposed called proportional integral (PI) is
used for parameter update.

In [22] a type 2 fuzzy controller Takagi Sugeno (TS) for a
non-linear system is proposed, which combines different
types of supervised control as direct, indirect, and com-
pensation to build the controller. Employing the synthesis
method of Lyapunov the global stability and the close loop
system convergence are analyzed with the condition that all
the variables are evenly delimited, besides the adaptive laws
of the system parameters are also given.

Meanwhile, in [23] an adaptive fuzzy control of variable
structure PID is proposed for tracking the position of a
permanent magnet synchronous motor (PMSM) employed
on an electric extremity exoskeleton robot (EEER). A var-
iable structure of a sliding mode control (SMC) is used
regarding the traditional PID. (e variable structure is
designed according to the surface of the slider mode given by
the system state equation. Regarding the system vibration of
the slider mode, the fuzzy inference mode is adopted to
adjust the PID parameters in an adaptive fashion in real-time
to attenuate the vibration and to enhance control accuracy
and the dynamic performance of the system. (e use of the
Lyapunov analysis allows us to demonstrate that this al-
gorithm converges into the sliding surface and guarantees
system stability.

Regarding relevant developments in neural-fuzzy con-
trol, [24] is presented a maglev train system with an adaptive
neural-fuzzy robust position control architecture. (e
proposal also discusses the design and execution of the
magnetic suspension controller, including the construction

of a mathematical model system with magnetic suspension.
(e authors carry out the proportional integral derivative
(PID) controller analysis to demonstrate its sensitivity to
disturbances. In addition, a sliding mode controller is in-
troduced as a means to reject parameter perturbations and
disturbances by employing an adaptive fuzzy approximator,
the neural-fuzzy switching law, and sliding mode control.
(e experimental results evidence that the robust controller
noticeably decreases parameter perturbations and
disturbance.

1.4. Article Focus and Document Organization. Regarding
previous works that support the development shown in this
paper, [25] is described the design methodology for fuzzy
inference systems based on boolean relations; in this order,
the proposed adaptive control system is rooted in the use of
compact fuzzy systems based on boolean relations described
in [26], where neuro-fuzzy architectures I and II are pro-
posed for identification and control.

In previous implementations using fuzzy systems-based
boolean relations, in [27] the adaptive control for a power
distribution system is implemented, and in [28] the control
of a MIMO system is performed. In the training of the
neuro-fuzzy controller, in [29] a system to control an au-
tomatic voltage regulator is designed and optimized by
employing architecture II for the controller. Meanwhile,
reference [30] displays the optimization of a PI controller
based on architecture II. It is noteworthy that works in
references [29, 30] consider linear models of plants.

In this work, for the implementation of the control
system, architecture I is used for identification, and archi-
tecture II for control. (e deduction of the training equa-
tions and the simulation of the system are presented,
verifying the performance of the adaptive control system.

(e configuration of the controller with architecture II is
achieved using fuzzy sets to model positive and negative
values. On the other hand, for the identification with ar-
chitecture I, a preliminary identification is made with data
obtained from the plant for different input values, since the
assignment of the fuzzy sets in architecture I is carried out by
distributing the fuzzy sets in the universes of discourse
associated with the inputs.

According to [31] adaptive control problems, it is sought
to determine stabilization schemes that counter the effect of
uncertain parameters in a robustness perspective. In this
order, the scheme proposed displays an alternative for
adaptive control using fuzzy compact systems that describe a
direct logical relationship between inputs to outputs. (e
proposed adaptive control system employs a fuzzy compact
system for identification, and another for the controller, in a
way that the identification and controller training is per-
formed iteratively.

(e document is organized as follows. Section 2 de-
scribes the adaptive control system employed, then Section 3
shows the architecture of the neuro-fuzzy system used for
plant identification and the respective training equations.
Subsequently, Section 4 describes the architecture of the
neuro-fuzzy controller and the respective deduction of the

Complexity 3



equations for the optimization of the controller. In Section 5,
the dynamic model of the conical tank is described, with the
experimental results shown in Section 6. Finally, the dis-
cussion and conclusions of the work are presented in Sec-
tions 7 and 8.

2. Adaptive Neuro-Fuzzy Control System

Both adaptive control and robust control are techniques
employed when the mathematical model is incapable of
representing the actual system accurately. (e purpose of
robust control is to determine a law of control to maintain
the system response and the error signal within the limits
predetermined when having uncertainty in the model. As a
goal, adaptive control searches the adaptability of the closed-
loop system to variant behavioral circumstances in the
system dynamics and disturbances [32]. In addition,
adaptive control allows the observation of two dynamic
behaviors in constant evolution with different time lapses.
Consequently, parameter changes can be observed at a slow
scale and thus the rate of adjustment of the parameters.
Likewise, on a fast scale, the closed-loop dynamics in the
system are observed [32].

(e adaptive control technique is capable of facing
disturbances, uncertainties, and variances of operative
conditions in the system dynamic employing an adaptation
law with direct and indirect methods [33]. (us, indirect
methods estimate the plant parameters for adjusting the
controller, while direct methods utilize the estimated pa-
rameters directly in the adaptive controller [2]. (e indirect
method is based on the certainty equivalence principle
(CEP), where the model of the system is adjusted by ob-
serving its behavior through time to consequently design a
control policy regarding the obtained model as veracious
[34].

