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)e aim of this study is to introduce a novel method to solve a class of two-dimensional fractional optimal control problems. Since
there are some difficulties solving these problems using analytical methods, thus finding numerical methods to approximate their
solution is a challenging topic. In this study, we use transcendental Bernstein series. In fact, for solving the problem, we generalize
the Bernstein polynomials to a larger class of functions which can provide more accurate approximate solutions. )e convergence
theorem is proved. Some examples are solved to demonstrate the validity and applicability of this technique. Comparing the
results with other methods, we can find the efficiency and applicability of the scheme.

1. Introduction

Fractional differential equations (FDEs) provide some ad-
vantages in the simulation of problems arising in system
biology [1], physics [2], hydrology [3], chemistry and bio-
chemistry [1] and finance [4], economic growth models with
memory effect [5], and many more. Constructing analytical
and numerical methods for solving various types of FDEs
has become an ongoing research topic. We mention here the
finite element method, the wavelet method [6], the spectral
tau method [7], the Gegenbauer spectral method [8], the
iterative method [9], the fractional-order wavelet method
[6], etc. Also, there are many mathematical and engineering
problems which can be modelled in the form of fractional-
order differential equations [10–16].

Generally, two approaches exist for solving fractional-
order optimal control problems (FOCPs) such as integer
order optimal control problems. First, the use of Pon-
tryagin’s maximum principle leads to a two-point boundary

value problem, while the second approach involves solving
the problem directly by discretizing and approximating the
state and control functions [17]. To obtain the optimal
solution, one can solve the Hamiltonian system of FOCPs.
When constructing the Hamiltonian system using integra-
tion by parts, the left and right fractional derivatives appear
simultaneously, whichmakes it very difficult to find the exact
solution. Hence, some researchers have focused on the
numerical solution of FOCPs.

A central difference numerical scheme for FOCPs was
given in [18]. In [19], the given optimization problem is
reduced to a system of algebraic equations utilizing poly-
nomial basis functions. For the fractional variational
problems, an approximate solution is achieved by solving the
system. In [20], FOCPs and their solutions were analyzed by
means of rational approximation. In [21], the shifted Leg-
endre-tau method was presented to solve a class of initial-
boundary value problems for the fractional diffusion
equations with variable coefficients on a finite domain.
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)e Bezier curves method (BCM) is discussed in some
papers. In [22, 23], the BCM was utilized for solving delay
differential equation (DDE) and optimal control of switched
systems (OCSSs). In [24], the BCM was proposed for some
linear optimal control systems (LOCPs) with pantograph
delays. Also, to solve the quadratic Riccati differential
equation and the Riccati differential-difference equation, the
BCM is utilized (see [25]). Other uses of the BCM are found
in [26].

In the present work, FDEs are utilized as the dynamic
constraints, leading to the fractional optimal control

problem (FOCP). However, very little work has been done in
the area of FOCP, although FOCPs have gained much at-
tention for some of their applications in engineering and
physics [27]. In this paper, we solve this problem using the
transcendental Bernstein series (TBS). Numerical examples
demonstrate the efficiency of the stated technique in solving
FOCP.

In what follows, we want to obtain a numerical technique
for solving two-dimensional fractional optimal control
problems (TFOCPs) of the form

min I1(ζ, u) � 􏽚
a′

0
􏽚

b′

0
G x, s, ζ(x, s), u(x, s),

zζ
zx

(x, s),
zζ
zs

(x, s)􏼠 􏼡dxds,

s.t.
z
2ζ

zx zs
(x, s) � c1

z
vζ

zx
v (x, s) + c2

z
βζ

zs
β (x, s) + c3ζ(x, s) + c4u(x, s),

ζ(0, s) � g1(s), ζ(x, 0) � f1(x), 0< v, β≤ 1, c1, c2, c3, c4 ∈ R, c4 ≠ 0, a′, b′ ∈ R,

(1)

whereG, ζ, and u are smooth functions, andf1(x) and g1(s)

are the given functions.
)e paper is organized as follows. In Section 2, the TBS

are defined. Also, the convergence theorem is proved in this
section. In Section 3, we discuss several numerical examples
and present some comparative results in some tables. Fi-
nally, conclusions and future work ideas are given in Section
4.