(e model reference adaptive control (MRAC) employs
a reference model (consequent with the desired behavior) to
define the adaptive laws to ensure output tracking [35].
Besides, it must be considered that changes in the operating
conditions may demand a restart of the adaptation
procedure.

(e employed architecture applies two neuro-fuzzy
systems: one for the controller, and another for the plant
model. Under this scheme, the plant is firstly identified, and
later the training of the controller takes place. Figure 1 shows
the indirect adaptive control scheme and the neuro-fuzzy
systems employed. In this diagram, the section of the ref-
erence model corresponds to the system’s desired behavior.

Plant identification can be performed offline to obtain
data from the plant in an open loop using different input
signals to represent the plant behavior; this is to set an initial
neuro-fuzzy model. When the identification control system
is in operation, identification is performed online to obtain
the training data to measure the plant during operation.

In the adaptive control, the offline identification allows
an initial configuration for the model of the plant employing
the back propagation algorithm [36]. (en, as observed in
Figure 1, the model is progressively adjusted online taking
input and output data from the plant. Considering the

scheme in Figure 1 after identification, the model is used in
the control loop to train the controller using dynamic back
propagation [37, 38].

(e adaptive neuro-fuzzy control system process is
observed in Figure 2; its implementation firstly includes
plant identification, and later the neuro-fuzzy controller
training. As observed in the scheme, the plant model is
integrated with the control loop for training the controller.

As observed, the adaptive control process in Figure 2
includes the following steps:

Step 1: Definition of the structures and initial config-
urations of the controller and the neuro-fuzzy model.
As an option, a controller’s previous training and plant
identification can be performed.
Step 2: Put into operation the control system with the
actual plant and the neuro-fuzzy controller.
Step 3: Input-output data are taken during system
operation.
Step 4: (e collected data is used for new training
(parameter adjustment) for the neuro-fuzzy system
used for plant identification.
Step 5: Controller training is performed employing the
adjusted model.
Step 6: If the operation of the control is unfinished, the
whole process is repeated from Step 2 for the next time
interval.

As observed both plant identification and controller
training are carried out iteratively in a way that the plant’s
output reaches the desired referenced value after a variation
in the plant takes place.

3. Architecture for Plant Identification

Regarding plant identification, it must be borne that an
approach to the system model consists of the estimation of a
neural structure capable of performing the same function
[39]. For neuro-fuzzy plant identification, three samples are
used for the input and two for the output. (e scheme is
displayed in Figure 3. (e output can be seen as a non-linear
function where z− 1 represents an element of memory
(delay).

From this point of view, the result is a set of output data
ys[n] given by (1), where Hp represents the vector of pa-
rameters in the neuro-fuzzy system.

ys[n] � fp u[n], u[n − 1], u[n − 2], y[n − 1], y[n − 2],Hp􏼐 􏼑. (1)

Regarding [26], architecture I is employed in plant
identification (compact fuzzy system) using Gaussian fuzzy
sets. Figure 4 illustrates an example. Such architecture is
similar to that conventionally employed in radial basis
neural networks [40].

Equation (2) shows the input-output expression
employing the product as t-norm and using Gaussian fuzzy
sets. (e equation associated with the inference process is
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f(w) � 􏽘
M

l�1
yl 􏽙

N

i�1
exp −

wi − δil

ρil

􏼠 􏼡

2
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦. (2)

In this way, the respective activation function is

Yl � 􏽙
N

i�1
exp −

wi − δil

ρil

􏼠 􏼡

2
⎛⎝ ⎞⎠. (3)

(en, the system output is calculated as

f � 􏽘
M

l�1
ylYl, (4)

where M is the number of fuzzy rules, N the number of
inputs to the system, yl is the respective virtual actuator, δil

and ρil are the center and the standard deviation of the
Gaussian fuzzy sets. Additionally,
wi ∈ u[n − 1], u[n − 2], e[n], e[n − 1], e[n − 2]{ } is the data
of input to the system; in general, all input variables are
represented as w.

(e representation of the associated neuro-fuzzy net-
work can be seen in Figure 5. (e first layer corresponds to
the producer of the Gaussian functions, that is, the calcu-
lation of Yl. In the second, the multiplication of Yl and the
virtual actuators yl is performed. Finally, in the third layer,
the inference output f(w) is determined.

Taking into account the methodology for the design of
compact fuzzy systems presented in [26] the rules that
implement the structure of Figure 5 can be represented as

Plant

Model
Neuro-Fuzzy

Controller
Neuro-Fuzzy

ep

ec

r [n]

y [n]

+

+

−

−

u [n]

e [n]

+
−

Model
Reference

yr [n]

∑

∑

∑

Figure 1: Control schemes using neuro-fuzzy systems.

Initial setup

Controller action

System data acquisition

Plant identification

Controller adjustment

Repeat?

Process finished

Yes

No

Figure 2: Algorithm for the process of adaptive control.

fp ( )

u [n]

ys [n]

z−1

z−1 z−1

z−1

Figure 3: Neuro-fuzzy system for the plant.

u, y

µ (y)
µ (u)

Figure 4: Gaussian fuzzy set.
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shown in Boole Table 1. In general, for l � 1, . . . , 5 these
rules are described as follows:

If w1 is μ1,l and w2 is μ2,l and w3 is μ3,l and w4 is μ4,l and
w5 is μ5,l. (en the activation function is Yl.

As observed, the activation function Yl simultaneously
depends on μi,l for i � 1, . . . , 5, In this way, the output is
calculated using (5) as

f � y1Y1 + y2Y2 + y3Y3 + y4Y4 + y5Y5. (5)

3.1. Training Equations for Plant Identification. Regarding
the Back Propagation algorithm and using the descending
gradient algorithm to determine the system parameters, the
goal is to minimize the error corresponding to

Jp �
1
2
[f(w[n]) − y[n]]

2
, (6)

where w[n] is the input data to the system, and y[n] the
desired output data for a time n. (ese data correspond to
the respective training input-output pairs.

Taking α as the learning rate to carry out the training of
the parameters, the derivatives of the error are calculated
having

yl(k + 1) � yl(k) − α
zJp

zyl

|n,

δil(k + 1) � δil(k) − α
zJp

zδil

|n,

ρil(k + 1) � ρil(k) − α
zJp

zσil

|n.

(7)

where to update the parameters, the following equations
are used:

yl(k + 1) � yl(k) − α(f − y)Yl

δil(k + 1) � δil(k) − α(f − y)yl(k)Yl

2 wi[n] − δil(k)( 􏼁

ρil(k)􏼂 􏼃
2

ρil(k + 1) � ρil(k) − α(f − y)yl(k)Yl

2 wi[n] − δil(k)( 􏼁
2

ρil(k)􏼂 􏼃
3 .

(8)

Using the previous equations, the algorithm for training
parameters of the neuro-fuzzy system can be seen in
Figure 6.

Considering Figure 6, the algorithm for the adaptation
(training) of parameters of the neuro-fuzzy system consists
of the following steps:

Step 1: Determine the neuro-fuzzy system choosing M ,
N and the initial parameters.
Step 2: For the current value of n � 1, 2, . . . , NT, es-
tablish the respective input-output data pair
(w[n], y[n]).
Step 3: Calculate the output of the neuro-fuzzy system
for an input-output pair (w[n], y[n]), at the k -th
training stage, k � 0, 1, 2, . . . , KT.
Step 4: Update parameters yl(k + 1), δil(k + 1), and
ρil(k + 1), using the learning rate α.
Step 5: Return to step 2 with k � k + 1, until the error
Jp(k) is smaller than a ε defined, or until k is equal to a
certain number.

µ11

µN1

y1

μ1M

µNM

yM

w1

wN

f

Y1

YM

∑

∏

∏…
…

…

……

Figure 5: Representation of the neuro-fuzzy network.
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Step 6: Until all the data is finished, return to Step 2
with n � n + 1 to update the parameters using the
following input-output pair (w[n + 1], y[n + 1]).

In the first step, it should be noted that the higher M is,
the more parameters there are, allowing greater adaptability
but with greater calculation requirements. (e initial value of
the parameters must also be specified, that is, yl(0) , δil(0) ,
and ρil(0), which can be determined according to the lin-
guistic rules of the expert, or chosen in a way that the
membership functions uniformly cover the input values.
Additionally, if the learning rate α is chosen with a very large
value, it may cause the algorithm not to converge, while a very
small value may cause the algorithm to require more time to
reach the optimal value [7].

4. Controller Architecture

To implement the controller, a scheme with two input delay
elements and two output delay elements is used, as can be
seen in Figure 7. In this scheme, e[n] is the error signal that
enters the controller and u[n] is the controller output
corresponding to the control action.

Under this approach, the control action is given by (9),
where,Hc corresponds to the parameter vector of the neuro-
fuzzy system.

u[n] � fc u[n − 1], u[n − 2], e[n], e[n − 1], e[n − 2],Hc( 􏼁.

(9)

(e controller implementation is carried out using a
compact fuzzy system with architecture II employing the
fuzzy sets shown in Figure 8. Specifically, in Figure 8(a), a
sigmoidal fuzzy set is employed to model positive values for
the universe of discourse, while in Figure 8(b), negative
values are represented for the error e[n] and the control
action u[n],

Considering the fuzzy sets shown in Figure 8 and the
general structure of the controller given by Equation 10, the
scheme of Figure 9 is established, where the proposed fuzzy
controller is shown.

Regarding Figure 9, the controller output can be cal-
culated as:

u[n] � 􏽘
5

i�1
􏽘

2

j�1
vijμij xi( 􏼁, (10)

where xi ∈ u[n − 1], u[n − 2], e[n], e[n − 1], e[n − 2],{ }, For
each input xi, a function fi can be defined as

Initial parameters

Input-output data

Evaluate neuro-fuzzy system

Parameter update

End of data?

Process finshed

Criteria?

Yes

No

yes

No

Figure 6: Algorithm for plant identification.

fc ( )

e [n]

u [n]

z−1

z−1

z−1

z−1

Figure 7: Input and output configuration used for the controller.

Table 1: Rules associated with the structure of the neuro-fuzzy system are used for identification.