2. The TBS

Definition 1. )e Bezier polynomial of degree n is defined
over the interval [tj−1, tj] as follows:

xj(t) � 􏽘
n

r�0
a

j
rBr,n

t − tj−1

h
􏼠 􏼡, (2)

where h � tj − tj−1, and

Br,n

t − tj−1

h
􏼠 􏼡: �

n

r

⎛⎝ ⎞⎠
1
h

n tj − t􏼐 􏼑
n− r

t − tj− 1􏼐 􏼑
r
, (3)

is the Bernstein polynomial of degree n over the interval
[tj−1, tj], and a

j
r, r � 0, 1, . . . , n, and they are unknown

control points.
BCMs can be used to approximate some problems (see

[22, 23]). One may note that the BCM is similar to the TBS.

Definition 2. )eCaputo fractional derivatives of order v> 0
of the function u(x, s) are defined as (see [28])

z
v
u

zx
v (x, s) �

1
Γ(n − v)

􏽚
s

0
(x − η)

n− v− 1 z
n
u

zηn (η, s)dη,

z
v
u

zs
v (x, s) �

1
Γ(n − v)

􏽚
s

0
(s − θ)

n− v− 1 z
n
u

zθn (x, θ)dθ, n − 1< v≤ n.

(4)

Now, the TBS of degree m is defined as

Bi,m(s) �
m

i + ci

􏼠 􏼡s
i
(1 − s)

m− i
, 0≤ i≤m, s ∈ [0, 1]. (5)

Notice that ci � 0, then the TBS coincides with the
Bernstein polynomial of degree m.

)e expansions of the function ζ(x, s) and u(x, s) in
terms of TBS can be written in the following forms:

ζ(x, s)≃ϕm1
(x)

T
P′ψm2

(s),

u(x, s)≃θn1
(x)

T
Q′Ωn2

(s),
(6)
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where P′ � [pij], i � 0, 1, . . . , m1, j � 0, 1, . . . , m2 and
Q′ � [qij], i � 0, 1, . . . , n1, j � 0, 1, . . . , n2 are unknown
matrices, and m1, m2, n1, n2 ∈ Z+ � 1, 2, 3, . . .{ }. We have

ϕm1
(x) � 1 1 B2,m1

(x) . . . Bm1 ,m1
(x)􏽨 􏽩

T
� A′Tm1

(x),

ψm2
(s) � 1 B1,m2

(s) B2,m1
(s) . . . Bm2 ,m2

(s)􏽨 􏽩
T

� B′Tm2
(s),

θn1
(x) � 1 B1,n1

(x) B2,n1
(x) . . . Bn1 ,n1

(x)􏽨 􏽩
T

� C′Tn1
(x),

Ωn2
(s) � 1 B1,n2

(s) B2,n2
(s) . . . Bn1 ,n1

(s)􏽨 􏽩
T

� D′Tn2
(s),

(7)

with

A′ �

1 0 0 . . . 0

0 1 0 . . . 0

a20 a21 a22 . . . a2m1

⋮ ⋮ ⋮ . . . ⋮

am10 am11 am13 . . . am1m1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B′ �

1 0 . . . 0

b10 b11 . . . b1m2

b20 b21 . . . a2m2

⋮ ⋮ . . . ⋮

bm20 bm21 . . . bm2m2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

C′ �

1 0 . . . 0

c10 c11 . . . c1n1

c20 c21 . . . c2n1

⋮ ⋮ . . . ⋮

cm20 cm21 . . . cn1n1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

D′ �

1 0 . . . 0

d10 d11 . . . d1n2

d20 d21 . . . d2n2

⋮ ⋮ . . . ⋮

dn20 dn21 . . . dn2n2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

aij �
(−1)

j− i
m1

i
􏼠 􏼡

m1 − i

j − i
􏼠 􏼡, i≤ j

0, i> j,

⎧⎪⎪⎨

⎪⎪⎩
bij �

(− 1)
j−i

m2

i
􏼠 􏼡

m2 − i

j − i
􏼠 􏼡, i≤ j

0, i> j,

⎧⎪⎪⎨

⎪⎪⎩

cij �
(−1)

j− i
n1

i
􏼠 􏼡

n1 − i

j − i
􏼠 􏼡, i≤ j

0, i> j,

⎧⎪⎪⎨

⎪⎪⎩
dij �

(− 1)
j−i

n2

i
􏼠 􏼡

n2 − i

j − i
􏼠 􏼡, i≤ j

0, i> j,

⎧⎪⎪⎨

⎪⎪⎩

Tm1
(x) � ϕ0(x) ϕ1(x) . . . ϕm1

(x)􏽨 􏽩
T
, Tm2

(x) � ψ0(x) ψ1(x) . . .ψm2
(x)􏽨 􏽩

T
,

Tn1
(x) � θ0(x) θ1(x) . . . θn1

(x)􏽨 􏽩
T
, Tn2

(x) � w0(x) w1(x) . . . wn2
(x)􏽨 􏽩

T
,

ϕi(x) �
x

i
i � 0, 1,

x
i+ki i � 2, 3, . . . , m1,

⎧⎨

⎩ ψi(s) �
1 j � 0,

s
i+qj j � 1, 2, 3, . . . , m2,

􏼨

θi(x) �
1 i � 0,

x
i+ri i � 1, 2, 3, . . . , n1,

􏼨 wj(s) �
1 j � 0,

s
j+lj j � 1, 2, 3, . . . , n2,

⎧⎨

⎩

(8)
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where the symbols ki, qj, ri, and lj represent the control
parameters.

2.1. Convergence Analysis

Theorem 1. Suppose that V: [0, 1] × [0, 1]↔R is n1 + n2 + 1
times continuously differentiable, V ∈ Cn+n2+1([0, 1] × [0, 1],
and Y � 〈xβi tcj , 0≤ i≤ n1, 0≤ j≤ n2〉. If θn1

(x)TQΩn2
(t) is

the good approximation, then we have

V − θT
n1

QΩn2

�����

�����2
≤

N n1 + n2 + 2( 􏼁

k! n1 + n2 + 1 − k( 􏼁!
, k ∈ 0, 1, 2, . . . , n1 + n2 + 1􏼈 􏼉, (9)

where

N ≔ sup
z

n1+n2+1

zs
n1+n2+1−i

V(s, t)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
: s, t ∈ [0, 1],􏼨

i � 0, 1, . . . , n1 + n2 + 1􏼉.

(10)

Proof. One may write

V(s, t) � q(s, t) +
1

n1 + n2 + 1( 􏼁!
s

z

zs
+ t

z

zt
􏼠 􏼡

n1+n2+1

V λ0s, λ0t( 􏼁, λ0 ∈ (0, 1),

q(s, t) � 􏽘

n1+n2

i�0

1
i!

s
z

zs
+ t

z

zt
􏼠 􏼡

i

V(0, 0).

(11)

Hence,

|V(s, t) − q(s, t)| �
1

n1 + n2 + 1( 􏼁!
s

z

zs
+ t

z

zt
􏼠 􏼡

n1+n2+1

,

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

V λ0s, λ0t( 􏼁
􏼌􏼌􏼌􏼌, λ0 ∈ (0, 1),

(12)

which leads to

V − θT
n1

QΩn2

�����

�����2
� ‖V − q‖2. (13)

)erefore,

s
z

zs
+ t

z

zt
􏼠 􏼡

n1+n2+1

,

V λ0s, λ0t( 􏼁 � s
n1+n2+1 z

n1+n2+1

zs
n1+n2+1 V λ0s, λ0t( 􏼁

+ s
n1+n2t

n1 + n2 + 1

1
⎛⎝ ⎞⎠

z
n1+n2+1

zs
n1+n2zt

V λ0s, λ0t( 􏼁

+⋮

+ stn1+n2

n1 + n2 + 1

n1 + n2

⎛⎝ ⎞⎠
z

n1+n2+1

zs zt
n1+n2

V λ0s, λ0t( 􏼁

+ t
n1+n2+1 z

n1+n2+1

zt
n1+n2+1 V λ0s, λ0t( 􏼁.

(14)

Since
n1 + n2 + 1

i
􏼠 􏼡 �

n1 + n2 + 1

n1 + n2 + 1 − i
􏼠 􏼡, i � 0, 1, . . . , n1 + n2 + 1,

(15)

there exists a value k ∈ 0, 1, 2, . . . , n1 + n2 + 1􏼈 􏼉 such that

max
n1 + n2 + 1

i

⎛⎝ ⎞⎠, i � 0, 1, . . . , n1 + n2 + 1
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
�

n1 + n2 + 1

k

⎛⎝ ⎞⎠ �
n1 + n2 + 1( 􏼁!

k! n1 + n2 + 1 − k( 􏼁!
. (16)

Now, one may define

N :� sup
z

n1+n2+1

zs
n1+n2+1−i

V(s, t)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
: s, t ∈ [0, 1], i � 0, 1, . . . , n1 + n2 + 1􏼨 􏼩. (17)
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For finding an upper bound in equation (13), we have