μ1,1 · · · μ5,1 μ1,2 · · · μ5,2 μ1,3 · · · μ5,3 μ1,4 · · · μ5,4 μ1,5 · · · μ5,5 Y1 Y2 Y3 Y4 Y5

1 1 1 X X X X X X X X X X X X 1 0 0 0 0
X X X 1 1 1 X X X X X X X X X 0 1 0 0 0
X X X X X X 1 1 1 X X X X X X 0 0 1 0 0
X X X X X X X X X 1 1 1 X X X 0 0 0 1 0
X X X X X X X X X X X X 1 1 1 0 0 0 0 1
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u, e

µP

(a)

u, e

µN

(b)

Figure 8: Fuzzy sets are employed to model positive and negative values. (a) A fuzzy set is employed to model positive values. (b) A fuzzy set
is used to model negative values.
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v31

v32

µ41
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v41

v42

µ51

µ52

v51

v52

µ21

µ22

v21

v22

µ11

µ12

v11

v12

e [n]

u [n]

u [n−1]

u [n−2]

e [n−1]

e [n−2]

f3

f4

f5

f1

f2

∑

∑

∑

∑

∑

∑

Figure 9: Scheme of the neuro-fuzzy control system.
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fi � 􏽘
2

j�1
vijμij xi( 􏼁, (11)

namely,

fi � vi1μi1 xi( 􏼁 + vi2μi2 xi( 􏼁. (12)

Meanwhile, the membership function μij(xi) corre-
sponds to

μij xi( 􏼁 �
1

1 + e
− σij xi− cij( 􏼁

. (13)

For derivative calculations, (13) can be represented as
(14) In this way, the set of parameters of the controller
corresponds to Hc � vij, σij, cij􏽮 􏽯 and a possible parameter
of this is represented as hc � hij ∈ Hc :

μij xi( 􏼁 � 1 + e
− σij xi− cij( 􏼁

􏼒 􏼓
− 1

. (14)

Regarding the design methodology displayed in [26] for
compact fuzzy systems based on Boolean relations, the rules
used to implement the structure of Figure 9 can be repre-
sented as shown in Boole Table 2. In general, the rules for the
fuzzy system are described as

If xi is μi,1;en the activation function is Yi,1

If xi is μi,2;en the activation function is Yi,2

where i is the index associated with the input, and j the
fuzzy set negative for j � 1 or positive with j � 2, As ob-
served, in this case, the activation function is Yi,j is equal to
μi,j as presented in [26].

4.1. Equations for Controller Parameter Training. (e ref-
erence model (desired behavior) and the plant’s neuro-fuzzy
model are employed for training the neuro-fuzzy controller.
Considering that yr is the response of the reference model,
firstly, the performance function used for the training
process is

Jc �
1
2

yr[n] − y[n]( 􏼁
2

�
1
2
(e[n])

2
. (15)

Secondly, the equation associated with the plant is

y[n] � fp(y[n − 1], y[n − 2], u[n], u[n − 1], u[n − 2]).

(16)

Meanwhile, the error equation is

e[n] � yr[n] − y[n]. (17)

Considering the expression for fi , and the architecture
of the controller (Figure 9), the dynamics of the controller
are given by

u[n] � f1(u[n − 1]) + f2(u[n − 2]) + f3(e[n]) + f4(e[n − 1]) + f5(e[n − 2]). (18)

(e derivative of the plant output with respect to the
controller parameters is

dy[n]

dhc

�
d
dhc

fp(y[n − 1], y[n − 2], u[n], u[n − 1], u[n − 2]). (19)

(e respective derivative of the error e[n] � yr[n] − y[n]

for a control parameter hc is

de[n]

dhc

� −
dy[n]

dhc

. (20)

In the same way, the derivative of the control action u[n]

with respect to hij is
du[n]

dhij

�
df1(e[n])

dhij

+
df2(e[n − 1])

dhij

+
df3(e[n − 2])

dhij

+
df4(u[n − 1])

dhij

+
df5(u[n − 2])

dhij

. (21)

As can be seen, the respective derivatives of the pa-
rameters with respect to the plant and the controller must be
calculated.

4.2.Derivatives of theController Parameterswith respect to the
Plant. In order to have a compact expression for the plant

Table 2: Rules associated with the structure of the neuro-fuzzy system used for control.

μ1,1 μ1,2 μ2,1 μ2,2 μ3,1 μ3,2 μ4,1 μ4,2 μ5,1 μ5,2 Y1,1 Y1,2 Y2,1 Y2,2 Y3,1 Y3,2 Y4,1 Y4,2 Y5,1 Y5,2

1 X X X X X X X X X 1 0 0 0 0 0 0 0 0 0
X 1 X X X X X X X X 0 1 0 0 0 0 0 0 0 0
X X 1 X X X X X X X 0 0 1 0 0 0 0 0 0 0
X X X 1 X X X X X X 0 0 0 1 0 0 0 0 0 0
X X X X 1 X X X X X 0 0 0 0 1 0 0 0 0 0
X X X X X 1 X X X X 0 0 0 0 0 1 0 0 0 0
X X X X X X 1 X X X 0 0 0 0 0 0 1 0 0 0
X X X X X X X 1 X X 0 0 0 0 0 0 0 1 0 0
X X X X X X X X 1 X 0 0 0 0 0 0 0 0 1 0
X X X X X X X X X 1 0 0 0 0 0 0 0 0 0 1
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dynamics, the representation
wi ∈ y[n − 1], y[n − 2], u[n], u[n − 1], u[n − 2]􏼈 􏼉 is used. In
this way, the equation to calculate the output of the plant
model is

y � 􏽘
M

l�1
yl 􏽙

N

i�1
exp −

wi − δil

ρil

􏼠 􏼡

2
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦, (22)

with

μil wi( 􏼁 � exp −
wi − δil

ρil

􏼠 􏼡

2
⎛⎝ ⎞⎠, (23)

then

y � 􏽘
M

l�1
yl 􏽙

N

i�1
μil wi( 􏼁⎡⎣ ⎤⎦,

y � y1 􏽙

N

i�1
μi1 wi( 􏼁 + y2 􏽙

N

i�1
μi2 wi( 􏼁 + y3 􏽙

N

i�1
μi3 wi( 􏼁 + · · · .

(24)

Using the auxiliary index j to consider the case where
j≠ i, the respective derivative (for the products) is

d
dhc

􏽙

N

i�1
μil wi( 􏼁⎛⎝ ⎞⎠ � 􏽘

N

i�1
􏽑
N

j�1j≠ i

μjl wj􏼐 􏼑⎛⎝ ⎞⎠
dμil wi( 􏼁

dwi

dwi

dhc

⎛⎝ ⎞⎠, (25)

taking

Pil �
dμil wi( 􏼁

dwi

􏽙

N

j�1

j≠ i

μjl wj􏼐 􏼑,

(26)

with

dμil wi( 􏼁

dwi

�
d

dwi

e
− wi− δil/ρil( )

2

􏼒 􏼓 � −2e
− wi− δil/ρil( )

2wi − δil

ρ2il
.

(27)

In this way, it is obtained:

dy

dhc

� y1 􏽘

N

i�1
Pi1

dwi

dhc

+ y2 􏽘

N

i�1
Pi2

dwi

dhc

+ y3 􏽘

N

i�1
Pi3

dwi

dhc

+ · · · ,

dy

dhc

� 􏽘

N

i�1
y1Pi1 + y2Pi2 + y3Pi3 + · · ·( 􏼁

dwi

dhc

,

dy

dhc

� 􏽘
N

i�1
􏽘

M

l�1
ylPil

⎛⎝ ⎞⎠
dwi

dhc

,

(28)

Namely:

dy

dhc

� 􏽘
M

l�1
ylP1l

⎛⎝ ⎞⎠
dw1

dhc

+ 􏽘
M

l�1
ylP2l

⎛⎝ ⎞⎠
dw2

dhc

+ 􏽘
M

l�1
ylP3l

⎛⎝ ⎞⎠
dw3

dhc

+ · · · , (29)

with

Ci � 􏽘

M

l�1
ylPil, (30)

then, finally, it is established that

dy[n]

dhij

� C1
dw1

dhij

+ C2
dw2

dhij

+ C3
dw3

dhij

+ C4
dw4

dhij

+ C5
dw5

dhij

. (31)

4.3.Derivatives of theController Parameterswith respect to the
Controller. In this procedure, the auxiliary index l is used to
consider the case where l≠ i, thus, to determine the re-
spective derivatives of the controller parameters considering
the controller equations,

dfl xl( 􏼁

dhij

�
d

dhij

vl1μl1 xl( 􏼁( 􏼁 +
d

dhij

vl2μl2 xl( 􏼁( 􏼁, (32)

where l � 1, . . . , 5, i � 1, . . . , 5 and j � 1, 2; therefore, there
are different cases for values of i and l, For the case when l≠ i

dfl xl( 􏼁

dhij

�
d
dxl

vl1μl1 xl( 􏼁( 􏼁
dxl

dhij

+
d
dxl

vl2μl2 xl( 􏼁( 􏼁
dxl

dhij

dfl xl( 􏼁

dhij

�
d
dxl

vl1μl1 xl( 􏼁( 􏼁 +
d
dxl

vl2μl2 xl( 􏼁( 􏼁􏼢 􏼣
dxl

dhij

.

(33)

For j � 1.2, the respective derivatives are

d
dxl

vljμlj xl( 􏼁􏼐 􏼑 �
d
dxl

vlj 1 + e
− σlj xl− clj( 􏼁

􏼒 􏼓
− 1

􏼠 􏼡,

d
dxl

vljμlj xl( 􏼁􏼐 􏼑 � vlj 1 + e
− σlj xl− clj( 􏼁

􏼒 􏼓
− 2

e
− σlj xl− clj( 􏼁σlj.

(34)

On the other hand, when l � i and j � 1
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dfi xi( 􏼁

dhi1
�

d

dhi1
vi1μi1 xi( 􏼁( 􏼁 +

d

dxi

vi2μi2 xi( 􏼁( 􏼁
dxi

dhi1
. (35)

Also, when l � i and j � 2, the respective derivatives are

dfi xi( 􏼁

dhi2
�

d

dxi

vi1μi1 xi( 􏼁( 􏼁
dxi

dhi2
+

d

dhi2
vi2μi2 xi( 􏼁( 􏼁. (36)

In order to develop the above equations, first:

d

dxi

vijμij xi( 􏼁􏼐 􏼑 � vij 1 + e
− σij xi− cij( 􏼁

􏼒 􏼓
− 2

e
− σij xi− cij( 􏼁σij.