􏽚
1

0
􏽚
1

0
s
2n1+2n2+2− 2i

t
2idsdt �

1
(2i + 1) 2n1 + 2n2 + 3 − 2i( 􏼁

, i � 0, 1, . . . , n1 + n2 + 1,

􏽚
1

0
􏽚
1

0
s
2n1+2n2+1− i

t
i+1dsdt �

1
(i + 2) 2n1 + 2n2 + 2 − i( 􏼁

, i � 0, 1, . . . , n1 + n2,

􏽚
1

0
􏽚
1

0
s
2n1+2n2− 1− i

t
i+3dsdt �

1
(i + 4) 2n1 + 2n2 − i( 􏼁

, i � 0, 1, . . . , n1 + n2 − 1,

􏽚
1

0
􏽚
1

0
s
2n1+2n2− 3− i

t
i+5dsdt �

1
(i + 6) 2n1 + 2n2 − 2 − i( 􏼁

, i � 0, 1, . . . , n1 + n2 − 2,

􏽚
1

0
􏽚
1

0
s

i+1
t
2n1+2n2− i+1dsdt �

1
(i + 2) 2n1 + 2n2 + 2 − i( 􏼁

, i � 0.

(18)

)en, we get

‖V − q‖2 􏽚
1

0
􏽚
1

0

1
n1 + n2 + 1( 􏼁!

s
z

zs
+ t

z

zt
􏼠 􏼡

n1+n2+1

V λ0s, λ0t( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

dsdt⎛⎝ ⎞⎠

1/2

,

� ≤
n1 + n2 + 1( 􏼁!

k! n1 + n2 + 1 − k( 􏼁!
×

M

n1 + n2 + 1( 􏼁!
􏽚
1

0
􏽚
1

0
􏽘

n1+n2+1

i�0
s

n1+n2+1− i
t
i

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

dsdt⎛⎝ ⎞⎠

1/2

� ψ 􏽘

n1+n2+1

i�0

1
(2i + 1) 2n1 + 2n2 + 3 − 2i( 􏼁

⎛⎝ + . . . +􏽘
1

i�0

1
(i + 3) 2n1 + 2n2 − i + 1( 􏼁

+
1

4n1 + 4n2 + 4
⎞⎠

1/2

≤ψ n1 + n2 + 2( 􏼁 + n1 + n2 + 1( 􏼁 + · · · + 2 + 1( 􏼁
1/2

� ψ n1 + n2 + 2( 􏼁
2

􏼐 􏼑
1/2

� ψ n1 + n2 + 2( 􏼁, where ψ �
M

k n1 + n2 + 1 − k( 􏼁􏼁!
.

(19)

□
3. Numerical Examples

In this section, some examples are approximated using the
mentioned method. )e results are presented in tables and
are compared with the results obtained in [29–31]. Also, the

graphs of the approximate solutions are plotted for different
values of ] and β.

Example 1. Consider the following problem [29],

I1 � min􏽚
3

0
􏽚
3

0

zζ
zs

(x, s) + ζ(x, s)􏼠 􏼡

2

+ ζ2(x, s) + u
2
(x, s)⎡⎣ ⎤⎦dx ds,

s.t.
z
2ζ

zx zs
(x, s) � −

z
vζ

zx
v (x, s) − 3

z
βζ

zs
β (x, s) + 0.2ζ(x, s) + 0.3u(x, s),

ζ(0, s) � e
−2s

, ζ(x, 0) � e
−3x cos(2πx).

(20)
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Figure 2: �e approximate solution of u(x, s) with n1 � n2 � m1 � m2 � 3 for Example 1.
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Figure 1: �e approximate solution of ζ(x, s) with n1 � n2 � m1 � m2 � 3 for Example 1.
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Figure 3: �e approximate solution of ζ(x, s) with n1 � n2 � m1 � m2 � 4 for Example 1.
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Figure 4: �e approximate solution of u(x, s) with n1 � n2 � m1 � m2 � 4 for Example 1.
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)is example is solved using our method with ci � 1 (see
Figures 1–4). Applying the method, we have

I1,approx � 0.0355047374520341296, n1 � n2 � m1 � m2 � 3, v � β � 0.5,

I1,approx � 0.00199061404713575028, n1 � n2 � m1 � m2 � 4, v � β � 0.5,

I1,approx � 0.0219108300379033950, n1 � n2 � m1 � m2 � 4, v � β � 1.

(21)

Note that these results are better than the obtained in
[29]. )e comparative study can be found in Table 1. We
note that in Table 1, parameters M, M′ are from the method

used in [29]. )e CPU time for solving the problem is 4.13 s
using a Core i3 laptop.

ζapprox(x, s) � 1 − 1.45240394376420t + 0.194460761429751x
3

+ 0.694697572298107t
2

− 0.106958345297291t
3

− 0.694479683208798x
2

+ 1.04133400405558x
2
t

− 0.505832311967745x
2
t
2

+ 0.0784741699699019x
2
t
3

− 0.297681404809978x
3
t + 0.146001746220140x

3
t
2

− 0.0227563106212003x
3
t
3
, for n1 � n2 � m1 � m2 � 3, v � 0.5, β � 0.5.

(22)

Example 2. Next, let us consider the following problem [30]:

Table 1: )e value of I1 in some references.

Method in [29] Value of I1[29]
M � 1, M′ � 1 6.3883
M � 2, M′ � 3 5.0251
M � 6, M′ � 4 2.2775
M � 7, M′ � 5 0.5997
M � 8, M′ � 5 0.1906
M � 9, M′ � 5 0.1770
M � 10, M′ � 5 0.0951
M � 10, M′ � 6 0.0947
Method in [30] Value of I1 [30]
M � 6, M′ � 1 4.0203
M � 6, M′ � 8 2.2905
M � 9, M′ � 2 0.8024
M � 7, M′ � 8 0.6202
M � 8, M′ � 3 0.2792
M � 8, M′ � 8 0.2026
Method in [31] Value of I1 [31]
X � 0.3, T � 0.3 1.4979
X � 0.2, T � 0.2 1.0953
X � 0.1, T � 0.1 0.7348
X � 0.05, T � 0.05 0.5510
X � 0.03, T � 0.03 0.4760
Value of I1 in method with n1 � n2 � m1 � m2 � 3 0.0355047374520341296
Value of I1 in method with n1 � n2 � m1 � m2 � 4 0.00199061404713575028
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I1 � min
1
2
∫
5

0
∫
5

0
107(ζ(x, s) − sin(x + s))2 + u2(x, s)[ ]dx ds,

s.t.
z2ζ
zx zs

(x, s) � −
zvζ
zxv

(x, s) − 3
zβζ
zsβ

(x, s) + 0.2ζ(x, s) + 0.3u(x, s),

ζ(0, s) � e−2s, ζ(x, 0) � e−3x cos(2πx).

(23)

�is example is solved using our method with ci � 1.�e
graphs of the approximate solutions are shown in Figures 5
and 6. Also, we get

I1,approx � 1.00374989684 × 106, n1 � n2 � m1 � m2 � 3, v � 0.5, β � 0.5. (24)

A comparative study is presented in Table 2.

Table 2: �e value of I1 in some references.

Method in [30] Value of I1[30]
M � 7,M′ � 6 2.03080 × 106
M � 6,M′ � 8 1.82721 × 106
M � 7,M′ � 7 1.60773 × 106
M � 6,M′ � 9 1.54056 × 106
M � 7,M′ � 8 1.45170 × 106
M � 7,M′ � 9 1.33534 × 106
M � 8,M′ � 8 1.30907 × 106

Value of I1 in method with n1 � n2 � m1 � m2 � 3 1.00374989684 × 106
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t x
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−0.4
−0.6
−0.8
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Figure 6: �e approximate solution of u(x, s) with n1 � n2 � m1 � m2 � 3 for Example 2.
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Figure 5: �e approximate solution of ζ(x, s) with n1 � n2 � m1 � m2 � 3 for Example 2.
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4. Conclusion

In this paper, an efficient algorithm based on TBS was pre-
sented to solve 2-D FOCPs.)emain idea of the method is to
use the TBS as a new approximation instrument. )e validity
of the stated method based on TBS was verified in Section 3.
Furthermore, one may note the 2-D FOCP can be reduced to
a system of algebraic equations. Finding the control pa-
rameters provides the approximate solution of the problem.
)e efficiency of the method was confirmed by several nu-
merical examples. Solving the problem based on the Caputo-
Hadamard fractional derivative and considering infinite
horizon optimal control for nonlinear interconnected large-
scale dynamical systems with an application to optimal at-
titude control will be studied in future.
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