(37)

Second, for the other derivatives,

d

dhij

vijμij xi( 􏼁􏼐 􏼑 �
d

dhij

vij 1 + e
− σij xi− cij( 􏼁

􏼒 􏼓
− 1

􏼠 􏼡. (38)

For the parameter hij � vij,

d

dvij

vijμij xi( 􏼁􏼐 􏼑 � 1 + e
− σij xi− cij( 􏼁

􏼒 􏼓
− 1

− vij 1 + e
− σij xi− cij( 􏼁

􏼒 􏼓
− 2

e
− σij xi− cij( 􏼁

−σij􏼐 􏼑
dxi

dvij

. (39)

Taking the parameter hij � σij, it is established that

d

dσij

vijμij xi( 􏼁􏼐 􏼑 � −vij 1 + e
− σij xi− cij( 􏼁

􏼒 􏼓
− 2

e
− σij xi− cij( 􏼁

cij − xi − σij

dxi

dσij

􏼠 􏼡. (40)

With the parameter hij � cij, it is determined that:

d

dcij

vijμij xi( 􏼁􏼐 􏼑 � −vij 1 + e
− σij xi− cij( 􏼁

􏼒 􏼓
− 2

e
− σij xi− cij( 􏼁 σij − σij

dxi

dcij

􏼠 􏼡. (41)

In general, these equations can be written as

d

dvij

vijμij xi( 􏼁􏼐 􏼑 � Fvij
+ Kvij

dxi

dvij

,

d

dσij

vijμij xi( 􏼁􏼐 􏼑 � Fσij
+ Kσij

dxi

dσij

,

d

dcij

vijμij xi( 􏼁􏼐 􏼑 � Fcij
+ Kcij

dxi

dcij

,

(42)

where

Fvij
� 1 + e

− σij xi− cij( 􏼁
􏼒 􏼓

− 1
,

Fσij
� −vij 1 + e

− σij xi− cij( 􏼁
􏼒 􏼓

− 2
e

− σij xi− cij( 􏼁
cij − xi􏼐 􏼑,

Fcij
� −vij 1 + e

− σij xi− cij( 􏼁
􏼒 􏼓

− 2
e

− σij xi− cij( 􏼁σij,

Kvij
� vij 1 + e

− σij xi− cij( 􏼁
􏼒 􏼓

− 2
e

− σij xi− cij( 􏼁σij,

Kσij
� vij 1 + e

− σij xi− cij( 􏼁
􏼒 􏼓

− 2
e

− σij xi− cij( 􏼁σij,

Kcij
� vij 1 + e

− σij xi− cij( 􏼁
􏼒 􏼓

− 2
e

− σij xi− cij( 􏼁σij.

(43)
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In general, considering a parameter hij , the derivatives
can be represented in the form

d

dhij

vijμij xi( 􏼁􏼐 􏼑 � Fhij
+ Khij

dxi

dhij

. (44)

Regarding the case when l � i and j � 1 of the, it is
obtained:

dfi xi( 􏼁

dhi1
�

d

dhi1
vi2μi2 xi( 􏼁( 􏼁 +

d

dxi

vi2μi2 xi( 􏼁( 􏼁
dxi

dhi1

� Fhi1
+ Khi1

dxi

dhi1
+

d

dxi

vi2μi2 xi( 􏼁( 􏼁
dxi

dhi1

� Fhi1
+ Khi1

+
d

dxi

vi2μi2 xi( 􏼁( 􏼁􏼠 􏼡
dxi

dhi1
.

(45)

Also, when l � i and j � 2 in it is established that

dfi xi( 􏼁

dhi2
�

d

dxi

vi1μi1 xi( 􏼁( 􏼁
dxi

dhi2
+

d

dhi2
vi2μi2 xi( 􏼁( 􏼁

�
d

dxi

vi2μi2 xi( 􏼁( 􏼁
dxi

dhi2
+ Fhi2

+ Khi2

dxi

dhi2

� Fhi2
+

d

dxi

vi2μi2 xi( 􏼁( 􏼁 + Khi2
􏼠 􏼡

dxi

dhi2
.

(46)

4.4. Controller Training Process. Taking
wi ∈ y[n − 1], y[n − 2], u[n], u[n − 1], u[n − 2]􏼈 􏼉 and xi ∈
u[n − 1], u[n − 2], e[n], e[n − 1], e[n − 2]{ }, in general the
equations that implement the dynamics of the training
parameters are

de[n]

dhij

� −
dy

dhij

,

dy[n]

dhij

� C1
dw1

dhij

+ C2
dw2

dhij

+ C3
dw3

dhij

+ C4
dw4

dhij

+ C5
dw5

dhij

,

du[n]

dhij

�
df1 x1( 􏼁

dhij

+
df2 x2( 􏼁

dhij

+
df3 x3( 􏼁

dhij

+
df4 x4( 􏼁

dhij

+
df5 x5( 􏼁

dhij

.

(47)

In the last equation, if l≠ i, then,

dfl xl( 􏼁

dhij

�
d

dxl

vl1μl1 xl( 􏼁( 􏼁 +
d

dxl

vl2μl2 xl( 􏼁( 􏼁􏼢 􏼣
dxl

dhij

. (48)

On the other hand, if l � i, it is determined that

dfi xi( 􏼁

dhi1
� Fhi1

+ Khi1
+

d

dxi

vi2μi2 xi( 􏼁( 􏼁􏼠 􏼡
dxi

dhi1
,

dfi xi( 􏼁

dhi2
� Fhi2

+
d

dxi

vi1μi1 xi( 􏼁( 􏼁 + Khi2
􏼠 􏼡

dxi

dhi2
.

(49)

Finally, the following equation is employed to update the
parameters:

hij(k + 1) � hij(k) − αe[n]
de[n]

dhij

, (50)

where α corresponds to the learning rate. Considering each
parameter, it is obtained that

Initial parameters

Calculate the response of
reference model

Evaluate control system and
calculate system output

Parameter adjustment
in auxiliary variables

Controller operation
finished?

Update the new parameters

Criteria?

Process completion

Yes

No

Yes

No

Figure 10: Algorithm for training the neuro-fuzzy controller.

Fi (t)

Kv

Fo (t)

h (t)

r

Rm

Hm

Figure 11: Conical tank diagram.
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vij(k + 1) � vij(k) − αe[n]
de[n]

dvij

,

σij(k + 1) � σij(k) − αe[n]
de[n]

dσij

,

cij(k + 1) � cij(k) − αe[n]
de[n]

dcij

.

(51)

Considering the previous equations in Figure 10, the
algorithm for training the neuro-fuzzy controller can be
observed.

Regarding the flowchart in Figure 10, the steps of the
algorithm used to train the neuro-fuzzy controller are as
follows:

Step 1: Establish the plant model and choose the initial
configuration of the controller parameters.

fi

π Rm
Hm

||2

Kv

+
−

×

÷
1
s

h (t)∑

√

Figure 12: Block diagram associated with the conical tank.

Table 3: Conical tank parameters.

Parameter Description Value
Rm Max radius 0.48m

Hm Max height 1.2m

Fi Input flow 0.0072 m3/s (max)
Kv Valve coefficient 0.0067m2/s
h Height Variable
Fo Outflow Variable
r Radius dependent of h Variable
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e
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Time [sec]
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Figure 13: Data of the plant in an open loop.
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Figure 14: Result of the identification process in open loop.
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Figure 15: Considered shape for fi.
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Figure 16: Reference model response.
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Step 2: Calculate the reference model response yr

(desired response).

Step 3: In the k -th training stage, k � 0, 1, 2, . . . , KT, for
the current n value of simulation, the output of the
control system is calculated using the neuro-fuzzy
model of the plant.

Step 4: Carry out the parameter adjustment of the
neuro-fuzzy controller (in auxiliary variables) using the
respective equations that involve the dynamics of the
control system, and the respective derivatives (equa-
tions (51), (54), and subsequent).

Step 5: Until n is equal to the defined value NT

(simulation time), return to Step 3 for the next

simulation step n � n + 1 (where the output of the
control system is calculated).
Step 6: In the case of completing the simulation time,
the newly optimized controller parameters are updated.
Step 7: Return to Step 3 for a new iteration k � k + 1,
until Jc(k) � 􏽐

NT

n�1 Jc(k, n) is smaller than a ε defined, or
until k is equal to a defined number KT.

It should be noted that in Step 4 of the algorithm the
parameters to be adjusted are stored in auxiliary variables,
since during this step the controller parameters do not
change.

5. Conical Tank Model

(e conical tank system is a single input single output (SISO)
process. (e output of this process is the level h(t) and the
input to the process is the liquid flow Fi , (e scheme of the
conical tank considered can be seen in Figure 11.

For this system, a liquid with constant density enters at a
volumetric rate Fi in a conical tank of height Hm and
maximum radius Rm , (e output of the tank is F0 � Kv

��
h

√
,

where h is the height of the liquid in the tank, and Kv is the
valve coefficient. (e process has high non-linearity due to
changes in the process gain, and the time constant with
respect to the height of the liquid in the tank [41].

Considering the input Fi, and the output Fo, according
to the law of mass conservation, the accumulation is the
mass that enters minus the mass that leaves. Since mass
conservation manifests as an increase or decrease in volume,
accumulation is the change in volume with respect to time.

dV

dt
� Fi − Fo. (52)

Considering Figure 11, the circular cone has volume:

H
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t [

m
]
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Figure 17: Response of the adaptive control system. (a) Control system output. (b) Input flow to the conical tank.
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Figure 18: Detail of the adaptive control system response.
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V �
π
3

r
2
h. (53)

From the geometry of the tank, it is observed that:

r �
Rm

Hm

h. (54)

(en:

V �
π
3

Rm

Hm

􏼠 􏼡

2

h
3
. (55)

Taking the derivative with respect to time:

dV

dt
� π

Rm

Hm

􏼠 􏼡

2

h
2dh

dt
. (56)

In this way,

dh

dt
�

Fi − Kvh

π Rm/Hm( 􏼁
2
h
2. (57)

(e block diagram of this system is shown in Figure 12,
where the non-linearities present in the hydraulic system can
be seen. Tank parameters are displayed in Table 3.

6. Results

A systematic location of the Gaussian membership functions
in the range [−1.5 1.5] with variance 2, and virtual actuators
started in zero, is carried out for the fuzzy system initial
configuration (employed for plant identification). As this
assignment is systematic, it requires previous training before
using it in the adaptive control system. (e data used to
perform the training can be seen in Figure 13.

Plant identification is performed by using 400 training
epochs, and the results can be seen in Figure 14 obtaining a
mean squared error (MSE) of 0.0012.

For the initial configuration of the controller are
employed functions fi displaying a linear behavior in the
range [−2.0 2.0], as shown in Figure 15; in addition, virtual
actuators are started in zero for parameter optimization.

(e reference model given by the transfer function in is
used to carry out controller training. It can be observed that
the system has a settling time of 200 1seconds. Figure 16
shows the reference model response, namely, the type of
expected (desired) behavior when optimizing the controller.

G(s) �
Y(s)

R(s)
�

1
50s + 1

. (58)

(e simulation of the adaptive control is achieved
considering different reference values where the identifi-
cation of the plant and the training of the controller are
carried out iteratively. (e simulation result is shown in
Figure 17, where Figure 17(a) displays the level of the tank
when the reference value is changed. In the first iteration, the
plant output does not reach the reference value, after several
iterations for the plant identification and controller opti-
mization, the plant output reaches the reference value. In
this way, it can be seen that the adaptive process allows

adjusting the neuro-fuzzy model of the plant and the
controller. Meanwhile, Figure 17(b) displays the input flow
to the conical tank in, which is required for the system to
reach the reference value. In this result, a progressive ad-
justment is also observed for the input flow to achieve the
desired output value.

Furthermore, to observe the operation of the adaptive
control system in detail, Figure 18 shows progressive ad-
justments to identify the plant and the controller training;
in this way, it is observed that the tank level reaches the
reference value. When each adjustment is made, the dy-
namic system response displays similar behavior to the
reference model. Plant identification and controller ad-
justment are carried out with data obtained during the
operation of the plant. In this way, it is observed the
correction made by the system when the controller (op-
timized) comes into operation. Finally, it can be also seen
that the greatest adjustment is made in the first iteration of
the iterative process.

7. Discussion

Regarding [26] in this work, architecture I was used for plant
identification and architecture II for the controller. As can be
seen, neuro-fuzzy architecture I present greater complexity
than architecture II, whereby previous training for the
neuro-fuzzy system was necessary. It is possible to define a
strategy to reduce preliminary information aiming at re-
ducing the complexity when settling inference rules in the
neuro-fuzzy system.

In addition, the distribution of Gaussian sets in archi-
tecture I is relevant for the initial configuration. In this
development, the distribution was carried out systematically
in the respective input universes; nevertheless, different
types of fuzzy sets and other alternatives can be considered
as part of the assignment and configuration.

(e development presented in this work may be
employed to implement MIMO systems, such as that pre-
sented in [28], since MIMO systems can be built from SISO
sub-systems with neuro-fuzzy architectures of types I and II.

Plant identification is essential when implementing
adaptive control, which is rooted in the equivalence prin-
ciple of certainty. To improve the performance of the control
system, it is first necessary to guarantee a suitable identi-
fication process. Further works may well consider different
configurations and architectures in the membership func-
tions to design neuro-fuzzy systems.

(e work presented here consists of an application of
fuzzy systems based on Boolean relations considering the
most relevant aspects in regard to the design and appli-
cation of an adaptive neuro-fuzzy control system. Re-
garding developments of the proposed adaptive control
system, the implementations developed have mainly fo-
cused on displaying different aspects related to the design
and training considering various plant types. Conse-
quently, it is expected to carry out a detailed stability
analysis of fuzzy systems based on Boolean relations using
the Lyapunov functions and the Krasovskii theorem in later
work.
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8. Conclusions

(e proposed adaptive neuro-fuzzy control scheme allows
the iterative adjustment of the plant model and the con-
troller when there are variations in the plant. Additionally,
this work displays the necessary equations and algorithms
for training neuro-fuzzy systems.

Plant identification is essential for the correct operation
of the adaptive control system; for this reason, the initial
configuration of the plant model takes place considering the
equivalence principle of certainty. Likewise, for plant
identification, the amount of available data is limited when
having a variety of parameters, which requires progressive
adjustment to identify the plant and to optimize the
controller.

(e simulations allow us to observe that the adaptive
scheme achieves the adjustment of the plant model and
controller with the aim that the system output reaches the
expected (desired) value.

Further works may consider different configurations and
architectures of fuzzy sets, including the mechanisms to
determine the initial configuration of neuro-fuzzy systems,
aiming to improve the adaptive control system performance.

Moreover, SISO sub-systems could be employed with
neuro-fuzzy architectures I and II to enhance the imple-
mentation of adaptive control MIMO systems.
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methodology for the implementation of fuzzy inference
systems based on boolean relations,” Electronics, vol. 8, no. 11,
p. 1243, 2019.

[26] H. Espitia, J. Soriano, I. Machón, and H. López, “Compact
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